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In July 1925 Heisenberg published a paper that ushered in the new era of quantum mechanics. This
epoch-making paper is generally regarded as being difficult to follow, partly because Heisenberg
provided few clues as to how he arrived at his results. We give details of the calculations of the type
that Heisenberg might have performed. As an example we consider one of the anharmonic oscillator
problems considered by Heisenberg, and use our reconstruction of his approach to solve it up to
second order in perturbation theory. The results are precisely those obtained in standard quantum
mechanics, and we suggest that a discussion of the approach, which is based on the direct
calculation of transition frequencies and amplitudes, could usefully be included in undergraduate
courses on quantum mechanics. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Heisenberg’s paper of July 19251 on ‘‘Quantum-
mechanical reinterpretation of kinematic and mechanical
relations,’’2,3 was the breakthrough that quickly led to the
first complete formulation of quantum mechanics.4–6 Despite
its undoubtedly crucial historical role, Heisenberg’s approach
in this paper is not generally followed in undergraduate
quantum mechanics courses, in contrast, for example, to Ein-
stein’s approach in the teaching of relativity. Indeed Heisen-
berg’s paper is widely regarded as being difficult to under-
stand and of mainly historical interest today. For example,
Weinberg7 has written that ‘‘If the reader is mystified at what
Heisenberg was doing, he or she is not alone. I have tried
several times to read the paper that Heisenberg wrote on
returning from Heligoland, and, although I think I under-
stand quantum mechanics, I have never understood Heisen-
berg’s motivations for the mathematical steps in his paper.
Theoretical physicists in their most successful work tend to
play one of two roles: they are eithersagesor magicians... It
is usually not difficult to understand the papers of sage-
physicists, but the papers of magician-physicists are often
incomprehensible. In this sense, Heisenberg’s 1925 paper
was pure magic.’’

There have been many discussions aimed at elucidating
the main ideas in Heisenberg’s paper of which Refs. 3 and
8–18 represent only a partial selection.19 Of course, it may
not be possible to render completely comprehensible the
mysterious processes whereby physicists ‘‘jump over all in-
termediate steps to a new insight about nature.’’20 In our
opinion, however, one of the main barriers to understanding
Heisenberg’s paper is a more prosaic one: namely, he gave
remarkably few details of the calculations he performed.

In Sec. II we briefly review Heisenberg’s reasoning in set-
ting up his new calculational method. Then we present in
Sec. III the details of a calculation typical of those we con-
jecture that he performed. Our reconstruction is based on the

assumption that, having formulated a method that was ca-
pable of determining the relevant physical quantities~the
transition frequencies and amplitudes!, Heisenberg then ap-
plied it to various simple mechanical systems, without any
further recourse to the kind of ‘‘inspired guesswork’’ that
characterized the old quantum theory. Surprisingly, this point
of view appears to be novel. For example, MacKinnon10 and
Mehra and Rechenberg11 have suggested that Heisenberg ar-
rived at the crucial recursion relations@see Eqs.~33!–~36! in
Sec. III B# by essentially guessing the appropriate generali-
zation of their classical counterparts. We are unaware of any
evidence that can settle the issue. In any case, our analysis
shows that it is possible to read Heisenberg’s paper as pro-
viding a complete~if limited! calculational method, the re-
sults of which are consistent with those of standard quantum
mechanics. We also stress both the correctness and the prac-
ticality of what we conjecture to be Heisenberg’s calcula-
tional method. We hope that our reappraisal will stimulate
instructors to include at least some discussion of it in their
undergraduate courses.

II. HEISENBERG’S TRANSITION AMPLITUDE
APPROACH

A. Quantum kinematics

Heisenberg began his paper with a programmatic call21,22

to ‘‘discard all hope of observing hitherto unobservable
quantities, such as the position and period of the electron,’’
and instead to ‘‘try to establish a theoretical quantum me-
chanics, analogous to classical mechanics, but in which only
relations between observable quantities occur.’’ As an ex-
ample of such latter quantities, he immediately pointed to the
energiesW(n) of the Bohr stationary states, together with
the associated Einstein–Bohr frequencies23

v~n,n2a!5
1

\
@W~n!2W~n2a!#, ~1!
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and noted that these frequencies, which characterize the ra-
diation emitted in the transitionn→n2a, depend on two
variables. An example of a quantity he wished to exclude
from the new theory is the time-dependent position coordi-
natex(t). In considering what might replace it, he turned to
the probabilities for transitions between stationary states.

Consider a simple one-dimensional model of an atom con-
sisting of an electron undergoing periodic motion, which is
the type of system studied by Heisenberg. For a state char-
acterized by the labeln, the fundamental frequencyv(n),
and the coordinatex(n,t), we can representx(n,t) as a Fou-
rier series

x~n,t !5 (
a52`

`

Xa~n!eiav(n)t, ~2!

where a is an integer.24 According to classical theory, the
energy emitted per unit time~the power! in a transition cor-
responding to theath harmonicav(n) is25

2S dE

dt D
a

5
e2

3pe0c3 @av~n!#4uXa~n!u2. ~3!

In the quantum theory, however, the transition frequency cor-
responding to the classicalav(n) is, in general, not a simple
multiple of a fundamental frequency, but is given by Eq.~1!,
so thatav(n) is replaced byv(n,n2a). Correspondingly,
Heisenberg introduced the quantum analogue ofXa(n), writ-
ten ~in our notation! asX(n,n2a).27 Furthermore, the left-
hand side of Eq.~3! has to be replaced by the product of the
transition probability per unit time,P(n,n2a), and the
emitted energy\v(n,n2a). Thus Eq.~3! becomes

P~n,n2a!5
e2

3pe0\c3 @v~n,n2a!#3uX~n,n2a!u2.

~4!

It is the transition amplitudesX(n,n2a) which Heisenberg
took to be ‘‘observable;’’ like the transition frequencies, they
depend on two discrete variables.28

Equation~4! refers, however, to only one specific transi-
tion. For a full description of atomic dynamics~as then con-
ceived!, we need to consider all the quantitiesX(n,n
2a)exp@iv(n,n2a)t#. In the classical case, the terms
Xa(n)exp@iav(n)t# may be combined to yieldx(t) via Eq.
~2!. But in the quantum theory, Heisenberg wrote29 that a
‘‘similar combination of the corresponding quantum-
theoretical quantities seems to be impossible in a unique
manner and therefore not meaningful, in view of the equal
weight of the variablesn andn2a @that is, in the amplitude
X(n,n2a) and frequencyv(n,n2a)] ... However, one
may readily regard the ensemble of quantitiesX(n,n
2a)exp@iv(n,n2a)t# as a representation of the quantity
x(t)... . ’’ This way of representingx(t), that is, as we would
now say, by a matrix, is the first of Heisenberg’s ‘‘magical
jumps,’’ and surely a very large one. Representingx(t) in
this way seems to be the sense in which Heisenberg consid-
ered that he was offering a ‘‘reinterpretation of kinematic
relations.’’

Heisenberg immediately posed the question: how is the
quantityx(t)2 to be represented? In classical theory, the an-
swer is straightforward. From Eq.~2! we obtain

@x~ t !#25(
a

(
a8

Xa~n!Xa8~n!ei (a1a8)v(n)t. ~5!

We setb5a1a8, and rewrite Eq.~5! as

@x~ t !#25(
b

Yb~n!eibv(n)t, ~6!

where

Yb~n!5(
a

Xa~n!Xb2a~n!. ~7!

Thus @x(t)#2 is represented classically~via a Fourier series!
by the set of quantitiesYb(n)exp@ibv(n)t#, the frequency
bv(n) being the simple combination@av(n)1(b
2a)v(n)#. In quantum theory, the corresponding represen-
tative quantities must be written asY(n,n2b)exp@iv(n,n
2b)t#, and the question is what is the analogue of Eq.~7!?

The crucial difference in the quantum case is that the fre-
quencies do not combine in the same way as the classical
harmonics, but rather in accordance with the Ritz combina-
tion principle:

v~n,n2a!1v~n2a,n2b!5v~n,n2b!, ~8!

which is consistent with Eq.~1!. Thus in order to end up with
the particular frequencyv(n,n2b), it seems ‘‘almost nec-
essary’’ ~in Heisenberg’s words30! to combine the quantum
amplitudes in such a way as to ensure the frequency combi-
nation Eq.~8!, that is, as

Y~n,n2b!eiv(n,n2b)t5(
a

X~n,n2a!eiv(n,n2a)t

3X~n2a,n2b!eiv(n2a,n2b)t,

~9!

or

Y~n,n2b!5(
a

X~n,n2a!X~n2a,n2b!, ~10!

which is Heisenberg’s rule for multiplying transition ampli-
tudes. Note particularly that the replacementsXa(n)
→X(n,n2a), and similarly forYb(n) andXb2a(n) in Eq.
~7!, produce a quite different result.

Heisenberg indicated the simple extension of the rule
given in Eq. ~10! to higher powers@x(t)#n, but noticed at
once31 that a ‘‘significant difficulty arises, however, if we
consider two quantitiesx(t),y(t) and ask after their product
x(t)y(t)... Whereas in classical theoryx(t)y(t) is always
equal toy(t)x(t), this is not necessarily the case in quantum
theory.’’ Heisenberg used the word ‘‘difficulty’’ three times
in referring to this unexpected consequence of his multipli-
cation rule, but it very quickly became clear that the non-
commutativity~in general! of kinematical quantities in quan-
tum theory was the essential new idea in the paper.

Born recognized Eq.~10! as matrix multiplication~some-
thing unknown to Heisenberg in July 1925!, and he and Jor-
dan rapidly produced the first paper4 to state the fundamental
commutation relation~in modern notation!

x̂p̂2 p̂x̂5 i\. ~11!

Dirac’s paper followed soon after,5 and then the paper of
Born, Heisenberg, and Jordan.6
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The economy and force of Heisenberg’s argument in
reaching Eq.~10! is remarkable, and it is at least worth con-
sidering whether presenting it to undergraduates might help
them to understand the ‘‘almost necessity’’ of non-
commuting quantities in quantum theory.

B. Quantum dynamics

Having identified the transition amplitudesX(n,n2a)
and frequenciesv(n,n2a) as the observables of interest in
the new theory, Heisenberg then turned his attention to how
they could be determined from the dynamics of the system.
In the old quantum theory, this determination would have
been done in two stages: by integration of the equation of
motion

ẍ1 f ~x!50, ~12!

and by determining the constants of the periodic motion
through the ‘‘quantum condition’’

R pdq5 R mẋ2dt5J~5nh!, ~13!

where the integral is evaluated over one period. In regard to
Eq. ~12!, Heisenberg wrote32 that it is ‘‘very natural’’ to take
the classical equation of motion over to quantum theory by
replacing the classical quantitiesx(t) and f (x) by their ki-
nematical reinterpretations,33 as in Sec. II A~or, as we would
say today, by taking matrix elements of the corresponding
operator equation of motion!. He noted that in the classical
case a solution can be obtained by expressingx(t) as a Fou-
rier series, substitution of which into the equation of motion
leads~in special cases! to a set of recursion relations for the
Fourier coefficients. In the quantum theory, Heisenberg
wrote that32 ‘‘we are at present forced to adopt this method
of solving equation Eq.~12! @his Eq. ~H11!# ... since it was
not possible to define a quantum-theoretical function analo-
gous to the@classical# function x(n,t). ’’ In Sec. III we shall
consider the simple example~the first of those chosen by
Heisenberg! f (x)5v0

2x1lx2, and obtain the appropriate re-
cursion relations in the classical and the quantum cases.

A quantum-theoretical reinterpretation of Eq.~13! is simi-
larly required in terms of the transition amplitudesX(n,n
2a). In the classical case, the substitution of Eq.~2! into
Eq. ~13! gives

R mẋ2dt52pm (
a52`

`

uXa~n!u2a2v~n!5nh, ~14!

using Xa(n)5@X2a(n)#* . Heisenberg argued that Eq.~14!
appeared arbitrary in the sense of the correspondence prin-
ciple, because the latter determinedJ only up to an additive
constant~times h). He therefore replaced Eq.~14! by the
derivative form@Eq. ~H15!#

h52pm (
a52`

`

a
d

dn
~auXa~n!u2v~n!!. ~15!

The summation can alternatively be written as over positive
values of a, replacing 2pm by 4pm. In another crucial
jump, Heisenberg then replaced the differential in Eq.~15!
by a difference, giving

h54pm(
a50

`

@ uX~n1a,n!u2v~n1a,n!2uX~n,n

2a!u2v~n,n2a!#, ~16!

which is Eq.~H16! in our notation.34 As he later recalled, he
had noticed that ‘‘if I wrote down this@presumably Eq.~15!#
and tried to translate it according to the scheme of dispersion
theory, I got the Thomas-Kuhn sum rule@Eq. ~16!35,36#. And
that is the point. Then I thought, That is apparently how it is
done.’’37

By ‘‘the scheme of dispersion theory,’’ Heisenberg re-
ferred to what Jammer38 calls Born’s correspondence rule,
namely39

a
]F~n!

]n
↔F~n!2F~n2a!, ~17!

or rather to its iteration to the form40

a
]F~n,a!

]n
↔F~n1a,n!2F~n,n2a!, ~18!

as used in the Kramers–Heisenberg theory of dispersion.41,42

It took Born only a few days to show that Heisenberg’s quan-
tum condition, Eq.~16!, was the diagonal matrix element of
Eq. ~11!, and to guess43 that the off-diagonal elements of
x̂p̂2 p̂x̂ were zero, a result that was shown to be compatible
with the equations of motion by Born and Jordan.4

At this point it is appropriate to emphasize that Heisen-
berg’s transition amplitudeX(n,n2a) is the same as the
quantum-mechanical matrix element^n2aux̂un&, whereun&
is the eigenstate with energyW(n). The relation of Eq.~16!
to the fundamental commutator Eq.~11! is discussed briefly
in Appendix A.

Heisenberg noted44 that the undetermined constant still
contained in the quantitiesX of Eq. ~16! @assuming the fre-
quencies known from Eq.~12!# would be determined by the
condition that a ground state should exist, from which no
radiation is emitted@see Eqs.~51! and~52! below#. He there-
fore summarized the state of affairs thus far by the
statement44 that Eqs.~12! and ~16! ‘‘if soluble, contain a
complete determination not only of frequencies and energy
values, but also of quantum-theoretical transition probabili-
ties.’’ We draw attention to the strong claim here: that he has
arrived at a new calculational method, which will completely
determine the observable quantities. Let us now see in detail
how this method works, for a harmonic oscillator perturbed
by an anharmonic force of the formlx2 per unit mass.45

III. HEISENBERG’S CALCULATIONAL METHOD
AND ITS APPLICATION TO THE ANHARMONIC
OSCILLATOR

A. Recursion relations in the quantum case

The classical equation of motion is

ẍ1v0
2x1lx250. ~19!

We depart from the order of Heisenberg’s presentation and
begin by showing how—as he stated—Eq.~19! leads to re-
cursion relations for the transition amplitudesX(n,n2a).
The (n,n2a) representative46 of the first two terms in Eq.
~19! is straightforward, being

@2v2~n,n2a!1v0
2#X~n,n2a!eiv(n,n2a)t, ~20!
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while that of the third term is, by Eq.~10!,

l(
b

X~n,n2b!X~n2b,n2a!eiv(n,n2a)t. ~21!

The (n,n2a) representative of Eq.~19! therefore yields47

@v0
22v2~n,n2a!#X~n,n2a!1l(

b
X~n,n2b!

3X~n2b,n2a!50, ~22!

which generates a recursion relation for each value ofa (a
50,61,62,...). Forexample, fora50 we obtain

v0
2X~n,n!1l@X~n,n!X~n,n!1X~n,n21!X~n21,n!

1X~n,n11!X~n11,n!1¯] 50. ~23!

No general solution for this infinite set of nonlinear algebraic
equations seems to be possible, so, following Heisenberg, we
turn to a perturbative approach.

B. Perturbation theory

To make the presentation self-contained, we need to dis-
cuss several ancillary results. Heisenberg began by consider-
ing the perturbative solution of the classical equation~12!.
He wrote the solution in the form

x~ t !5la01a1 cosvt1la2 cos 2vt1l2a3 cos 3vt

1¯1la21aa cosavt1¯ , ~24!

where the coefficientsaa , and v, are to be expanded as a
power series inl, the first terms of which are independent of
l:48

a05a0
(0)1la0

(1)1l2a0
(2)1¯ , ~25a!

a15a1
(0)1la1

(1)1l2a1
(2)1¯ , ~25b!

and

v5v01lv (1)1l2v (2)1¯ . ~26!

We substitute Eq.~24! into Eq. ~12!, use standard trigono-
metric identities, and equate to zero the terms that are con-
stant and which multiply cosvt, cos 2vt, etc., to obtain

l$v0
2a01 1

2 a1
21@l2~a0

21 1
2 a2

2!1¯#%50, ~27a!

~2v21v0
2!a11@l2~a1a212a0a1!1¯#50, ~27b!

l$~24v21v0
2!a21 1

2 a1
21@l2~a1a312a0a2!1¯#%

50, ~27c!

l2$~29v21v0
2!a31a1a21@l2~a1a412a0a3!1¯#%

50, ~27d!

where the dots stand for higher powers ofl. If we drop the
terms of orderl2 ~and higher powers!, and cancel overall
factors ofl, Eq. ~27! becomes~for lÞ0 anda1Þ0)

v0
2a01 1

2 a1
250, ~28a!

~2v21v0
2!50, ~28b!

~24v21v0
2!a21 1

2 a1
250, ~28c!

~29v21v0
2!a31a1a250, ~28d!

which is the same as Eq.~H18!.49 The lowest order inl
solution is obtained from Eq.~28! by settingv5v0 , and
replacing eachaa by the corresponding one with a super-
script (0) @see Eq.~25!#.

In the quantum case, Heisenberg proposed to seek a solu-
tion analogous to Eq.~24!. Of course, it is now a matter of
using the representation ofx(t) in terms of the quantities
X(n,n2a)exp@iv(n,n2a)t#. But it seems reasonable to as-
sume that, as the indexa increases from zero in integer
steps, each successive amplitude will~to leading order inl!
be suppressed by an additional power ofl, as in the classical
case. Thus Heisenberg suggested that, in the quantum case,
x(t) should be represented by terms of the form

la~n,n!, a~n,n21!cosv~n,n21!t,

la~n,n22!cosv~n,n22!t,...,

la21a~n,n2a!cosv~n,n2a!t,..., ~29!

where, as in Eqs.~25! and ~26!,

a~n,n!5a(0)~n,n!1la(1)~n,n!1l2a(2)~n,n!1¯ ,
~30!

a~n,n21!5a(0)~n,n21!1la(1)~n,n21!

1l2a(2)~n,n21!1¯ , ~31!

and

v~n,n2a!5v (0)~n,n2a!1lv (1)~n,n2a!

1l2v (2)~n,n2a!1¯ . ~32!

As Born and Jordan pointed out,4 some use of correspon-
dence arguments has been made here in assuming that asl
→0, only transitions between adjacent states are possible.
We shall return to this point in Sec. III C.

Heisenberg then simply wrote down what he asserted to be
the quantum version of Eq.~28!, namely50

v0
2a~n,n!1 1

4 @a2~n11,n!1a2~n,n21!#50 ~33!

2v2~n,n21!1v0
250, ~34!

@2v2~n,n22!1v0
2#a~n,n22!1 1

2 @a~n,n21!

3a~n21,n22!] 50, ~35!

@2v2~n,n23!1v0
2#a~n,n23!1 1

2 a~n,n21!

3a~n21,n23!1 1
2 a~n,n22!a~n22,n23!50. ~36!

The question we now address is how did Heisenberg arrive at
Eqs.~33!–~36!?

We shall show that these equations can be straightfor-
wardly derived from Eq.~22! using the ansatz~29!, and we
suggest that this is what Heisenberg did. This seems to be a
novel proposal. Tomonaga8 derived Eq.~22! but then dis-
cussed only thel→0 limit, that is, the simple harmonic
oscillator, a special case to which we shall return in Sec.
III C. The only other authors, to our knowledge, who have
discussed the presumed details of Heisenberg’s calculations
are51 Mehra and Rechenberg.11 They suggest that Heisenberg
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guessed how to ‘‘translate,’’ ‘‘reinterpret,’’ or ‘‘reformulate’’
~their words! the classical equation~28! into the quantum
ones, Eqs.~33!–~36!, in a way that was consistent with his
multiplication rule, Eq.~10!. Although such ‘‘inspired guess-
work’’ was undoubtedly necessary in the stages leading up to
Heisenberg’s paper,1 it seems more plausible to us that by the
time of the paper’s final formulation, Heisenberg realized
that he had a calculational method in which guesswork was
no longer necessary, and in which Eqs.~33!–~36!, in particu-
lar, could be derived.

Unfortunately, we know of no documentary evidence that
directly proves~or disproves! this suggestion, but we think
there is some internal evidence for it. In the passage to which
attention was drawn earlier,44 Heisenberg asserted that his
formalism constituted a complete method for calculating ev-
erything that needs to be calculated. It is difficult to believe
that Heisenberg did not realize that his method led directly to
Eqs. ~33!–~36!, without the need for any ‘‘translations’’ of
the classical relations.

To apply the ansatz of Eq.~29! to Eq. ~22!, we need to
relate the amplitudesX(n,n2a) to the corresponding quan-
tities la21a(n,n2a). We first note that in the classical
case,

Xa~n!5X2a* ~n!, ~37!

becausex(t) in Eq. ~2! has to be real. Consider, without loss
of generality, the casea.0. Then the quantum-theoretical
analogue of the left-hand side of Eq.~37! is X(n,n2a), and
that of the right-hand side isX* (n2a,n) ~see Ref. 27!.
Hence the quantum-theoretical analogue of Eq.~37! is

X~n,n2a!5X* ~n2a,n!, ~38!

which is nothing but the relation̂ n2aux̂un&5^nux̂un
2a&* for the Hermitian observablex̂. Although X(n,n
2a) can in principle be complex~and Heisenberg twice dis-
cussed the significance of the phases of such amplitudes!,
Heisenberg seems to have assumed~as is certainly plausible!
that in the context of the classical cosine expansion in Eq.
~24! and the corresponding quantum terms in Eq.~29!, the
X(n,n2a)’s should be chosen to be real, so that Eq.~38!
becomes

X~n,n2a!5X~n2a,n!, ~39!

that is, the matrix with elements$X(n,n2a)% is symmetric.
Consider a typical term of Eq.~29!,

la21a~n,n2a!cos@v~n,n2a!t#

5
la21

2
a~n,n2a!@eiv(n,n2a)t1e2 iv(n,n2a)t#

5
la21

2
a~n,n2a!@eiv(n,n2a)t1eiv(n2a,n)t#, ~40!

usingv(n,n2a)52v(n2a,n) from Eq.~1!. If we assume
that a(n,n2a)5a(n2a,n) as discussed for Eq.~39!, we
see that it is consistent to write

X~n,n2a!5
la21

2
a~n,n2a! ~a.0! ~41!

and in general

X~n,n2a!5
l uau21

2
a~n,n2a! ~aÞ0!. ~42!

The casea50 is clearly special, withX(n,n)5la(n,n).
We may now write out the recurrence relations Eq.~22!

explicitly for a50,1,2,..., in terms ofa(n,n2a) rather than
X(n,n2a). We shall include terms up to and including
terms of orderl2. For a50 we obtain

l$v0
2a~n,n!1 1

4 @a2~n11,n!1a2~n,n21!#1l2@a2~n,n!

1 1
4 ~a2~n12,n!1a2~n,n22!!] %50. ~43!

We note the connection with Eq.~27a!, and that Eq.~43!
reduces to Eq.~33! when thel2 term is dropped and an
overall factor ofl is canceled. Similarly, fora51 we obtain

~2v2~n,n21!1v0
2!a~n,n21!1l2$a~n,n!a~n,n21!

1a~n,n21!a~n21,n21!1 1
2 @a~n,n11!

3a~n11,n21!1a~n,n22!a~n22,n21!#%50 ~44!

@see Eq.~27b!#. For a52 we have

l$~2v2~n,n22!1v0
2!a~n,n22!1 1

2 a~n,n21!

3a~n21,n22!1l2@a~n,n!a~n,n22!1a~n,n22!

3a~n22,n22!1 1
2 a~n,n11!a~n11,n22!

1 1
2 a~n,n23!a~n23,n22!] %50 ~45!

@see Eq.~27c!#. For a53 @see Eq.~27d!# we obtain

l2$~2v2~n,n23!1v0
2!a~n,n23!1 1

2 @a~n,n21!

3a~n21,n23!1a~n,n22!a~n22,n23!]

1l2@a~n,n!a~n,n23!1a~n,n23!a~n23,n23!

1 1
2 a~n,n11!a~n11,n23!1 1

2 a~n,n24!

3a~n24,n23!] %50. ~46!

If we drop the terms multiplied byl2, Eqs.~43!–~46! reduce
to Eqs.~33!–~36!. This appears to be the first published deri-
vation of the latter equations.

In addition to these recurrence relations which follow
from the equations of motion, we also need the perturbative
version of the quantum condition Eq.~16!.52 We include
terms of orderl2, consistent with Eqs.~43!–~46!, so that Eq.
~16! becomes

h

pm
5a2~n11,n!v~n11,n!2a2~n,n21!v~n,n21!

1l2@a2~n12,n!v~n12,n!2a2~n,n22!

3v~n,n22!#. ~47!

We are now ready to obtain the solutions.

C. The lowest-order solutions for the amplitudes and
frequencies

We begin by considering the lowest-order solutions in
which all l2 terms are dropped from Eqs.~43! to ~47!, and
all quantities (a’s andv’s! are replaced by the corresponding
ones with a superscript(0) @compare Eqs.~30!–~32!#.53 In
this case, Eq.~44! reduces to

@2~v (0)~n,n21!!21v0
2#a(0)~n,n21!50, ~48!
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so that assuminga(0)(n,n21)Þ0, we obtain

v (0)~n,n21!5v0 ~49!

for all n. If we substitute Eq.~49! into the lowest-order ver-
sion of Eq.~47!, we find

h

pmv0
5@a(0)~n11,n!#22@a(0)~n,n21!#2. ~50!

The solution of this difference equation is

@a(0)~n,n21!#25
h

pmv0
~n1constant!, ~51!

as given in Eq.~H20!.53 To determine the value of the con-
stant, Heisenberg used the idea that in the ground state there
can be no transition to a lower state. Thus

@a(0)~0,21!#250, ~52!

and the constant in Eq.~51! is determined to be zero. Equa-
tion ~51! then gives~up to a convention as to sign!

a(0)~n,n21!5bAn, ~53!

where

b5~h/pmv0!1/2. ~54!

Equations~49! and ~53! were Heisenberg’s first results,
and they pertain to the simple~unperturbed! oscillator. We
can check Eq.~53! against the usual quantum mechanical
calculation via

a(0)~n,n21!52X(0)~n,n21!520^n21ux̂un&0 , ~55!

where the statesun&0 are unperturbed oscillator eigenstates.
It is well known that54

0^n21ux̂un&05S \

2mv0
D 1/2

An, ~56!

which agrees with Eq.~53!, using Eq.~54!. A similar treat-
ment of Eq.~43! leads to

a(0)~n,n!52
b2

4v0
2 ~2n11!. ~57!

Turning next to Eq.~45!, the lowest-order form is

~2@v (0)~n,n22!#21v0
2!a(0)~n,n22!

1 1
2 a(0)~n,n21!a(0)~n21,n22!50. ~58!

Because the combination law Eq.~8! must be true for the
lowest-order frequencies, we have

v (0)~n,n22!5v (0)~n,n21!1v (0)~n21,n22!52v0 ,
~59!

where we have used Eq.~49!, and in general

v (0)~n,n2a!5av0 ~a51,2,3,...!. ~60!

If we use Eqs.~53!, ~59!, and~60!, we obtain

a(0)~n,n22!5
b2

6v0
2 An~n21!. ~61!

A similar treatment of Eq.~46! yields

a(0)~n,n23!5
b3

48v0
4 An~n21!~n22!. ~62!

Consideration of the lowest-order term in Eq.~22! leads to

a(0)~n,n2a!5Aa

ba

v0
2(a21)A n!

~n2a!!
, ~63!

whereAa is a numerical factor depending ona; Eq. ~63! is
equivalent to Eq.~H21!.

It is instructive to comment on the relation of the above
results to those that would be obtained in standard quantum-
mechanical perturbation theory. At first sight, it is surprising
to see nonzero amplitudes for two-quantum@Eq. ~61!#, three-
quantum@Eq. ~62!#, or a-quantum@Eq. ~63!# transitions ap-
pearing at lowest order. But we have to remember that in
Heisenberg’s perturbative ansatz, Eq.~29!, the a-quantum
amplitude appears multiplied by a factorla21. Thus, for
example, the lowest order two-quantum amplitude is really
la(0)(n,n22), not justa(0)(n,n22). Indeed, such a transi-
tion is to be expected precisely at orderl1 in conventional
perturbation theory. The amplitude is^n22ux̂un& where, to
orderl,

un&5un&01
1

3
ml(

kÞn

0^kux̂3un&0

~n2k!\v0
uk&0 . ~64!

The operator x̂3 connects un&0 to un13&0 ,un11&0 ,un
21&0 , and un23&0 , and similar connections occur for0^n
22u, so that a nonzeroO(l) amplitude is generated in̂n
22ux̂un&.

It is straightforward to check that Eq.~61! is indeed cor-
rect quantum-mechanically, but it is more tedious to check
Eq. ~62!, and distinctly unpromising to contemplate checking
Eq. ~63! by doing a conventional perturbation calculation to
ordera21. For this particular problem, the improved pertur-
bation theory represented by Eq.~29! is clearly very useful.

After having calculated the amplitudes for this problem to
lowest order, Heisenberg next considered the energy. Unfor-
tunately he again gave no details of his calculation, beyond
saying that he used the classical expression for the energy,
namely

W5 1
2 mẋ21 1

2 mv0
2x21 1

3 mlx3. ~65!

It seems a reasonable conjecture, however, that he replaced
each term in Eq.~65! by its corresponding matrix, as dis-
cussed in Sec. II A. Thusx2, for example, is represented by
a matrix whose (n,n2a) element is

(
b

X~n,n2b!X~n2b,n2a!eiv(n,n2a)t, ~66!

according to his multiplication rule, Eq.~10!. A similar re-
placement is made forx3, and ẋ2 is replaced by

(
b

iv~n,n2b!X~n,n2b!eiv(n,n2b)t

3 iv~n2b,n2a!X~n2b,n2a!eiv(n2b,n2a)t

5(
b

v~n,n2b!v~n2a,n2b!X~n,n2b!

3X~n2b,n2a!eiv(n,n2a)t, ~67!

using v(n,m)52v(m,n). The total energy is represented
by the matrix with elements

W~n,n2a!eiv(n,n2a)t. ~68!
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It follows that if energy is to be conserved~that is, time-
independent! the off-diagonal elements must vanish:

W~n,n2a!50. ~aÞ0!. ~69!

The terma50 is time-independent, and may be taken to be
the energy in the staten. The crucial importance of checking
the condition Eq.~69! was clearly appreciated by Heisen-
berg.

To lowest order inl, the last term in Eq.~65! may be
dropped. Furthermore, referring to Eq.~29!, the only
l-independent terms in theX-amplitudes are those involving
one-quantum jumps such asn→n21, corresponding in low-
est order to amplitudes such asX(0)(n,n21)5 1

2a
(0)(n,n

21). It then follows from Eqs.~66! and ~67! that the ele-
mentsW(n,n), W(n,n22) andW(n,n12), and only these
elements, are independent ofl when evaluated to lowest
order. In Appendix B we show thatW(n,n22) vanishes to
lowest order, andW(n,n12) vanishes similarly. Thus, to
lowest order inl, the energy is indeed conserved~as Heisen-
berg noted!, and is given@using Eq.~66! and Eq.~67! with
a50 andb561] by

W~n,n!5 1
2 m@v (0)~n,n21!#2@X(0)~n,n21!#2

1 1
2 m@v (0)~n11,n!#2@X(0)~n11,n!#2

1 1
2 mv0

2@X(0)~n,n21!#21 1
2 mv0

2

3@X(0)~n11,n!#2

5~n1 1
2!\v0 , ~70!

where we have used Eqs.~49!, ~53!, and~54!. Equation~70!
is the result given by Heisenberg in Eq.~H23!.

These lowest order results are the only ones Heisenberg
reported for thelx2 term. We do not know whether he car-
ried out higher-order calculations for this case or not. What
he wrote next55 is that the ‘‘more precise calculation, taking
into account higher order approximations inW, a, v will
now be carried out for the simpler example of an anharmonic
oscillator ẍ1v0

21lx350.’’ This case is slightly simpler be-
cause in the expression corresponding to the ansatz~29! only
the odd terms are present, that is,a1 ,la3 ,l2a5 , etc.

The results Heisenberg stated for thelx3 problem include
terms up to orderl in the amplitudes, and terms up to order
l2 in the frequencyv(n,n21) and in the energyW. Once
again, he gave no details of how he did the calculations. We
believe there can be little doubt that he went through the
algebra of solving the appropriate recurrence relations up to
order l2 in the requisite quantities. As far as we know, the
details of such a calculation have not been given before, and
we believe that it is worth giving them here, as they are of
both pedagogical and historical interest. In the following sec-
tion we shall obtain the solutions for thelx2 term ~up to
orderl2) which we have been considering, rather than start
afresh with thelx3 term. The procedure is the same for both.

Before leaving the lowest order calculations, we address a
question that may have occurred to the reader. Given that, at
this stage in his paper, the main results actually relate to the
simple harmonic oscillator rather than to the anharmonic
one, why did Heisenberg not begin his discussion of toy
models with the simplest one of all, namely the simple har-
monic oscillator? And indeed, is it not possible to apply his
procedure to the simple harmonic oscillator without going

through the apparent device of introducing a perturbation,
and then retaining only those parts of the solution that sur-
vive as the perturbation vanishes?

For the simple harmonic oscillator, the equation of motion
is ẍ1v0

2x50, which yields

@v0
22v2~n,n2a!#X~n,n2a!50 ~71!

for the amplitudesX and frequenciesv. It is reasonable to
retain the quantum condition, Eq.~16!, because this condi-
tion is supposed to hold for any force law. If we assume that
the only nonvanishing amplitudes are those involving adja-
cent states~because, for example, in the classical case only a
single harmonic is present56!, then becauseX(n,n21)
5 1

2a(n,n21), Eqs.~16! and ~71! reduce to Eqs.~50! and
~48!, respectively, and we quickly recover our previous re-
sults. This is indeed an efficient way to solve the quantum
simple harmonic oscillator.57 For completeness, however, it
would be desirable not to have to make the adjacent states
assumption. Born and Jordan4 showed how this could be
done, but their argument is somewhat involved. Soon there-
after, of course, the wave mechanics of Schro¨dinger and the
operator approach of Dirac provided the derivations used
ever since.

D. The solutions up to and includingl2 terms

We now turn to the higher order corrections for thelx2

term. Consider Eq.~44! and retain terms of orderl. We set
@see Eqs.~25! and ~26!#

v~n,n21!5v01lv (1)~n,n21!, ~72!

a~n,n21!5a(0)~n,n21!1la(1)~n,n21!, ~73!

and find

2lv0v (1)~n,n21!a(0)~n,n21!50, ~74!

so that

v (1)~n,n21!50. ~75!

If we consider Eq.~44! up to terms of orderl2 and employ
Eqs.~53!, ~57!, and~61! for the zeroth-order amplitudes, we
obtain theO(l2) correction tov(n,n21) @see Eq.~26!#:

v (2)~n,n21!52
5b2

12v0
3 n. ~76!

The corresponding corrections toa(n,n21) are found
from the quantum condition Eq.~16!. To orderl we set

a~n11,n!5a(0)~n11,n!1la(1)~n11,n!, ~77!

as in Eq.~73!, and find

An11a(1)~n11,n!2Ana(1)~n,n21!50. ~78!

Equation~78! has the solutiona(1)(n,n21)5constant/An,
but the conditiona(1)(0,21)50 @see Eq.~52!# implies that
the constant must be zero, and so

a(1)~n,n21!50. ~79!

In a similar way, we obtain to orderl2

An11a(2)~n11,n!2Ana(2)~n,n21!5
11b3

72v0
4 ~2n11!,

~80!

which has the solution
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a(2)~n,n21!5
11b3

72v0
4 nAn. ~81!

We now find the higher order corrections toa(n,n) by
considering Eq.~43!. We obtaina(1)(n,n)50 and

a(2)~n,n!52
b4

72v0
6 ~30n2130n111!. ~82!

Similarly, we find from Eq.~45! a(1)(n,n22)50 and

a(2)~n,n22!5
3b4

32v0
6 ~2n21!An~n21!, ~83!

where we have used

v (2)~n,n22!5v (2)~n,n21!1v (2)~n21,n22!

52
5b2

12v0
3 ~2n21!. ~84!

These results suffice for our purpose. Ifn is large, they agree
with those obtained for the classicallx2 anharmonic oscil-
lator using the method of successive approximations.58

As an indirect check of their quantum mechanical validity,
we now turn to the energy evaluated to orderl2. Consider
first the (n,n) element of 1

2mv0
2x̂2. This matrix element is

given to orderl2, by

1

2
mv0

2H 1

4
@~a(0)~n,n21!!21~a(0)~n,n11!!2#

1
l2

4
@4~a(0)~n,n!!212a(2)~n,n21!a(0)~n21,n!

12a(2)~n,n11!a(0)~n11,n!1~a(0)~n,n22!!2

1~a(0)~n,n12!!2#J 5
1

2
mv0

2Fb2

2 S n1
1

2D
1

5b4l2

12v0
4 ~n21n111/30!G . ~85!

Similarly, using Eq.~67! up to orderl2, with a50, the

(n,n) element of1
2mẋ̂2 is found to be

1

2
mv0

2Fb2

2 S n1
1

2D2
5b4l2

24v0
4 ~n21n111/30!G . ~86!

Finally we consider the (n,n) element of the potential energy
1
3ml x̂3. To obtain the result to orderl2, we need to calculate
the (n,n) element ofx̂3 only to orderl. If we use

x̂3~n,n!5(
a

(
b

X~n,n2a!X~n2a,n2b!

3X~n2b,n!, ~87!

we find that there are no zeroth-order terms, but twelve terms
of order l @recall that amplitudes such asX(n,n) and
X(n,n22) each carry one power ofl#. We evaluate these
terms using Eqs.~53!, ~57!, and~61!, and obtain

2
5ml2b4

24v0
2 ~n21n111/30! ~88!

for this term in the energy. If we combine Eqs.~85!, ~86!,
and ~88!, we obtain the energy up to orderl2,

W~n,n!5S n1
1

2D\v02
5l2\2

12mv0
4 ~n21n111/30!, ~89!

a result59 that agrees with classical perturbation theory when
n is large,60 and is in agreement with standard second-order
perturbation theory in quantum mechanics.61

As mentioned, Heisenberg did not give results for thelx2

term beyond zeroth order. He did, however, give the results
for thelx3 term up to and includingl2 terms in the energy,
andl terms in the amplitudes. By ‘‘the energy’’ we mean, as
usual, the (n,n) element of the energy matrix, which as
noted in Sec. III C is independent of time. We also should
check that the off-diagonal elementsW(n,n2a) vanish@see
Eq. ~69!#. These are the terms that would~if nonzero! carry a
periodic time-dependence, and Heisenberg wrote62 that ‘‘I
could not prove in general that all periodic terms actually
vanish, but this was the case for all the terms evaluated.’’ We
do not know how many off-diagonal termsW(n,n2a) he
evaluated, but he clearly regarded their vanishing as a crucial
test of the formalism. In Appendix B we outline the calcula-
tion of all off-diagonal terms for thelx2 term up to orderl,
as an example of the kind of calculation Heisenberg probably
did, finishing it late one night on Heligoland.63

IV. CONCLUSION

We have tried to remove some of the barriers to under-
standing Heisenberg’s 1925 paper by providing the details of
calculations of the type we believe he performed. We hope
that more people will thereby be encouraged to appreciate
this remarkable paper.

The fact is that Heisenberg’s ‘‘amplitude calculus’’ works,
at least for the simple one-dimensional problems to which he
applied it. It is an eminently practical procedure, requiring no
sophisticated mathematical knowledge to implement. Be-
cause it uses the correct equations of motion and incorpo-
rates the fundamental commutator, Eq.~11!, via the quantum
condition, Eq. ~16!, the answers obtained are correct, in
agreement with conventional quantum mechanics.

We believe that Heisenberg’s approach, as applied to
simple dynamical systems, has much pedagogical value, and
could usefully be included in undergraduate courses on quan-
tum mechanics. The multiplication rule, Eq.~10!, has a con-
vincing physical rationale, even for those who~like Heisen-
berg! do not recognize it as matrix multiplication. Indeed,
this piece of quantum physics could provide an exciting ap-
plication for those learning about matrices in a concurrent
mathematics course. The simple examples of Eq.~10!, in
equations such as Eq.~22! or the analogous one for thel x̂3

term, introduce students directly to the fundamental quantum
idea that a transition from one state to another occurs via all
possible intermediate states, something that can take time to
emerge in the traditional wave-mechanical approach. The so-
lution of the quantum simple harmonic oscillator, sketched at
the end of Sec III D, is simple in comparison with the stan-
dard methods. Finally, the type of perturbation theory em-
ployed here provides an instructive introduction to the tech-
nique, being more easily related to the classical analysis than
is conventional quantum-mechanical perturbation theory
~which students tend to find very formal!.
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It is true that many important problems in quantum me-
chanics are much more conveniently handled in the wave-
mechanical formalism: unbound problems are an obvious ex-
ample, but even the Coulomb problem required a famous
tour de forceby Pauli.64 Nevertheless, a useful seed may be
sown, so that when students meet problems involving a finite
number of discrete states—for example, in the treatment of
spin—the introduction of matrices will come as less of a
shock. And they may enjoy the realization that the somewhat
mysteriously named ‘‘matrix elements’’ of wave mechanics
are indeed the elements of Heisenberg’s matrices.

APPENDIX A: THE QUANTUM CONDITION, EQ.
„16…, AND x̂ p̂Àp̂x̂Ä i\

Consider the (n,n) element of (x̂ẋ̂2 ẋ̂x̂), which is

(
a

X~n,n2a!iv~n2a,n!X~n2a,n!

2(
a

iv~n,n2a!X~n,n2a!X~n2a,n!. ~A1!

In the first term of Eq.~A1!, the sum overa.0 may be
rewritten as

2 i (
a.0

v~n,n2a!uX~n,n2a!u2 ~A2!

using v(n,n2a)52v(n2a,n) from Eq. ~1! and X(n
2a,n)5X* (n,n2a) from Eq.~38!. Similarly, the sum over
a,0 becomes

i (
a.0

v~n1a,n!uX~n1a,n!u2 ~A3!

on changinga to 2a. Similar steps for the second term of
Eq. ~A1! lead to the result

~ x̂ẋ̂2 ẋ̂x̂!~n,n!52i (
a.0

@v~n1a,n!uX~n1a,n!u2

2v~n,n2a!uX~n,n2a!u2#

52ih/~4pm!, ~A4!

where the last step follows from Eq.~16!. We setp̂5mẋ̂ and
find

~ x̂p̂2 p̂x̂!~n,n!5 i\ ~A5!

for all values of n. Equation ~A5! was found by Born43

shortly after reading Heisenberg’s paper. In further develop-
ments the value of the fundamental commutatorx̂p̂2 p̂x̂,
namelyi\, was taken to be a basic postulate. The sum rule
in Eq. ~16! is then derived by taking the (n,n) matrix ele-

ment of the relation@ x̂,@Ĥ,x̂##5\2/m.

APPENDIX B: CALCULATION OF THE OFF-
DIAGONAL MATRIX ELEMENTS OF THE ENERGY
W„n,nÀa… FOR THE lx2 TERM

We shall show that, foraÞ0, all the elements (n,n2a)

of the energy operator12mẋ̂21 1
2mv0

2x̂21 1
3lmx̂3 vanish up to

orderl. We begin by noting that at any given order inl, only
a limited number of elementsW(n,n21),W(n,n22), . . .

will contribute, because the amplitudesX(n,n2a) are sup-
pressed by increasing powers ofl asa increases. In fact, for
a>2 the leading power ofl in W(n,n2a) is la22, which
arises from terms such asX(n,n21)X(n21,n2a) and
lX(n,n21)X(n21,n22)X(n22,n2a). Thus to orderl,
we need to calculate onlyW(n,n21),W(n,n22),W(n,n
23).

~a! W(n,n21). There are fourO(l) contributions to the
(n,n21) element of12mv0

2x̂2:

1
4 mv0

2l$a(0)~n,n!a(0)~n,n21!1a(0)~n,n21!

3a(0)~n21,n21!1 1
2 @a(0)~n,n11!a(0)~n11,n21!

1a(0)~n,n22!a(0)~n22,n21!#%

52 5
24 mlb3nAn. ~B1!

There are twoO(l) contributions to the (n,n21) element

of 1
2mẋ̂2:

2 1
8 lm$v (0)~n,n11!v (0)~n11,n21!a(0)~n,n11!

3a(0)~n11,n21!1v (0)~n,n22!v (0)~n22,n21!

3a(0)~n,n22!a(0)~n22,n21!%5 1
12 mlb3nAn. ~B2!

There are threeO(l) contributions to the (n,n21) element
of 1

3ml x̂3:

1
24 ml$a(0)~n,n21!a(0)~n21,n!a(0)~n,n21!

1a(0)~n,n21!a(0)~n21,n22!a(0)~n22,n21!

1a(0)~n,n11!a(0)~n11,n!a(0)~n,n21!%

5 1
8 mlb3nAn. ~B3!

The sum of Eqs.~B1!–~B3! vanishes, as required.
~b! W(n,n22). The leading contribution is independent

of l. From the term1
2mv0

2x̂2, it is

1
8 mv0

2a(0)~n,n21!a(0)~n21,n22!, ~B4!

which is canceled by the corresponding term from1
2mẋ̂2.

The next terms areO(l2), for example from the leading
term in the (n,n22) element of13lmx̂3.

~c! W(n,n23). There are twoO(l) contributions from
1
2mv0

2x̂2:

1
8 mv0

2l$a(0)~n,n21!a(0)~n21,n23!

1a(0)~n,n22!a(0)~n22,n23!%

5 1
24 mlb3An~n21!~n22!. ~B5!

There are twoO(l) contributions from1
2mẋ̂2:

2 1
8 ml$v (0)~n,n21!a(0)~n,n21!v (0)~n21,n23!

3a(0)~n21,n23!1v (0)~n,n22!

3a(0)~n,n22!v (0)~n22,n23!a(0)~n22,n23!%

52 1
12 lmb3An~n21!~n22!. ~B6!

There is only oneO(l) contribution from1
3ml x̂3:
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1
24 mla(0)~n,n21!a(0)~n21,n22!a(0)~n22,n23!

5 1
24 lmb3An~n21!~n22!. ~B7!

The sum of Eqs.~B5!–~B7! vanishes, as required.
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I. INTRODUCTION

The name “quantum mechanics” was coined by Max
Born.1 For Born and others, quantum mechanics denoted a
canonical theory of atomic and electronic motion of the same
level of generality and consistency as classical mechanics.
The transition from classical mechanics to a true quantum
mechanics remained an elusive goal prior to 1925.

Heisenberg made the breakthrough in his historic 1925
paper, “Quantum-theoretical reinterpretation of kinematic
and mechanical relations.”2 Heisenberg’s bold idea was to
retain the classical equations of Newton but to replace the
classical position coordinate with a “quantum-theoretical
quantity.” The new position quantity contains information
about the measurable line spectrum of an atom rather than
the unobservable orbit of the electron. Born realized that
Heisenberg’s kinematical rule for multiplying position quan-
tities was equivalent to the mathematical rule for multiplying
matrices. The next step was to formalize Heisenberg’s theory
using the language of matrices.

The first comprehensive exposition on quantum mechanics
in matrix form was written by Born and Jordan,4 and the
sequel was written by Born, Heisenberg, and Jordan.5 Dirac
independently discovered the general equations of quantum
mechanics without using matrix theory.6 These papers devel-
oped a Hamiltonian mechanics of the atom in a completely
new quantum �noncommutative� format. These papers ush-
ered in a new era in theoretical physics where Hermitian
matrices, commutators, and eigenvalue problems became the
mathematical trademark of the atomic world. We discuss the
first paper “On quantum mechanics.”4

This formulation of quantum mechanics, now referred to
as matrix mechanics,7 marked one of the most intense peri-
ods of discovery in physics. The ideas and formalism behind
the original matrix mechanics are absent in most textbooks.
Recent articles discuss the correspondence between classical
harmonics and quantum jumps,8 the calculational details of
Heisenberg’s paper,9 and the role of Born in the creation of
quantum theory.10 References 11–19 represent a sampling of
the many sources on the development of quantum mechan-
ics.

Given Born and Jordan’s pivotal role in the discovery of
quantum mechanics, it is natural to wonder why there are no
equations named after them,20 and why they did not share the
Nobel Prize with others.21 In 1933 Heisenberg wrote Born

saying “The fact that I am to receive the Nobel Prize alone,

128 Am. J. Phys. 77 �2�, February 2009 http://aapt.org/ajp
for work done in Göttingen in collaboration—you, Jordan,
and I, this fact depresses me and I hardly know what to write
to you. I am, of course, glad that our common efforts are
now appreciated, and I enjoy the recollection of the beautiful
time of collaboration. I also believe that all good physicists
know how great was your and Jordan’s contribution to the
structure of quantum mechanics—and this remains un-
changed by a wrong decision from outside. Yet I myself can
do nothing but thank you again for all the fine collaboration
and feel a little ashamed.”23

Engraved on Max Born’s tombstone is a one-line epitaph:
pq−qp=h /2�i. Born composed this elegant equation in
early July 1925 and called it “die verschärfte
Quantenbedingung”4—the sharpened quantum condition.
This equation is now known as the law of commutation and
is the hallmark of quantum algebra.

In the contemporary approach to teaching quantum me-
chanics, matrix mechanics is usually introduced after a thor-
ough discussion of wave mechanics. The Heisenberg picture
is viewed as a unitary transformation of the Schrödinger
picture.24 How was matrix mechanics formulated in 1925
when the Schrödinger picture was nowhere in sight? The
Born and Jordan paper4 represents matrix mechanics in its
purest form.

II. BACKGROUND TO “ON QUANTUM
MECHANICS”

Heisenberg’s program, as indicated by the title of his
paper,2 consisted of constructing quantum-theoretical rela-
tions by reinterpreting the classical relations. To appreciate
what Born and Jordan did with Heisenberg’s reinterpreta-
tions, we discuss in the Appendix four key relations from
Heisenberg’s paper.2 Heisenberg wrote the classical and
quantum versions of each relation in parallel—as formula
couplets. Heisenberg has been likened to an “expert decoder
who reads a cryptogram.”25 The correspondence principle8,26

acted as a “code book” for translating a classical relation into
its quantum counterpart. Unlike his predecessors who used
the correspondence principle to produce specific relations,
Heisenberg produced an entirely new theory—complete with
a new representation of position and a new rule of multipli-
cation, together with an equation of motion and a quantum
condition whose solution determined the atomic observables

�energies, frequencies, and transition amplitudes�.
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Matrices are not explicitly mentioned in Heisenberg’s pa-
per. He did not arrange his quantum-theoretical quantities
into a table or array. In looking back on his discovery,
Heisenberg wrote, “At that time I must confess I did not
know what a matrix was and did not know the rules of ma-
trix multiplication.”18 In the last sentence of his paper he
wrote “whether this method after all represents far too rough
an approach to the physical program of constructing a theo-
retical quantum mechanics, an obviously very involved prob-
lem at the moment, can be decided only by a more intensive
mathematical investigation of the method which has been
very superficially employed here.”27

Born took up Heisenberg’s challenge to pursue “a more
intensive mathematical investigation.” At the time Heisen-
berg wrote his paper, he was Born’s assistant at the Univer-
sity of Göttingen. Born recalls the moment of inspiration
when he realized that position and momentum were
matrices:28

After having sent Heisenberg’s paper to the
Zeitschrift für Physik for publication, I began to
ponder about his symbolic multiplication, and was
soon so involved in it…For I felt there was some-
thing fundamental behind it…And one morning,
about 10 July 1925, I suddenly saw the light:
Heisenberg’s symbolic multiplication was nothing
but the matrix calculus, well known to me since
my student days from the lectures of Rosanes in
Breslau.

I found this by just simplifying the notation a little:
instead of q�n ,n+��, where n is the quantum num-
ber of one state and � the integer indicating the
transition, I wrote q�n ,m�, and rewriting Heisen-
berg’s form of Bohr’s quantum condition, I recog-
nized at once its formal significance. It meant that
the two matrix products pq and qp are not identi-
cal. I was familiar with the fact that matrix multi-
plication is not commutative; therefore I was not
too much puzzled by this result. Closer inspection
showed that Heisenberg’s formula gave only the
value of the diagonal elements �m=n� of the ma-
trix pq–qp; it said they were all equal and had the
value h /2�i where h is Planck’s constant and i
=�−1. But what were the other elements �m�n�?

Here my own constructive work began. Repeating
Heisenberg’s calculation in matrix notation, I soon
convinced myself that the only reasonable value of
the nondiagonal elements should be zero, and I
wrote the strange equation

pq − qp =
h

2�i
1 , �1�

where 1 is the unit matrix. But this was only a
guess, and all my attempts to prove it failed.
On 19 July 1925, Born invited his former assistant Wolf-
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gang Pauli to collaborate on the matrix program. Pauli de-
clined the invitation.29 The next day, Born asked his student
Pascual Jordan to assist him. Jordan accepted the invitation
and in a few days proved Born’s conjecture that all nondi-
agonal elements of pq−qp must vanish. The rest of the new
quantum mechanics rapidly solidified. The Born and Jordan
paper was received by the Zeitschrift für Physik on 27 Sep-
tember 1925, two months after Heisenberg’s paper was re-
ceived by the same journal. All the essentials of matrix me-
chanics as we know the subject today fill the pages of this
paper.

In the abstract Born and Jordan wrote “The recently pub-
lished theoretical approach of Heisenberg is here developed
into a systematic theory of quantum mechanics �in the first
place for systems having one degree of freedom� with the aid
of mathematical matrix methods.”30 In the introduction they
go on to write “The physical reasoning which led Heisenberg
to this development has been so clearly described by him
that any supplementary remarks appear superfluous. But, as
he himself indicates, in its formal, mathematical aspects his
approach is but in its initial stages. His hypotheses have been
applied only to simple examples without being fully carried
through to a generalized theory. Having been in an advanta-
geous position to familiarize ourselves with his ideas
throughout their formative stages, we now strive �since his
investigations have been concluded� to clarify the math-
ematically formal content of his approach and present some
of our results here. These indicate that it is in fact possible,
starting with the basic premises given by Heisenberg, to
build up a closed mathematical theory of quantum mechanics
which displays strikingly close analogies with classical me-
chanics, but at the same time preserves the characteristic
features of quantum phenomena.”31

The reader is introduced to the notion of a matrix in the
third paragraph of the introduction: “The mathematical basis
of Heisenberg’s treatment is the law of multiplication of
quantum-theoretical quantities, which he derived from an in-
genious consideration of correspondence arguments. The de-
velopment of his formalism, which we give here, is based
upon the fact that this rule of multiplication is none other
than the well-known mathematical rule of matrix multiplica-
tion. The infinite square array which appears at the start of
the next section, termed a matrix, is a representation of a
physical quantity which is given in classical theory as a func-
tion of time. The mathematical method of treatment inherent
in the new quantum mechanics is thereby characterized by
the employment of matrix analysis in place of the usual
number analysis.”

The Born-Jordan paper4 is divided into four chapters.
Chapter 1 on “Matrix calculation” introduces the mathemat-
ics �algebra and calculus� of matrices to physicists. Chapter 2
on “Dynamics” establishes the fundamental postulates of
quantum mechanics, such as the law of commutation, and
derives the important theorems, such as the conservation of
energy. Chapter 3 on “Investigation of the anharmonic oscil-
lator” contains the first rigorous �correspondence free� calcu-
lation of the energy spectrum of a quantum-mechanical har-
monic oscillator. Chapter 4 on “Remarks on
electrodynamics” contains a procedure—the first of its
kind—to quantize the electromagnetic field. We focus on the
material in Chap. 2 because it contains the essential physics

of matrix mechanics.
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III. THE ORIGINAL POSTULATES OF QUANTUM
MECHANICS

Current presentations of quantum mechanics frequently
are based on a set of postulates.32 The Born–Jordan postu-
lates of quantum mechanics were crafted before wave me-
chanics was formulated and thus are quite different than the
Schrödinger-based postulates in current textbooks. The origi-
nal postulates come as close as possible to the classical-
mechanical laws while maintaining complete quantum-
mechanical integrity.

Section III, “The basic laws,” in Chap. 2 of the Born–
Jordan paper is five pages long and contains approximately
thirty equations. We have imposed a contemporary postula-
tory approach on this section by identifying five fundamental
passages from the text. We call these five fundamental ideas
“the postulates.” We have preserved the original phrasing,
notation, and logic of Born and Jordan. The labeling and the
naming of the postulates is ours.

Postulate 1. Position and Momentum. Born and Jordan
introduce the position and momentum matrices by writing
that33

The dynamical system is to be described by the
spatial coordinate q and the momentum p, these
being represented by the matrices

�q = q�nm�e2�i��nm�t� ,

�p = p�nm�e2�i��nm�t� . �2�

Here the ��nm� denote the quantum-theoretical fre-
quencies associated with the transitions between
states described by the quantum numbers n and m.
The matrices �2� are to be Hermitian, e.g., on trans-
position of the matrices, each element is to go over
into its complex conjugate value, a condition
which should apply for all real t. We thus have

q�nm�q�mn� = �q�nm��2 �3�

and

��nm� = − ��mn� . �4�

If q is a Cartesian coordinate, then the expression
�3� is a measure of the probabilities of the transi-
tions n�m.

The preceding passage placed Hermitian matrices into the
physics limelight. Prior to the Born–Jordan paper, matrices
were rarely seen in physics.34 Hermitian matrices were even
stranger. Physicists were reluctant to accept such an abstract
mathematical entity as a description of physical reality.

For Born and Jordan, q and p do not specify the position
and momentum of an electron in an atom. Heisenberg
stressed that quantum theory should focus only on the ob-
servable properties, namely the frequency and intensity of
the atomic radiation and not the position and period of the
electron. The quantities q and p represent position and mo-
mentum in the sense that q and p satisfy matrix equations of

motion that are identical in form to those satisfied by the
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position and momentum of classical mechanics. In the Bohr
atom the electron undergoes periodic motion in a well de-
fined orbit around the nucleus with a certain classical fre-
quency. In the Heisenberg–Born–Jordan atom there is no
longer an orbit, but there is some sort of periodic “quantum
motion” of the electron characterized by the set of frequen-
cies ��nm� and amplitudes q�nm�. Physicists believed that
something inside the atom must vibrate with the right fre-
quencies even though they could not visualize what the
quantum oscillations looked like. The mechanical properties
�q ,p� of the quantum motion contain complete information
on the spectral properties �frequency, intensity� of the emit-
ted radiation.

The diagonal elements of a matrix correspond to the
states, and the off-diagonal elements correspond to the tran-
sitions. An important property of all dynamical matrices is
that the diagonal elements are independent of time. The Her-
mitian rule in Eq. �4� implies the relation ��nn�=0. Thus the
time factor of the nth diagonal term in any matrix is
e2�i��nn�t=1. As we shall see, the time-independent entries in
a diagonal matrix are related to the constant values of a con-
served quantity.

In their purely mathematical introduction to matrices
�Chap. 1�, Born and Jordan use the following symbols to
denote a matrix

a = �a�nm�� =�
a�00� a�01� a�02� . . .

a�10� a�11� a�12�
a�20� a�21� a�22�
] �

� . �5�

The bracketed symbol �a�nm��, which displays inner ele-
ments a�nm� contained within outer brackets � �, is the short-
hand notation for the array in Eq. �5�. By writing the matrix
elements as a�nm�, rather than anm, Born and Jordan made
direct contact with Heisenberg’s quantum-theoretical quanti-
ties a�n ,n−�� �see the Appendix�. They wrote35 “Matrix
multiplication is defined by the rule ‘rows times columns,’
familiar from the ordinary theory of determinants:

a = bc means a�nm� = 	
k=0

�

b�nk�c�km� . ” �6�

This multiplication rule was first given �for finite square ma-
trices� by Arthur Cayley.36 Little did Cayley know in 1855
that his mathematical “row times column” expression
b�nk�c�km� would describe the physical process of an elec-
tron making the transition n→k→m in an atom.

Born and Jordan wrote in Postulate 1 that the quantity
�q�nm��2 provides “a measure of the probabilities of the tran-
sitions n�m.” They justify this profound claim in the last
chapter.37 Born and Jordan’s one-line claim about transition
probabilities is the only statistical statement in their postu-
lates. Physics would have to wait several months before
Schrödinger’s wave function ��x� and Born’s probability
function ���x��2 entered the scene. Born discovered the con-
nection between ���x��2 and position probability, and was
also the first physicist �with Jordan� to formalize the connec-
tion between �q�nm��2 and the transition probability via a
“quantum electrodynamic” argument.38 As a pioneer statisti-
cal interpreter of quantum mechanics, it is interesting to

speculate that Born might have discovered how to form a
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�

linear superposition of the periodic matrix elements
q�nm�e2�i��nm�t in order to obtain another statistical object,
namely the expectation value 
q�. Early on, Born, Heisen-
berg, and Jordan did superimpose matrix elements,47 but did
not supply the statistical interpretation.

Postulate 2. Frequency Combination Principle. After de-
fining q and p, Born and Jordan wrote39 “Further, we shall
require that

��jk� + ��kl� + ��lj� = 0 . ” �7�

The frequency sum rule in Eq. �7� is the fundamental con-
straint on the quantum-theoretical frequencies. This rule is
based on the Ritz combination principle, which explains the
relations of the spectral lines of atomic spectroscopy.40 Equa-
tion �7� is the quantum analogue of the “Fourier combination
principle”, ��k− j�+��l−k�+��j− l�=0, where ����=���1�
is the frequency of the �th harmonic component of a Fourier
series. The frequency spectrum of classical periodic motion
obeys this Fourier sum rule. The equal Fourier spacing of
classical lines is replaced by the irregular Ritzian spacing of
quantal lines. In the correspondence limit of large quantum
numbers and small quantum jumps the atomic spectrum of
Ritz reduces to the harmonic spectrum of Fourier.8,26 Be-
cause the Ritz rule was considered an exact law of atomic
spectroscopy, and because Fourier series played a vital role
in Heisenberg’s analysis, it made sense for Born and Jordan
to posit the frequency rule in Eq. �7� as a basic law.

One might be tempted to regard Eq. �7� as equivalent to
the Bohr frequency condition, E�n�−E�m�=h��nm�, where
E�n� is the energy of the stationary state n. For Born and
Jordan, Eq. �7� says nothing about energy. They note that
Eqs. �4� and �7� imply that there exists spectral terms Wn
such that

h��nm� = Wn − Wm. �8�

At this postulatory stage, the term Wn of the spectrum is
unrelated to the energy E�n� of the state. Heisenberg empha-
sized this distinction between “term” and “energy” in a letter
to Pauli summarizing the Born–Jordan theory.41 Born and
Jordan adopt Eq. �7� as a postulate–one based solely on the
observable spectral quantities ��nm� without reference to any
mechanical quantities E�n�. The Bohr frequency condition is
not something they assume a priori, it is something that must
be rigorously proved.

The Ritz rule insures that the nm element of any dynami-
cal matrix �any function of p and q� oscillates with the same
frequency ��nm� as the nm element of p and q. For example,
if the 3→2 elements of p and q oscillate at 500 MHz, then
the 3→2 elements of p2, q2, pq, q3, p2+q2, etc. each oscil-
late at 500 MHz. In all calculations involving the canonical
matrices p and q, no new frequencies are generated. A con-
sistent quantum theory must preserve the frequency spectrum
of a particular atom because the spectrum is the spectro-
scopic signature of the atom. The calculations must not
change the identity of the atom. Based on the rules for ma-
nipulating matrices and combining frequencies, Born and
Jordan wrote that “it follows that a function g�pq� invariably
takes on the form

g = �g�nm�e2�i��nm�t� �9�

and the matrix �g�nm�� therein results from identically the

same process applied to the matrices �q�nm��, �p�nm�� as
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was employed to find g from q, p.”42 Because e2�i��nm�t is the
universal time factor common to all dynamical matrices, they
note that it can be dropped from Eq. �2� in favor of the
shorter notation q= �q�nm�� and p= �p�nm��.

Why does the Ritz rule insure that the time factors of
g�pq� are identical to the time factors of p and q? Consider
the potential energy function q2. The nm element of q2,
which we denote by q2�nm�, is obtained from the elements of
q via the multiplication rule

q2�nm� = 	
k

q�nk�e2�i��nk�tq�km�e2�i��km�t. �10�

Given the Ritz relation ��nm�=��nk�+��km�, which follows
from Eqs. �4� and �7�, Eq. �10� reduces to

q2�nm� = �	
k

q�nk�q�km�e2�i��nm�t. �11�

It follows that the nm time factor of q2 is the same as the nm
time factor of q.

We see that the theoretical rule for multiplying mechanical
amplitudes, a�nm�=	kb�nk�c�km�, is intimately related to
the experimental rule for adding spectral frequencies,
��nm�=��nk�+��km�. The Ritz rule occupied a prominent
place in Heisenberg’s discovery of the multiplication rule
�see the Appendix�. Whenever a contemporary physicist cal-
culates the total amplitude of the quantum jump n→k→m,
the steps involved can be traced back to the frequency com-
bination principle of Ritz.

Postulate 3. The Equation of Motion. Born and Jordan
introduce the law of quantum dynamics by writing43

In the case of a Hamilton function having the form

H =
1

2m
p2 + U�q� , �12�

we shall assume, as did Heisenberg, that the equa-
tions of motion have just the same form as in the
classical theory, so that we can write:

q̇ =
�H

�p
=

1

m
p , �13a�

ṗ = −
�H

�q
= −

�U

�q
. �13b

This Hamiltonian formulation of quantum dynamics general-
ized Heisenberg’s Newtonian approach.44 The assumption by
Heisenberg and Born and Jordan that quantum dynamics
looks the same as classical dynamics was a bold and deep
assumption. For them, the problem with classical mechanics
was not the dynamics �the form of the equations of motion�,
but rather the kinematics �the meaning of position and mo-
mentum�.

Postulate 4. Energy Spectrum. Born and Jordan reveal the
connection between the allowed energies of a conservative
system and the numbers in the Hamiltonian matrix:

“The diagonal elements H�nn� of H are inter-
preted, according to Heisenberg, as the energies of

45
the various states of the system.”
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This statement introduced a radical new idea into main-
stream physics: calculating an energy spectrum reduces to
finding the components of a diagonal matrix.46 Although
Born and Jordan did not mention the word eigenvalue in Ref.
4, Born, Heisenberg, and Jordan would soon formalize the
idea of calculating an energy spectrum by solving an eigen-
value problem.5 The ad hoc rules for calculating a quantized
energy in the old quantum theory were replaced by a system-
atic mathematical program.

Born and Jordan considered exclusively conservative sys-
tems for which H does not depend explicitly on time. The
connection between conserved quantities and diagonal matri-
ces will be discussed later. For now, recall that the diagonal
elements of any matrix are independent of time. For the spe-
cial case where all the non-diagonal elements of a dynamical
matrix g�pq� vanish, the quantity g is a constant of the mo-
tion. A postulate must be introduced to specify the physical
meaning of the constant elements in g.

In the old quantum theory it was difficult to explain why
the energy was quantized. The discontinuity in energy had to
be postulated or artificially imposed. Matrices are naturally
quantized. The quantization of energy is built into the dis-
crete row-column structure of the matrix array. In the old
theory Bohr’s concept of a stationary state of energy En was
a central concept. Physicists grappled with the questions:
Where does En fit into the theory? How is En calculated?
Bohr’s concept of the energy of the stationary state finally
found a rigorous place in the new matrix scheme.47

Postulate 5. The Quantum Condition. Born and Jordan
state that the elements of p and q for any quantum mechani-
cal system must satisfy the “quantum condition”:

	
k

�p�nk�q�kn� − q�nk�p�kn�� =
h

2�i
. �14�

Given the significance of Eq. �14� in the development of
quantum mechanics, we quote Born and Jordan’s “deriva-
tion” of this equation:

The equation

J = � pdq = �
0

1/�

pq̇dt �15�

of “classical” quantum theory can, on introducing
the Fourier expansions of p and q,

p = 	
�=−�

�

p�e
2�i��t,

�16�

q = 	
�=−�

�

q�e
2�i��t,

be transformed into

1 = 2�i 	
�=−�

�

�
�

�J
�q�p−�� . �17�
The following expressions should correspond:
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�=−�

�

�
�

�J
�q�p−�� �18�

with

1

h
	

�=−�

�

�q�n + �,n�p�n,n + ��

− q�n,n − ��p�n − �,n�� , �19�

where in the right-hand expression those q�nm�,
p�nm� which take on a negative index are to be set
equal to zero. In this way we obtain the quantiza-
tion condition corresponding to Eq. �17� as

	
k

�p�nk�q�kn� − q�nk�p�kn�� =
h

2�i
. �20�

This is a system of infinitely many equations,
namely one for each value of n.48

Why did Born and Jordan take the derivative of the action
integral in Eq. �15� to arrive at Eq. �17�? Heisenberg per-
formed a similar maneuver �see the Appendix�. One reason is
to eliminate any explicit dependence on the integer variable
n from the basic laws. Another reason is to generate a differ-
ential expression that can readily be translated via the corre-
spondence principle into a difference expression containing
only transition quantities. In effect, a state relation is con-
verted into a change-in-state relation. In the old quantum
theory the Bohr–Sommerfeld quantum condition, �pdq=nh,
determined how all state quantities depend on n. Such an ad
hoc quantization algorithm has no proper place in a rigorous
quantum theory, where n should not appear explicitly in any
of the fundamental laws. The way in which q�nm�, p�nm�,
��nm� depend on �nm� should not be artificially imposed, but
should be naturally determined by fundamental relations in-
volving only the canonical variables q and p, without any
explicit dependence on the state labels n and m. Equation
�20� is one such fundamental relation.

In 1924 Born introduced the technique of replacing differ-
entials by differences to make the “formal passage from clas-
sical mechanics to a ‘quantum mechanics’.”49 This corre-
spondence rule played an important role in allowing Born
and others to develop the equations of quantum mechanics.50

To motivate Born’s rule note that the fundamental orbital
frequency of a classical periodic system is equal to dE /dJ �E
is energy and J= � pdq is an action�,51 whereas the spectral
frequency of an atomic system is equal to �E /h. Hence, the
passage from a classical to a quantum frequency is made by
replacing the derivative dE /dJ by the difference �E /h.52

Born conjectured that this correspondence is valid for any
quantity �. He wrote “We are therefore as good as forced to
adopt the rule that we have to replace a classically calculated
quantity, whenever it is of the form ��� /�J by the linear
average or difference quotient ���n+��−��n�� /h.”53 The

correspondence between Eqs. �18� and �19� follows from
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Born’s rule by letting � be ��n�=q�n ,n−��p�n−� ,n�,
where q�n ,n−�� corresponds to q� and p�n−� ,n� corre-
sponds to p−� or p

�
*.

Born and Jordan remarked that Eq. �20� implies that p and
q can never be finite matrices.54 For the special case p
=mq̇ they also noted that the general condition in Eq. �20�
reduces to Heisenberg’s form of the quantum condition �see
the Appendix�. Heisenberg did not realize that his quantiza-
tion rule was a relation between pq and qp.55

Planck’s constant h enters into the theory via the quantum
condition in Eq. �20�. The quantum condition expresses the
following deep law of nature: All the diagonal components of
pq−qp must equal the universal constant h /2�i.

What about the nondiagonal components of pq−qp? Born
claimed that they were all equal to zero. Jordan proved
Born’s claim. It is important to emphasize that Postulate 5
says nothing about the nondiagonal elements. Born and Jor-
dan were careful to distinguish the postulated statements
�laws of nature� from the derivable results �consequences of
the postulates�. Born’s development of the diagonal part of
pq−qp and Jordan’s derivation of the nondiagonal part con-
stitute the two-part discovery of the law of commutation.

IV. THE LAW OF COMMUTATION

Born and Jordan write the following equation in Sec. IV of
“On quantum mechanics”:

pq − qp =
h

2�i
1 . �21�

They call Eq. �21� the “sharpened quantum condition” be-
cause it sharpened the condition in Eq. �20�, which only fixes
the diagonal elements, to one which fixes all the elements. In
a letter to Pauli, Heisenberg referred to Eq. �21� as a “fun-
damental law of this mechanics” and as “Born’s very clever
idea.”56 Indeed, the commutation law in Eq. �21� is one of
the most fundamental relations in quantum mechanics. This
equation introduces Planck’s constant and the imaginary
number i into the theory in the most basic way possible. It is
the golden rule of quantum algebra and makes quantum cal-
culations unique. The way in which all dynamical properties
of a system depend on h can be traced back to the simple
way in which pq−qp depend on h. In short, the commuta-
tion law in Eq. �21� stores information on the discontinuity,
the non-commutativity, the uncertainty, and the complexity
of the quantum world.

In their paper Born and Jordan proved that the off-
diagonal elements of pq−qp are equal to zero by first estab-
lishing a “diagonality theorem,” which they state as follows:
“If ��nm��0 when n�m, a condition which we wish to
assume, then the formula ġ=0 denotes that g is a diagonal
matrix with g�nm�=	nmg�nn�.”57 This theorem establishes
the connection between the structural �diagonality� and the
temporal �constancy� properties of a dynamical matrix. It
provided physicists with a whole new way to look at conser-
vation principles: In quantum mechanics, conserved quanti-
ties are represented by diagonal matrices.58

Born and Jordan proved the diagonality theorem as fol-
lows. Because all dynamical matrices g�pq� have the form in

Eq. �9�, the time derivative of g is

133 Am. J. Phys., Vol. 77, No. 2, February 2009
ġ = 2�i���nm�g�nm�e2�i��nm�t� . �22�

If ġ=0, then Eq. �22� implies the relation ��nm�g�nm�=0 for
all �nm�. This relation is always true for the diagonal ele-
ments because ��nn� is always equal to zero. For the off-
diagonal elements, the relation ��nm�g�nm�=0 implies that
g�nm� must equal zero, because it is assumed that ��nm�
�0 for n�m. Thus, g is a diagonal matrix.

Hence, to show that pq−qp is a diagonal matrix, Born
and Jordan showed that the time derivative of pq−qp is
equal to zero. They introduced the matrix d�pq−qp and
expressed the time derivative of d as

ḋ = ṗq + pq̇ − q̇p − qṗ . �23�

They used the canonical equations of motion in Eq. �13� to
write Eq. �23� as

ḋ = q
�H

�q
−

�H

�q
q + p

�H

�p
−

�H

�p
p . �24�

They next demonstrated that the combination of derivatives
in Eq. �24� leads to a vanishing result59 and say that “it

follows that ḋ=0 and d is a diagonal matrix. The diagonal
elements of d are, however, specified by the quantum condi-
tion �20�. Summarizing, we obtain the equation

pq − qp =
h

2�i
1 , �25�

on introducing the unit matrix 1. We call Eq. �25� the ‘sharp-
ened quantum condition’ and base all further conclusions on
it.”60 Fundamental results that propagate from Eq. �25� in-
clude the equation of motion, ġ= �2�i /h��Hg−gH� �see Sec.
V�, the Heisenberg uncertainty principle, �p�q
h /4�, and
the Schrödinger operator, p= �h /2�i�d /dq.

It is important to emphasize the two distinct origins of
pq−qp= �h /2�i�1. The diagonal part, �pq−qp�diagonal

=h /2�i is a law—an exact decoding of the approximate law
�pdq=nh. The nondiagonal part, �pq−qp�nondiagonal=0, is a
theorem—a logical consequence of the equations of motion.
From a practical point of view Eq. �25� represents vital in-
formation on the line spectrum of an atom by defining a
system of algebraic equations that place strong constraints on
the magnitudes of q�nm�, p�nm�, and ��nm�.

V. THE EQUATION OF MOTION

Born and Jordan proved that the equation of motion de-
scribing the time evolution of any dynamical quantity g�pq�
is

ġ =
2�i

h
�Hg − gH� . �26�

Equation �26� is now often referred to as the Heisenberg
equation.61 In Ref. 2 the only equation of motion is Newton’s
second law, which Heisenberg wrote as ẍ+ f�x�=0 �see the
Appendix�.

The “commutator” of mechanical quantities is a recurring
theme in the Born–Jordan theory. The quantity pq−qp lies at
the core of their theory. Equation �26� reveals how the quan-
tity Hg−gH is synonymous with the time evolution of g.
Thanks to Born and Jordan, as well as Dirac who established

the connection between commutators and classical Poisson
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brackets,6 the commutator is now an integral part of modern
quantum theory. The change in focus from commuting vari-
ables to noncommuting variables represents a paradigm shift
in quantum theory.

The original derivation of Eq. �26� is different from
present-day derivations. In the usual textbook presentation
Eq. �26� is derived from a unitary transformation of the states
and operators in the Schrödinger picture.24 In 1925, the
Schrödinger picture did not exist. To derive Eq. �26� from
their postulates Born and Jordan developed a new quantum-
theoretical technology that is now referred to as “commuta-
tor algebra.” They began the proof by stating the following
generalizations of Eq. �25�:

pnq = qpn + n
h

2�i
pn−1, �27�

qnp = pqn − n
h

2�i
qn−1, �28�

which can readily be derived by induction. They considered
Hamiltonians of the form

H = H1�p� + H2�q� , �29�

where H1�p� and H2�q� are represented by power series

H1 = 	
s

asp
s,

H2 = 	
s

bsq
s. �30�

After writing these expressions, they wrote62 “Formulae �27�
and �28� indicate that

Hq − qH =
h

2�i

�H

�p
, �31�

Hp − pH = −
h

2�i

�H

�q
. �32�

Comparison with the equations of motion �13� yields

q̇ =
2�i

h
�Hq − qH� , �33�

ṗ =
2�i

h
�Hp − pH� . �34�

Denoting the matrix Hg−gH by � H
g � for brevity, one has

�H

ab
� = �H

a
�b + a�H

b
� , �35�

from which generally for g=g�pq� one may conclude that

ġ =
2�i

h
�H

g
� =

2�i

h
�Hg − gH� . ” �36�

The derivation of Eq. �36� clearly displays Born and Jordan’s
expertise in commutator algebra. The essential step to go
from Eq. �27� to Eq. �31� is to note that Eq. �27� can be
rewritten as a commutator-derivative relation, pnq−qpn

= �h /2�i�dpn /dp, which is equivalent to the nth term of the
series representation of Eq. �31�. The generalized commuta-

tion rules in Eqs. �27� and �28�, and the relation between
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commutators and derivatives in Eqs. �31� and �32� are now
standard operator equations of contemporary quantum
theory.

With the words, “Denoting the matrix Hg−gH by � H
g �,”

Born and Jordan formalized the notion of a commutator and
introduced physicists to this important quantum-theoretical
object. The appearance of Eq. �36� in Ref. 4 marks the first
printed statement of the general equation of motion for a
dynamical quantity in quantum mechanics.

VI. THE ENERGY THEOREMS

Heisenberg, Born, and Jordan considered the conservation
of energy and the Bohr frequency condition as universal laws
that should emerge as logical consequences of the fundamen-
tal postulates. Proving energy conservation and the fre-
quency condition was the ultimate measure of the power of
the postulates and the validity of the theory.63 Born and Jor-
dan began Sec. IV of Ref. 4 by writing “The content of the
preceding paragraphs furnishes the basic rules of the new
quantum mechanics in their entirety. All the other laws of
quantum mechanics, whose general validity is to be verified,
must be derivable from these basic tenets. As instances of
such laws to be proved, the law of energy conservation and
the Bohr frequency condition primarily enter into
consideration.”64

The energy theorems are stated as follows:65

Ḣ = 0 �energy conservation� , �37�

h��nm� = H�nn� − H�mm� �frequency condition� . �38�

Equations �37� and �38� are remarkable statements on the
temporal behavior of the system and the logical structure of
the theory.66 Equation �37� says that H, which depends on
the matrices p and q is always a constant of the motion even
though p=p�t� and q=q�t� depend on time. In short, the t in
H�p�t� ,q�t�� must completely disappear. Equation �37� re-
veals the time independence of H, and Eq. �38� specifies how
H itself determines the time dependence of all other dynami-
cal quantities.

Why should ��nm�, H�nn�, and H�mm� be related? These
quantities are completely different structural elements of dif-
ferent matrices. The parameter ��nm� is a transition quantity
that characterizes the off-diagonal, time-dependent part of q
and p. In contrast, H�nn� is a state quantity that characterizes
the diagonal, time-independent part of H�pq�. It is a non-
trivial claim to say that these mechanical elements are re-
lated.

It is important to distinguish between the Bohr meaning of
En−Em=h� and the Born–Jordan meaning of H�nn�
−H�mm�=h��nm�. For Bohr, En denotes the mechanical en-
ergy of the electron and � denotes the spectral frequency of
the radiation. In the old quantum theory there exists ad hoc,
semiclassical rules to calculate En. There did not exist any
mechanical rules to calculate �, independent of En and Em.
The relation between En−Em and � was postulated. Born and
Jordan did not postulate any connection between H�nn�,
H�mm�, and ��nm�. The basic mechanical laws �law of mo-
tion and law of commutation� allow them to calculate the
frequencies ��nm� which paramaterize q and the energies

H�nn� stored in H. The theorem in Eq. �38� states that the

134William A. Fedak and Jeffrey J. Prentis



calculated values of the mechanical parameters H�nn�,
H�mm�, and ��nm� will always satisfy the relation H�nn�
−H�mm�=h��nm�.

The equation of motion �36� is the key to proving the
energy theorems. Born and Jordan wrote “In particular, if in
Eq. �36� we set g=H, we obtain

Ḣ = 0. �39�

Now that we have verified the energy-conservation law and
recognized the matrix H to be diagonal �by the diagonality

theorem, Ḣ=0⇒H is diagonal�, Eqs. �33� and �34� can be
put into the form

h��nm�q�nm� = �H�nn� − H�mm��q�nm� , �40�

h��nm�p�nm� = �H�nn� − H�mm��p�nm� , �41�

from which the frequency condition follows.”67 Given the
importance of this result, it is worthwhile to elaborate on the
proof. Because the nm component of any matrix g is
g�nm�e2�i��nm�t, the nm component of the matrix relation in
Eq. �33� is

2�i��nm�q�nm�e2�i��nm�t

=
2�i

h
	

k

�H�nk�q�km�

− q�nk�H�km��e2�i���nk�+��km��t. �42�

Given the diagonality of H, H�nk�=H�nn�	nk and H�km�
=H�mm�	km, and the Ritz rule, ��nk�+��km�=��nm�, Eq.
�42� reduces to

��nm� =
1

h
�H�nn� − H�mm�� . �43�

In this way Born and Jordan demonstrated how Bohr’s fre-
quency condition, h��nm�=H�nn�−H�mm�, is simply a sca-
lar component of the matrix equation, hq̇=2�i�Hq−qH�. In
any presentation of quantum mechanics it is important to
explain how and where Bohr’s frequency condition logically
fits into the formal structure.68

According to Postulate 4, the nth diagonal element H�nn�
of H is equal to the energy of the nth stationary state. Logi-
cally, this postulate is needed to interpret Eq. �38� as the
original frequency condition conjectured by Bohr. Born and
Jordan note that Eqs. �8� and �38� imply that the mechanical
energy H�nn� is related to the spectral term Wn as follows:
Wn=H�nn�+constant.69

This mechanical proof of the Bohr frequency condition
established an explicit connection between time evolution
and energy. In the matrix scheme all mechanical quantities
�p, q, and g�pq�� evolve in time via the set of factors
e2�i��nm�t, where ��nm�= �H�nn�−H�mm�� /h. Thus, all
g-functions have the form70

g = �g�nm�e2�i�H�nn�−H�mm��t/h� . �44�

Equation �44� exhibits how the difference in energy between
state n and state m is the “driving force” behind the time
evolution �quantum oscillations� associated with the change
of state n→m.

In the introduction of their paper, Born and Jordan write

“With the aid of �the equations of motion and the quantum
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condition�, one can prove the general validity of the law of
conservation of energy and the Bohr frequency relation in the
sense conjectured by Heisenberg: this proof could not be
carried through in its entirety by him even for the simple
examples which he considered.”71 Because p and q do not
commute, the mechanism responsible for energy conserva-
tion in quantum mechanics is significantly different than the
classical mechanism. Born and Jordan emphasize this differ-
ence by writing “Whereas in classical mechanics energy con-

servation �Ḣ=0� is directly apparent from the canonical
equations, the same law of energy conservation in quantum

mechanics, Ḣ=0 lies, as one can see, more deeply hidden
beneath the surface. That its demonstrability from the as-
sumed postulates is far from being trivial will be appreciated
if, following more closely the classical method of proof, one

sets out to prove H to be constant simply by evaluating Ḣ.”72

We carry out Born and Jordan’s suggestion “to prove H to

be constant simply by evaluating Ḣ” for the special Hamil-
tonian

H = p2 + q3. �45�

In order to focus on the energy calculus of the p and q
matrices, we have omitted the scalar coefficients in Eq. �45�.
If we write Eq. �45� as H=pp+qqq, calculate Ḣ, and use the
equations of motion q̇=2p, ṗ=−3q2, we find73

Ḣ = q�pq − qp� + �qp − pq�q . �46�

Equation �46� reveals how the value of pq−qp uniquely

determines the value of Ḣ. The quantum condition, pq−qp
= �h /2�i�1, reduces Eq. �46� to Ḣ=0. In classical mechanics
the classical condition, pq−qp=0, is taken for granted in
proving energy conservation. In quantum mechanics the con-
dition that specifies the nonzero value of pq−qp plays a
nontrivial role in establishing energy conservation. This non-
triviality is what Born and Jordan meant when they wrote
that energy conservation in quantum mechanics “lies more
deeply hidden beneath the surface.”

Proving the law of energy conservation and the Bohr fre-
quency condition was the decisive test of the theory—the
final validation of the new quantum mechanics. All of the
pieces of the “quantum puzzle” now fit together. After prov-
ing the energy theorems, Born and Jordan wrote that “The
fact that energy-conservation and frequency laws could be
proved in so general a context would seem to us to furnish
strong grounds to hope that this theory embraces truly deep-
seated physical laws.”74

VII. CONCLUSION

To put the discovery of quantum mechanics in matrix form
into perspective, we summarize the contributions of Heisen-
berg and Born–Jordan. Heisenberg’s breakthrough consists
of four quantum-theoretical reinterpretations �see the Appen-
dix�:

1. Replace the position coordinate x�t� by the set of transi-
tion components a�n ,n−��ei��n,n−��t.

2. Replace x2�t� with the set 	�a�n ,n−��ei��n,n−��ta�n
−� ,n−��ei��n−�,n−��t.

3. Keep Newton’s second law, ẍ+ f�x�=0, but replace x as

before.
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4. Replace the old quantum condition, nh= �mẋ2dt, with h
=4�m	���a�n+� ,n��2��n+� ,n�− �a�n ,n−���2��n ,n
−���.

The quantum mechanics of Born and Jordan consists of
five postulates:

1. q= �q�nm�e2�i��nm�t�, p= �p�nm�e2�i��nm�t�,
2. ��jk�+��kl�+��lj�=0,
3. q̇=�H /�p, ṗ=−�H /�q,
4. En=H�nn�, and
5. �pq−qp�diagonal=h /2�i,

and four theorems

1. �pq−qp�nondiagonal=0,
2. ġ= �2�i /h��Hg−gH�,
3. Ḣ=0, and
4. h��nm�=H�nn�−H�mm�.

Quantum mechanics evolved at a rapid pace after the pa-
pers of Heisenberg and Born–Jordan. Dirac’s paper was re-
ceived on 7 November 1925.6 Born, Heisenberg, and Jor-
dan’s paper was received on 16 November 1925.5 The first
“textbook” on quantum mechanics appeared in 1926.75 In a
series of papers during the spring of 1926, Schrödinger set
forth the theory of wave mechanics.76 In a paper received
June 25, 1926 Born introduced the statistical interpretation of
the wave function.77 The Nobel Prize was awarded to
Heisenberg in 1932 �delayed until 1933� to Schrödinger and
Dirac in 1933, and to Born in 1954.

APPENDIX: HEISENBERG’S FOUR
BREAKTHROUGH IDEAS

We divide Heisenberg’s paper2 into four major reinterpre-
tations. For the most part we will preserve Heisenberg’s
original notation and arguments.

Reinterpretation 1: Position. Heisenberg considered one-
dimensional periodic systems. The classical motion of the
system �in a stationary state labeled n� is described by the
time-dependent position x�n , t�.78 Heisenberg represents this
periodic function by the Fourier series

x�n,t� = 	
�

a��n�ei���n�t. �A1�

Unless otherwise noted, sums over integers go from −� to �.
The �th Fourier component related to the nth stationary state
has amplitude a��n� and frequency ���n�. According to the
correspondence principle, the �th Fourier component of the
classical motion in the state n corresponds to the quantum
jump from state n to state n−�.8,26 Motivated by this prin-
ciple, Heisenberg replaced the classical component
a��n�ei���n�t by the transition component a�n ,n
−��ei��n,n−��t.79 We could say that the Fourier harmonic is
replaced by a “Heisenberg harmonic.” Unlike the sum over
the classical components in Eq. �A1�, Heisenberg realized
that a similar sum over the transition components is mean-
ingless. Such a quantum Fourier series could not describe the
electron motion in one stationary state �n� because each term
in the sum describes a transition process associated with two
states �n and n−��.
Heisenberg’s next step was bold and ingenious. Instead of
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reinterpreting x�t� as a sum over transition components, he
represented the position by the set of transition components.
We symbolically denote Heisenberg’s reinterpretation as

x → �a�n,n − ��ei��n,n−��t� . �A2�

Equation �A2� is the first breakthrough relation.
Reinterpretation 2: Multiplication. To calculate the energy

of a harmonic oscillator, Heisenberg needed to know the
quantity x2. How do you square a set of transition compo-
nents? Heisenberg posed this fundamental question twice in
his paper.80 His answer gave birth to the algebraic structure
of quantum mechanics. We restate Heisenberg’s question as
“If x is represented by �a�n ,n−��ei��n,n−��t� and x2 is repre-
sented by �b�n ,n−��ei��n,n−��t�, how is b�n ,n−�� related to
a�n ,n−��?”

Heisenberg answered this question by reinterpreting the
square of a Fourier series with the help of the Ritz principle.
He evidently was convinced that quantum multiplication,
whatever it looked like, must reduce to Fourier-series multi-
plication in the classical limit. The square of Eq. �A1� gives

x2�n,t� = 	
�

b��n�ei���n�t, �A3�

where the �th Fourier amplitude is

b��n� = 	
�

a��n�a�−��n� . �A4�

In the new quantum theory Heisenberg replaceed Eqs. �A3�
and �A4� with

x2 → �b�n,n − ��ei��n,n−��t� , �A5�

where the n→n−� transition amplitude is

b�n,n − �� = 	
�

a�n,n − ��a�n − �,n − �� . �A6�

In constructing Eq. �A6� Heisenberg uncovered the symbolic
algebra of atomic processes.

The logic behind the quantum rule of multiplication can be
summarized as follows. Ritz’s sum rule for atomic frequen-
cies, ��n ,n−��=��n ,n−��+��n−� ,n−��, implies the
product rule for Heisenberg’s kinematic elements, ei��n,n−��t

=ei��n,n−��tei��n−�,n−��t, which is the backbone of the multipli-
cation rule in Eq. �A6�. Equation �A6� allowed Heisenberg to
algebraically manipulate the transition components.

Reinterpretation 3: Motion. Equations �A2�, �A5�, and
�A6� represent the new “kinematics” of quantum theory—the
new meaning of the position x. Heisenberg next turned his
attention to the new “mechanics.” The goal of Heisenberg’s
mechanics is to determine the amplitudes, frequencies, and
energies from the given forces. Heisenberg noted that in the
old quantum theory a��n� and ��n� are determined by solv-
ing the classical equation of motion

ẍ + f�x� = 0, �A7�

and quantizing the classical solution—making it depend on
n—via the quantum condition

� mẋdx = nh . �A8�

In Eqs. �A7� and �A8� f�x� is the force �per mass� function

and m is the mass.
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Heisenberg assumed that Newton’s second law in Eq. �A7�
is valid in the new quantum theory provided that the classical
quantity x is replaced by the set of quantities in Eq. �A2�, and
f�x� is calculated according to the new rules of amplitude
algebra. Keeping the same form of Newton’s law of dynam-
ics, but adopting the new kinematic meaning of x is the third
Heisenberg breakthrough.

Reinterpretation 4: Quantization. How did Heisenberg re-
interpret the old quantization condition in Eq. �A8�? Given
the Fourier series in Eq. �A1�, the quantization condition,
nh= �mẋ2dt, can be expressed in terms of the Fourier param-
eters a��n� and ��n� as

nh = 2�m	
�

�a��n��2�2��n� . �A9�

For Heisenberg, setting �pdx equal to an integer multiple of
h was an arbitrary rule that did not fit naturally into the
dynamical scheme. Because his theory focuses exclusively
on transition quantities, Heisenberg needed to translate the
old quantum condition that fixes the properties of the states
to a new condition that fixes the properties of the transitions
between states. Heisenberg believed14 that what matters is
the difference between �pdx evaluated for neighboring
states: ��pdx�n− ��pdx�n−1. He therefore took the derivative
of Eq. �A9� with respect to n to eliminate the forced n de-
pendence and to produce a differential relation that can be
reinterpreted as a difference relation between transition
quantities. In short, Heisenberg converted

h = 2�m	
�

�
d

dn
��a��n��2���n�� �A10�

to

h = 4�m	
�=0

�

��a�n + �,n��2��n + �,n�

− �a�n,n − ���2��n,n − ��� . �A11�

In a sense Heisenberg’s “amplitude condition” in Eq. �A11�
is the counterpart to Bohr’s frequency condition �Ritz’s fre-
quency combination rule�. Heisenberg’s condition relates the
amplitudes of different lines within an atomic spectrum and
Bohr’s condition relates the frequencies. Equation �A11� is
the fourth Heisenberg breakthrough.81

Equations �A7� and �A11� constitute Heisenberg’s new
mechanics. In principle, these two equations can be solved to
find a�n ,n−�� and ��n ,n−��. No one before Heisenberg
knew how to calculate the amplitude of a quantum jump.
Equations �A2�, �A6�, �A7�, and �A11� define Heisenberg’s
program for constructing the line spectrum of an atom from
the given force on the electron.
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60Reference 3, p. 292, paper 13. In Ref. 4, Born and Jordan refer to pq

−qp= �h /2�i�1 as the “vershärfte Quantenbedingung,” which has been
translated as “sharpened quantum condition” �Ref. 13, p. 77�, “stronger
quantum condition” �Ref. 3, p. 292�, and “exact quantum condition” �Ref.
12, p. 220�.

61J. J. Sakurai, Modern Quantum Mechanics �Addison-Wesley, San Fran-
cisco, 1994�, pp. 83–84; A. Messiah, Quantum Mechanics �J Wiley, New
York, 1958�, Vol. I, p. 316.

62Reference 3, p. 293, paper 13.
63Proving the frequency condition—the second general principle of Bohr—

was especially important because this purely quantal condition was gen-
erally regarded as a safely established part of physics. Prior to Born and
Jordan’s mechanical proof of the frequency condition, there existed a
“thermal proof” given by Einstein in his historic paper, “On the quantum
theory of radiation,” Phys. Z. 18, 121 �1917�, translated in Ref. 3, pp,
63–77. In this paper Einstein provides a completely new derivation of
Planck’s thermal radiation law by introducing the notion of transition
probabilities �A and B coefficients�. Bohr’s frequency condition emerges
as the condition necessary to reduce the Boltzmann factor exp��En

−Em� /kT� in Einstein’s formula to the “Wien factor” exp�h� /kT� in
Planck’s formula.

64Reference 3, p. 291, paper 13.
65Reference 3, pp. 291–292, paper 13. Born and Jordan do not refer to the

consequences in Eqs. �37� and �38� as theorems. The label “Energy theo-
rems” is ours.

66Instead of postulating the equations of motion and deriving the energy
theorems, we could invert the proof and postulate the energy theorems
and derive the equations of motion. This alternate logic is mentioned in
Ref. 3, p. 296 and formalized in Ref. 5 �Ref. 3, p. 329�. Also see J. H. Van
Vleck, “Note on the postulates of the matrix quantum dynamics,” Proc.
Natl. Acad. Sci. U.S.A. 12, 385–388 �1926�.

67Reference 3, pp. 293–294, paper 13. The proof of the energy theorems
was based on separable Hamiltonians defined in Eq. �29�. To generalize

the proof Born and Jordan consider more general Hamiltonian functions

138William A. Fedak and Jeffrey J. Prentis



H�pq� and discover the need to symmetrize the functions. For example,

for H*=p2q, it does not follow that Ḣ*=0. However, they note that H
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SCIENTIFIC APTITUDE AND AUTISM

There’s even some evidence that scientific abilities are associated with traits characteristic of
autism, the psychological disorder whose symptoms include difficulties in social relationships and
communication, or its milder version, Asperger syndrome. One recent study, for instance, exam-
ined different groups according to the Autism-Spectrum Quotient test, which measures autistic
traits. Scientists scored higher than nonscientists on this test, and within the sciences, mathema-
ticians, physical scientists, and engineers scored higher than biomedical scientists.

Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World �Columbia University Press, 2007�,
p. 170.
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