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308 A. Zee 

When I was a kid, so to speak, I came across and read Eugene Wigner's 
article1 on "The Unreasonable Effectiveness of Mathematics in the Natural 
Sciences". I was impressed. Thus, I was rather pleased when Ron Mickens 
asked me, this many years later, to write a similar article. 

Upon re-reading Wigner's article recently, I realized that Wigner had 
precious little to say, and perhaps necessarily so. I can hardly imagine that 
anyone could have much substantive to say about the question implied 
by the title of Wigner's article. Some of my colleagues may feel that, as 
a working theoretical physicist, I should not even be thinking about this 
question. But surely part of the fun of being a theoretical physicist is to 
be able to muse about such questions. 

Furthermore, thirty or so years have passed since Wigner's article was 
published, and what we think of as physics and mathematics have shifted, 
at least in focus. It may be worthwhile to look at the question again. 
I want to say right from the start that I have neither a coherent theme 
nor a startling insight. Rather, I can offer only a disconnected series of 
observations, anecdotes, and musings. Anyway, what follows was known in 
my college days as "shooting the breeze". 

Wigner's contribution lies, of course, in raising the question in the 
first place. In connection with Wigner's ability to ask seemingly profound 
questions, I may perhaps tell a little story. At around the time when I first 
read Wigner's article, I was an undergraduate. One winter day, I had to 
go back to the physics department after dinner to do some work. While 
I was eating dinner, it started to snow heavily outside. Trudging over to 
the physics building, I slipped and fell a couple of times. By the time I got 
there, I was literally covered with snow. As I staggered into the building, 
Eugene Wigner, with his heavy overcoat and hat on, was just about to go 
out. He looked at me carefully, and then he asked me, in that strangely 
solemn way that he had, "Excoose me, pleeze, izit snowing outside?" 

Now surely that was a truly profound question if I ever heard one. The 
unreasonable effectiveness of visual inspection in comprehending reality? 
But while I did battle with such deep thoughts, Wigner had already walked 
out and disappeared into the howling storm. 

A physics colleague once remarked to me that questions such as 
whether the effectiveness of mathematics in the natural sciences is reason
able or not have the curious property of being either incredibly profound 
or incredibly trivial. I am inclined to think that they are profound. Leav
ing that aside, let us try to understand and define the words in Wigner's 
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question. 
Effectiveness? What do we compare mathematics with in the effec

tiveness sweepstake? The trouble is that any alternative we can think of is 
so utterly ineffective by comparison. But how do we know that there isn't 
something more effective than mathematics? A prehistoric Wigner might 
have mused about the unreasonable effectiveness of magical incantations in 
understanding reality. Was there anything more effective than mathema
tics that we have not conceived of as yet by definition? Was Wigner asking 
about the unreasonable effectiveness of whatever we had found to be the 
most effective? 

Indeed, I suspect that what Wigner means by mathematics may just 
be the entire world of quantitative notions. If so, then the question he 
raised may be profoundly trivial (or trivially profound). Of course, the bag 
of quantitative notions is more effective than the bag of qualitative notions, 
if only because quantitative notions are more precise and compact. 

How do we measure reasonableness? According to some sort of com
munity standards? Evidently, since physicists assume that space and time 
are continuous, and since the assumption is based on well-verified observa
tions, it stands to reason that the mathematics of continuously differentiate 
functions would be effective. In this view, since the basic mathematical con
cepts, such as those of geometry, are abstracted out of our experience of 
the physical world, mathematics ought to be effective. Proponents of this 
view point to the apparent fact that those areas of modern mathematics 
least rooted in "everyday'' experience tend to be irrelevant to physics. 

Perhaps the most dramatic counterexample to this view is the emer
gence of the complex number in quantum physics. Why, indeed, should the 
microscopic world be described by complex numbers? It is really rather 
mysterious. 

Coming back to the effectiveness of differentiate functions in 
describing the physics of continuous spacetime, I should think that if at 
some distance scale, we were to discover that spacetime is actually discrete, 
then mathematics (as understood by Wigner, say) would not be effective 
at all. Indeed, mathematics is not particularly effective in areas such as 
lattice gauge theory. Not much can be done besides letting the computers 
go for it. 

I want to move on and spend the most time defining "mathematics". 
Wigner had devoted two sections to "What is mathematics?9 and "What is 
physics?". Rather than repeat what he said, I want to distinguish between 
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310 A. Zee 

mathematics and, for lack of a better term, arithmetic. This distinction 
is frankly and intentionally touched with a measure of snobbery. ("What 
you call mathematics is merely arithmetic to me.9) Twenty years after 
Wigner's article appeared, R. W. Hamming wrote an article2 titled "The 
Unreasonable Effectiveness of Mathematics9. Period. I didn't care much for 
Hamming's article, because it seemed to me that Hamming, drawing upon 
his engineering experience, was mostly talking about what I call arithmetic. 

Alright, what is the distinction? I would say that mathematics is 
whatever a reasonably brilliant physicist, defined for the purpose here as 
someone significantly smarter than I am, could not work out in a finite 
amount of time, by following more or less straightforward logic. (I will leave 
it to you to haggle over how long a finite amount of time is.) Everything 
else is arithmetic. For instance, I probably could have figured out the 
properties of the solutions of Legendre's equation. All that stuff about 
Legendre polynomials is definitely arithmetic. On the other hand, the fact 
that there are only three cases in which higher dimensional spheres can 
be mapped non-trivially onto lower dimensional spheres, namely 5 3 —* 
S2,S7 -♦ S4, and S 1 5 -+ S8 , that I call mathematics. 

Whether I call something arithmetic or mathematics depends to some 
extent on how we look at it. If we recognize Legendre polynomials as 
having to do with representations of the rotation group, that indicates some 
understanding of the structural properties of rotations. In short, I associate 
mathematics with structural or global understanding, and arithmetic with 
computation. 

Echoing a fairly widespread arrogance of the physicist, Feynman once 
said that had God not created mathematicians, physics would have been 
delayed by about a week. (Had complex numbers not been invented by the 
1920s, would the development of quantum mechanics have been delayed by 
significantly longer than a week?) According to Feynman, physicists would 
have invented what they needed, and the rest, as far as he was concerned, 
should not have been bothered with in the first place. Feynman's attitude, 
of course, represents a long tradition in physics. Until the mid-1970s, I 
would have been inclined to agree with Feynman, but with the advent 
of superstring theory, and for about a decade before that, truly profound 
mathematics had started coming into physics, with an intensity that was 
last seen with the arrival of group theory into quantum physics. But before 
these developments, it seemed as if physicists could really follow Feynman 
and have nothing to do with the "pure" mathematicians. 
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In a way, Feynman was right. We reached the grand unified theory in 
the 1970s using a minimal amount of mathematics. Some fairly elementary 
group theory, that's about it. For Pete's sake, the grand unified theory! 
The theory that unifies three of the fundamental interactions! We have 
unravelled a big piece of Nature's innermost secrets about how the world 
is put together without using anything a mathematician would call math
ematics. Indeed, the creators of the grand unified theory, and most of the 
particle physicists of the 1970s, were very Feynmanesque in their disdain for 
mathematics. Incidentally, Feynman once told me, while we were watching 
some show, that fancy-shmancy mathematical physics as applied to physics 
is not worth aa bottle of piss-water". 

I like to think of the development of particle physics since the mid-
1970s (say) as breaking the shackles of Feynman diagrams. I believe that 
Feynman diagrams, with all the brilliant simplicity that they incorporate, 
had too long an influence, and ultimately an unhealthful influence, on par
ticle physics. In a quantum field theory course I took in graduate school, 
the professor told us that field theory is defined as the totality of Feynman 
diagrams. The set of diagrams defines a unitary, analytic, and Lorentz 
invariant theory. All those manipulations in the standard canonical devel
opment, such as commuting field operators, are so fraught with delicacies 
that they are to be regarded as props needed to derive the Feynman rules. 
Once the rules are determined, quantum fields are to be thrown away. 

In this climate, there was indeed no need to learn any mathemat
ics. This view was swept away by the advent of concepts such as solitons 
and instantons. Particle physicists had to learn about such fancy-shmancy 
mathematics such as topology. 

The ten-year gap between the understanding of spontaneous sym
metry breaking and of solitons can, in my opinion, be attributed to the 
constraining influence of Feynman diagrams. Even in the 1970s there were 
many people who prefer to describe spontaneous symmetry breaking as 
the disappearance of diagrammatic lines into the vacuum. The notion of 
fields as real, as something that we can knead into twisted lumps, was quite 
revolutionary. 

Ironically, the formalism that came into fore, namely the path integral 
formalism, was also developed by Feynman. That represents a real tribute 
to Feynman. 

With the shackles of Feynman diagrams broken, Feynman's view on 
mathematics also started to fade. A younger generation of particle physi-
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312 A. Zee 

cists felt increasingly at ease with modern mathematics. There was a fun
damental shift in outlook towards mathematics, and with the advent of 
superstring theory around 1983 or so, the trend has accelerated. Today, 
much of the research in superstring theory is really research into mathe
matical structures, of a degree undreamed of by Wigner. 

With this brief review of how the attitudes of theoretical physicists 
have changed over the last thirty years or so, let me now come to some 
observations about the role of mathematics in fundamental physics. You 
may have already noticed my restriction to "fundamental physics9 in my 
title. I invented this term some years ago to replace the outmoded "particle 
physics* (or even worse "high energy physics"). Perhaps somewhat tauto-
logically, I define a fundamental physicist as someone who is interested in 
discovering something fundamental about the physical world. Fundamental 
physics and particle physics overlap to a large extent, but neither contains 
the other. The definition is broad enough to include some condensed matter 
physicists who are interested in understanding the "global" properties of 
strongly quantum many-body systems. Were I to maintain that arrogant 
tone I used in distinguishing mathematics from arithmetic, I could have 
defined a fundamental physicist as someone who tends to use mathematics 
rather than arithmetic. Anyhow, let's go on. 

I believe that the following is a true and somewhat mysterious fact: 
deeper physics is described by deeper mathematics. Consider the 
Schrodinger operator versus the Dirac operator. The mathematical struc
ture underlying the Dirac operator is much richer and deeper than the 
structure underlying the Schrodinger operator. We would expect so since 
the Schrodinger equation is an approximation of the Dirac equation. Asso
ciated with the Dirac operator is real mathematics. 

This point was underlined for me quite strikingly some time ago when 
a colleague and I were studying a condensed matter physics problem of a 
non-relativistic electron hopping on a two-dimensional lattice in the pres
ence of quantized magnetic flux. The problem has nothing to do with rela-
tivistic physics and the Dirac equation. To determine the energy E of the 
electron as a function of its momentum p, we have a completely standard 
and straightforward problem of finding the eigenvalues of some n by n ma
trix. For all but the simplest cases, one would have to go to the computer 
and crunch some numbers. Nothing inspiring or mathematical about it. 
However, suppose we are not interested in the precise function E(p) but in 
determining the number of zeroes, that is, the number of places in p-space 
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where E vanishes. Around such a point p*, we can expand and in general 
E will depend linearly on (p — p*): schematically E ~ a(p — p*). With a 
suitable shift and scale change in the definition of p, we see that the behav
ior of the electron in that region of momentum space is described effectively 
by a Dirac equation. What is remarkable is that the entire mathematical 
edifice of index theorems and winding numbers can now be brought to bear 
on finding out how many such p*s there are. 

The point is that to determine the function E(p) or even to determine 
the locations of the p*s is a job in arithmetic. These quantities depend on 
the details of the Hamiltonian. Change the Hamiltonian slightly and we 
expect the value of a given p* to shift. In contrast, the mathematics tells 
us that the number of p*s is invariant as long as the overall structure of the 
Hamiltonian remains unchanged. In other words, we have the concept of a 
topological invariant here. Mathematics is effective in giving us global and 
structural understanding but not in solving computational problems. 

I once remarked that more mathematics is associated with the Dirac 
operator than with the Schrodinger operator to a conference of philoso
phers interested in physics. Somebody in the audience objected vocif
erously, "Just count the number of mathematical papers written on the 
Schrodinger operator!" he said. The confusion here is between usefulness 
and beauty, so to speak. The Schrodinger equation is useful to a much 
larger group of physicists than the Dirac equation. Of course people would 
have devoted a great deal of energy to unravelling the properties of the 
Schrodinger equation. 

Even if we were to focus on the Schrodinger equation, not all 
Schrodinger problems are created equal. Consider the Schrodinger problem 
associated with the Stark effect and the Schrodinger problem of a particle 
moving on a sphere around a magnetic monopole. The latter is associated 
with deep mathematics, the former is not. But, some of you may think, 
the former is at least useful, the latter is not, since the monopole may not 
even exist. In fact, precisely because of the deep mathematics associated 
with the monopole problem, it has been of central importance in recent 
developments in theoretical physics and has popped up all over the map. I 
will mention only a few examples: Berry's phase, Polyakov's instanton in 
(2 -f- l)-dimensional compact gauge theory (a theory which may be relevant 
to high temperature superconductivity), Haldane's treatment of the anti-
ferromagnetic spin chain, and the movement of holes in a ferromagnetic 
background. None of these problems has anything to do with the mag-
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314 A. Zee 

netic monopole per se but they all share the same underlying mathematical 
structure. 

My story about finding the zeroes also illustrates a point known to 
every practicing physicist, namely the importance of asking the right ques
tion. There are several connotations to the word "right*. Obviously, we 
want to ask physically relevant questions. But we also want to ask questions 
for which mathematics is effective. 

Perhaps sadly, the importance of asking the right question has dimin
ished in some areas of physics due to the availability of computers. Thus, in 
the problem mentioned above, one can simply compute everything numeri
cally. To some extent, arithmetic can replace mathematics. But inevitably, 
arithmetic cannot provide the understanding brought by mathematics. 

In the thirty years since Wigner's article, we have seen the computer 
become a major force in theoretical physics. The computer has extended, 
in a sense, the very domain of theoretical physics. Such fields as chaos and 
nonperturbative quantum chromodynamics would have been essentially im
possible without the computer. At the same time, the computer has pro
nounced on the subject of Wigner's article: mathematics is not particularly 
effective in physics, if we define physics as the collection of problems and 
situations considered by the community of physicists. 

An important role played by mathematics is in limiting the possibili
ties physicists have to consider. An example is the exhaustive classification 
of Lie algebras. This is obviously of great importance in the development 
of grand unified theories, for instance. I think that Feynman is wrong here 
about how physicists can just invent the mathematics that they need. I 
feel that physicists can probably work out the theory of a specific group, 
SU(5), say, but the reasoning that allows one to say "Here are all the pos
sible Lie algebras and groups, folks!" is peculiarly mathematical. Actually, 
the reasoning involved, once it has been invented of course, is not par
ticularly difficult to follow, but it carries that peculiar quality known as 
mathematical insight. 

Of course, there are physicists around, some of the young string the
orists, for example, who probably could have worked out the complete 
classification of Lie algebras. But then these people could have easily be
come mathematicians as well. Feynman's crack only makes sense if there 
are distinct personality types, so that out of two persons, equally intelligent 
according to some measure, one can only be a physicist, the other a math
ematician. From my own observations, I believe that that's true to some 
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extent. Many great physicists would have been hopeless as mathematicians. 
In truth, there have been many examples of higher mathematics dis

covered independently by physicists. There is a well-known story by Moliere 
about a gifted but unschooled writer. When a friend complimented him on 
his prose, our writer was puzzled until he learned that what he was writing 
was called prose. A physicist colleague of mine was fond of asking math
ematically more sophisticated friends in a mocking tone, "Tell me, have I 
been writing prose?" 

It often happens that a discovery in physics is actually associated 
with a wealth of mathematical structure undreamed of at the time of the 
discovery. (This is the point I made earlier about the magnetic monopole 
problem.) Dirac certainly could not have imagined all the mathematics as
sociated with the Dirac operator. A wonderful example in particle physics 
is the chiral anomaly. It was first discovered in the late 1960s as an oddity: 
an explicit Feynman diagram calculation had shown that an alleged theo
rem derived by naively manipulating quantum fields was incorrect. (In fact, 
already starting in the early 1950s various people had stumbled upon the 
chiral anormaly in one form or another without recognizing it.) Over the 
last twenty some years, the chiral anomaly has had a totally amazing habit 
of popping up in connection with all sorts of major theoretical develop
ments. These developments include the renormalizability of gauge theories, 
path integral measures, instantons, fractionization of quantum numbers, in
duced proton decay, winding numbers and intersection numbers, selection 
of a suitable superstring theory, just to mention some examples. The rea
son for this remarkable ubiquity is that the chiral anomaly turned out to 
be associated with a deep mathematical structure rooted in topology and 
geometry. 

It does not follow, however, that objects of great interest to physics is 
necessarily associated with deep mathematical structures. Consider quan
tum field theories. In the modern view, a quantum field theory is defined 
by some sort of functional integral of an integrand equal to the exponen
tial of the action times the imaginary unit i. Apparently, it is just some 
functional integral out of many possible functional integrals. At least thus 
far, physicists have not discovered any particularly deep mathematics asso
ciated with this integral. In contrast, a part of the integrand, namely the 
action, often has interesting mathematical properties. (An example is the 
pure Yang-Milk action.) But in all important cases, knowing some prop
erties of the integrand is not of much help in understanding the properties 
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of the integral. This is well known in statistical mechanics, for example. 
Mathematics sometimes popped up uninvited in a physical situation. 

An example is that of an electron moving in a plane under a uniform mag
netic field. The lowest energy quantum wavefunctions turn out to have the 
form /(z)e~l*l where f(z) is any holomorphic function and where z = x+iy 
is the complex coordinate on the plane. Laughlin was able to develop an 
essentially complete theory of the fractional Hall effect by constructing a 
variational many-body wavefunction out of these wavefunctions. The struc
tural properties of the theory are made apparent by invoking analyticity 
theorems at every turn. One has to repeatedly argue along the line "Such 
and such must have this particular form because of analyticity". A priori, 
the fractional Hall effect poses a formidably difficult problem in many-body 
dynamics and a theory as complete as Laughlin's would appear to be out 
of the question. 

Remarkably, the wavefunction has the above-mentioned holomorphic 
form only in a certain gauge (out of an infinity of possible gauge choices). 
Indeed, one might not have the insight to write the wavefunction in terms 
of z at all (but instead, in terms of the usual x and y). Conceivably, one 
can still develop the same theory. After all, at every step, the equations can 
be gauged, transformed and re-written in terms of x and y. The structural 
properties of the theory would then be totally obscured. 

The preceding illustrates the well-known fact that often, using the 
right representation can be most of the battle. 

This brings us to another fact known to all practicing physicists: the 
effectiveness (should we say reasonable or unreasonable?) of notation in do
ing physics. At the simplest but yet a profound level, algebra was invented 
when someone introduced the "notation" of using letters to represent quan
tities. In doing physics, we all have our favorite notations to the point that 
we can barely tolerate an unfamiliar notation. The human mind is a crea
ture of habit. We are used to m for mass and T for temperature, and that's 
that. Some years ago, a distinguished particle physicist used the letter ir as 
an index (for example, for the *rth component of momentum). His papers, 
which are already quite difficult to read, appeared all that more difficult. 

I was told that Maxwell used to write out the components of the 
electric and magnetic fields starting with E for the first component of the 
electric field, thus E>F,G,H,I and J. (This is why the magnetic field is 
called HI) Whether or not this story was invented I do not know, but 
just imagine doing a standard problem in EkM using this notation! The 
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introduction of indices is a truly neat trick. It has also been said that the re
peated index summation represents one of Einstein's greatest contributions 
to physics. 

In these examples, a better notation represents heightened efficiency 
in the sense of the accountant. But often a better notation implies a deeper 
understanding of the subject. For instance, Dirac's bra and ket notation 
underlines the fact that we do not have to specify the representation of a 
state vector in Hilbert space. 

Indeed, there are entire topics of mathematics that amount essentially 
to a better notation. Take differential forms, for example. When I was a 
freshman, John Wheeler decided, as an experiment, to teach the introduc
tory physics course from "the top down". (Thus, relativity and quantum 
mechanics were discussed first so that classical physics can be obtained as 
a "trivial" approximation. Incidentally, the experiment was not repeated 
the next year.) We were taught electromagnet ism using differential forms: 
"indices without indices" (part of this discussion, using "egg-crates", later 
appeared in a well-known text on gravity co-authored by Wheeler). Need
less to say, we were totally mystified. What was worse was that I, and 
probably others as well, developed a total distaste for differential forms. It 
appeared to me useless, since in any specific problems, we eventually had 
to write out the components of the differential form anyway. For years, I 
resisted differential forms even as several well-meaning colleagues tried to 
"teach" me the notation. But about seven years ago, when I was working 
on anomalies in higher dimensions, I suddenly realized that I could not live 
without differential forms. If you doubt this, just try solving for w in an 
equation like trace Fn = dw by writing out everything with indices. You 
will literally drown in a sea of indices. (Here F is the Yang-Mills gauge 
field 2-form.) 

The real advantage of differential forms is not so much that it saves us 
from writing out an endless streams of indices, but that it makes clear the 
geometrical character of various physical quantities. For example, in the 
magnetic monopole problem, the gauge field 2-form allows us to think of 
the gauge field F as a single geometrical entity. The writing of F in terms 
of its components, in contrast, requires commitment to a definite coordi
nate choice and splits a simple geometrical concept (namely, the concept of 
area) into an unrecognizable mess. As another example, in that problem 
mentioned in the preceding paragraph, physicists had long worked out, by 
using arithmetic, what w is for the case when n = 2. But the recognition 
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that as a form, (trace Fn) is closed but not exact conveys a truly deeper 
understanding. 

The trouble was that when Wheeler was trying to convince me of 
the beauty of differential forms I was trying to master such problems as 
calculating the electrostatic field of a charged disk, in other words, problems 
that have about as much underlying geometrical structure as stock pricing 
analysis. There is no way that differential form can manifest its power in 
problems that call for only arithmetic. 

(This suggests another "definition* of arithmetic versus mathematics: 
the electromagnetic potential around an electric charge = arithmetic, while 
the electromagnetic potential around a magnetic charge = mathematics.) 

In recent years, various topological concepts such as linking and in
tersection numbers have entered into physics. Again, they can be written 
compactly and naturally in terms of a differential form with its underlying 
geometrical properties. 

This story illustrates that mathematics is often too powerful for the 
physics. Differential form is too much for doing electromagnetism. But 
when you are tickling non-Abelian gauge theories in higher dimensional 
spacetime, then differential forms become indispensable. 

My earlier attitude towards differential form is typical of the practic
ing physicist: I'm not gonna learn this stuff unless I can use it for something. 
My attitude towards fiber bundles, for example, remains at that stage. I 
have yet to encounter a physics problem in which fiber bundles would help 
me sigificantly, but I have no doubt that I will eventually. The mathemat
ical concept expressed in fiber bundles strikes me as universal and natural 
and at some point it is going to seduce me for sure. 

Fiber bundle provides an example in which it is useful just to know the 
words. They serve as pegs on which we can hang our physical concepts, so 
to speak. Often, they work as mnemonics. For instance, in the fundamental 
problem of a charged particle moving on a unit sphere around a magnetic 
monopole, words like sections, while of no actual help to us in solving 
the problem, remind us that the wavefunction is to be solved on separate 
patches and then joined together by gauge transformations. In recent years, 
physicists have used homotopy groups by and large in the same way, as 
mnemonics more than anything else. 

Let us go back to the comparison between the Schrodinger and the 
Dirac operator. What we gave up in going from the Dirac operator to the 
Schrodinger operator is of course symmetry: Lorents symmetry is broken 
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down to rotational symmetry. Lately, I have been particularly struck by 
the awkwardness of non-relativistic equations when compared to their rela-
tivistic counterparts. I was trained as a relativistic physicist, but in the last 
year and a half I have been working on condensed matter physics. At first, 
my collaborator had to point out to me constantly that I had erroneously 
written down a relativistic equation. With a sigh, I would trudge through 
the non-relativistic form. It would invariably turn out to be much more 
tedious to deal with. 

Deeper mathematics is associated with more symmetrical structures. 
In 1960, when Wigner wrote his article, the laws of the microscopic world 
looked rather asymmetric. We now know that those laws are merely phe
nomenological approximations to deeper laws, which are in fact symmetric. 
Symmetry has turned out to be a central organizing principle in Nature's 
design. Indeed, the story of fundamental physics in the last quarter of a 
century or so has been the profound discovery that as we study Nature at 
ever deeper levels, Nature exhibits ever larger symmetries. 

I have told this story in considerable detail elsewhere.3 Here I will 
merely emphasize that it does not have to be such that Nature's laws be
come more and more symmetric at deeper and deeper levels. For instance, 
there was a perfectly viable theory of the weak interaction in which the 
phenomenological Fermi theory was due to the exchange of a pair of scalar 
particles. Nature could have been designed so that the weak interaction 
would not be connected to the electromagnetic interaction at all. 

Indeed, I think that we can raise the question of "the unreasonable 
effectiveness of symmetry considerations in understanding Nature". Why 
should symmetry dominate Nature at the fundamental level? Does the 
very fact that Nature becomes ever more symmetrical imply that there is a 
design? Einstein once said that the most incomprehensible thing about the 
world is that it is comprehensible. A priori, we could have lived in a chaotic 
universe whose working is beyond our comprehension. I have speculated on 
the philosophical issues raised by these questions in a recent article,4 and so 
I will concentrate on the relationship between symmetry and mathematics 
here. 

Symmetry and mathematics are closely intertwinned. Structures 
heavy with symmetries would also naturally be rich in mathematics. And 
so if it is indeed true that Nature's design becomes more symmetrical as 
we probe deeper and deeper, mathematics should be ever more effective. 

Let me come back to the distinction between arithmetic and math-
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ematics. In a broad sense, this split is mirrored by the split between dy
namics and kinematics in physics. The application of fancy mathematics 
to physics often amounts to the erection of a kinematical framework within 
which we can ask dynamical questions. Mathematics is then often not 
particularly effective at this stage, and arithmetic has to be called upon. 

As a specific example, I can refer to the recent discussion of, for lack of 
a better term, what may be called Chern-Simons theory, with its multifar
ious possible implications for subjects ranging from topological field theory 
with its connection to string theory and quantum gravity to high temper
ature superconductivity. The discussion can be wonderfully mathematical 
with fancy terms like Hopf terms and braid groups bandied about, but when 
it comes to actually understanding high temperature superconductivity we 
have to confront a "real-life" physics problem of working out the statistical 
mechanics of a liquid of particles with fractional statistics. What is the free 
energy of this liquid? What are its elementary excitations? Does it behave 
as a superfluid? Fancy math ain't gonna tell us no thin. Only physical 
insight and arithmetic will 

In the physics community, people are often involved in value judg
ment, talking about whether the problem so and so has solved is easy or 
hard. But in deciding whether or not to be impressed by a colleague's 
work, people tend to be impressed by fancy mathematics. Paradoxically, 
problems for which fancy mathematics are effective are often kinematical 
and hence easy. To quote an example perhaps of little physical importance, 
I recall that in constructing a Chern-Simons theory of membranes, my col
laborator and I were guided at every step by the underlying mathematics 
of Hopf map, and we knew that things must work out in a preordained 
way (for instance, that quarternions must enter). Anyone who has worked 
on a physics problem with a heavy mathematical rather than arithmetical 
component must have had the feeling that the mathematics has a life of its 
own and can literally pull one along. 

I speak of this split between arithmetic and mathematics from experi
ence as I have worked on both types of physics problem. Perhaps somewhat 
strangely, I am attracted to both arithmetic and mathematics. 

Next, I would like to mention a pervasive feeling among theoreti
cal physicists expressed by the noble sentiment that "If the physics I am 
working on reveals an unexpectedly rich mathematical structure, then the 
physics must be correct.9 We all know that there had been some spec
tacular confirmations of this hypothesis: Einstein's theory of gravity and 
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Dirac's theory of the electron, for instance. 
This argument is now invoked by some string theorists, and it is cer

tainly true that the mathematical structure hidden in some apparently 
unprepossessing action describing a string is nothing short of incredible. 
String theory may well be right, but should we buy this argument? There 
is a nagging feeling among some people it is no coincidence that the struc
tures studied by fundamental physicists are also precisely those structures 
favored by mathematicians. The string worldsheet is two-dimensional on 
which complex numbers and hence analytic functions naturally live. The 
action may be viewed as a conformal field theory, and all sorts of nice 
mathematics follow. From the point of view of a naive physicist, it would 
appear natural to study blobs, rather than strings, if we are going to study 
extended structures at all. Alas, the blob worldthing is a nasty place where 
no self-respecting analytic function or conformal field would dare set foot. 
There does not seem to be a decent mathematical structure at all. Does 
this mean that string theory is right? 

Of course, it may be a waste of time to muse about such things. If I 
have the strength, I ought to be working on string theory instead. But the 
preceding discussion has brought us to what I call the dartboard theory of 
theoretical physics. In the mid-seventies, when there was a proliferation 
of models of the electroweak interaction, a distinguished experimentalist 
remarked to a group of us theoretical physicists that theorists are just 
throwing darts randomly, one of the darts is bound to land, and the wrong 
theories are just forgotten. 

All the theorists who heard this remark were of course outraged, and 
I think rightly so. The textbook description of the development of physics 
as a competition between theories does not apply, for the most part, to 
fundamental physics. At any time, there is usually not a choice between 
theory A and theory B. Rather, the choice is between a prevailing theory 
and nothing. We do not have the luxury of choosing between string theory 
and some other theory. Neither was gauge theory competing with some 
other theory during the 1970s. 

Are mathematicians throwing darts randomly at physics? Out of the 
wealth of structures studied by mathematicians, isn't it reasonable that 
some of them are bound to be effective in understanding the physical world? 

The influx of mathematics into particle physics over the last few years 
can only be described as a tidal wave. If you have not followed the develop
ment of string theory, let me give you a calibration. In 1984, a theoretical 
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physicist who had a comfortable familiarity with such concepts as coset 
spaces, homotopy groups, homology sequences, and exceptional algebras 
would have been regarded by his colleagues as mathematically sophisti
cated. Some four years later, that same person would be despised by string 
theorists as a hopelessly unschooled mathematical ignoramus. 

Is so much mathematics good for physics? I have no idea. The proof 
is of course in the eating: we will have to see if string theory can explain the 
world. Meanwhile, the tidal influx of mathematics is perfectly reasonable. 
In exploring the physics of the Planck scale, physicists are so far removed 
from any experimental moorings that mathematics can be our only guide, 
in a way that Wigner could not possibly have imagined. 

In connection with the role of mathematics in physics, I am fond of 
telling the story3 of Faraday and Maxwell. Because of his up-from-rags 
background, Faraday had a self-admitted blind spot - mathematics - and 
he was unable to transcribe his intuitive notions into precise mathematical 
descriptions. Just the opposite, Maxwell, scion of a distinguished family, 
received the best education, in mathematics and in everything else, that 
his era could provide. But before he began his investigations, Maxwell 
resolved "to read no mathematics on the subject (of electricity) till I had 
read through Faraday's Experimental Researches on Electricity. Indeed, 
he considered Faraday's mathematical deficiency an advantage. He wrote: 
"Thus Faraday . . . was debarred from following the course of thought which 
had led to the achievements of the FVench philosophers, and was obliged to 
explain the phenomena to himself by means of a symbolism which he could 
understand, instead of adopting what had hiherto been the only tongue of 
the learned.* 

By "symbolism", Maxwell was referring to Faraday's "lines of force". 
Earlier, Maxwell had said that "the treatises of (the French philosophers) 
Poisson and Ampere (on electricity) are of so technical a form, that to 
derive any assistance from them the student must have been thoroughly 
trained in mathematics, and it is very doubtful if such a training can be 
begun with advantage in mature years." Well, I am sure that physicists "of 
mature years" can all empathize with what Maxwell said. 

The story of Faraday and Maxwell is interesting particularly because 
it is not clear what moral it offers. I think that we are agreed that intuition 
in the grand tradition of Faraday has been of utmost importance in the 
development of physics. On the other hand, when you are wandering around 
in Planckland, what intuition can you possibly have? Let us not forget 
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that Maxwell could probably not have been able to derive the propagation 
of light without using the methods of the French philosophers, namely 
differential equations. (Mathematics to him, but arithmetic to us.) 

I like to close this musing about the effectiveness of mathematics, 
reasonable or otherwise, by telling another anecdote.5,6 A lady who knew 
Einstein in her youth told me that once, on a brilliant spring day she and 
Einstein walked into a garden blooming with flowers. They stood looking 
at the scene in silence. Finally, Einstein said, "We don't deserve all this 
beauty." 

Physics is a beautiful subject made all the more beautiful by the 
effectiveness of mathematics. Is it reasonable to think that we deserve all 
this beauty? 
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