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QUANTUM-THEORETICAL RE-INTERPRETATION
OF KINEMATIC AND MECHANICAL RELATIONS

W. HEISENBERG

The present paper seeks to establish a basis for theoretical quantum mechanics
founded exclusively upon relationships between quantities which in principle
are observable.

It is well known that the formal rules which are used in quantum
theory for calculating observable quantities such as the energy of the
hydrogen atom may be seriously criticized on the grounds that they
contain, as basic element, relationships between quantities that are
apparently unobservable in principle, e.g., position and period of
revolution of the electron. Thus these rules lack an evident physical
foundation, unless one still wants to retain the hope that the hitherto
unobservable quantities may later come within the realm of experi-
mental determination. This hope might be regarded as justified if the
above-mentioned rules were internally consistent and applicable to a
clearly defined range of quantum mechanical problems. Experience
however shows that only the hydrogen atom and its Stark effect are
amenable to treatment by these formal rules of quantum theory.
Fundamental difficulties already arise in the problem of ‘crossed
fields’ (hydrogen atom in electric and magnetic fields of differing
directions). Also, the reaction of atoms to periodically varying fields
cannot be described by these rules. Finally, the extension of the
quantum rules to the treatment of atoms having several electrons has
Proved unfeasible.

It has become the practice to characterize this failure of the quan-
tum-theoretical rules as a deviation from classical mechanics, since the
rules themselves were essentially derived from classical mechanics.
This characterization has, however, little meaning when one realizes

E.‘dito*r’s note. This paper was published as Zs. Phys. 33 (1925) 879-893. It was
Signed ‘Géttingen, Institut fiir theoretische Physik’.
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262 W. HEISENBERG 12

that the Einstein—Bohr frequency condition (which is valid in all cases)
already represents such a complete departure from classical mechanics,
or rather (using the viewpoint of wave theory) from the kinematics
underlying this mechanics, that even for the simplest quantum-
theoretical problems the validity of classical mechanics simply cannot
be maintained. In this situation it seems sensible to discard all hope of
observing hitherto unobservable quantities, such as the position and
period of the electron, and to concede that the partial agreement of the
quantum rules with experience is more or less fortuitous. Instead it
seems more reasonable to try to establish a theoretical quantum
mechanics, analogous to classical mechanics, but in which only re-
lations between observable quantities occur. One can regard the
frequency condition and the dispersion theory of Kramers! together
with its extensions in recent papers? as the most important first steps
toward such a quantum-theoretical mechanics. In this paper, we shall
seek to establish some new quantum-mechanical relations and apply
these to the detailed treatment of a few special problems. We shall
restrict ourselves to problems involving one degree of freedom.

1. In classical theory, the radiation emitted by a moving electron (in

the wave zone, i.e., in the region where € and § are of the same order
of magnitude as 1/r) is not entirely determined by the expressions

€ =

e . e .
302 [x[rv]], = W[Uf],

but additional terms occur in the next order of approximation, e.g.
terms of the form epy/rc3 which can be called ‘quadrupole radiation’.
In still higher order, terms such as evp2/rct appear. In this manner the
approximation can be carried to arbitrarily high order. (The following
symbols, have been employed: €, 9 are field strengths at a given
point, r the vector between this point and the position of the electron,
b the velocity and e the charge of the electron).

One may inquire about the form these higher order terms would
assume in quantum theory. The higher order approximations can
easily be calculated in classical theory if the motion of the electron is

1 H. A. Kramers, Nature 113 (1924) 673.

2 M. Born, Zs. f. Phys. 26 (1924) 379. H. A. Kramers and W. Heisenberg,
Zs. f. Phys. 31 (1925) 681. M. Born and P. Jordan, Zs. f. Phys. (in course of
publication) [33 (1925) 479; paper 7a].
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given in Fourier expansion, and one would expect a similar result in
quantum theory. This point has nothing to do with electrodynamics
put rather — and this seems to be particularly important — is of a
purely kinematic nature. We may pose the question in its simplest form
thus: Ifinstead of a classical quantity x(f) we have a quantum-theoretical
quantity, what quantum-theoretical quantity will appear in place of
x(£)%?

Before we can answer this question, it is necessary to bear in mind
that in quantum theory it has not been possible to associate the
electron with a point in space, considered as a function of time, by
means of observable quantities. However, even in quantum theory it
is possible to ascribe to an electron the emission of radiation. In order
to characterize this radiation we first need the frequencies which
appear as functions of two variables. In quantum theory these func-
tions are of the form

vin, n — a) = %{W(n) — W(n — a)},

and in classical theory of the form

(Here one has nk=J, where J is one of the canonical constants).
As characteristic for the comparison between classical and quantum
theory with respect to frequency, one can write down the combination

relations:
Classical:

v(n, a) + »(n, B) = v(n, « + B).
Quantum-theoretical:

v(n,n —a) +v(n —a,n —a — ) =v(n,n — a — )
or

v —B,n—oa—p) +rv(n,n—p) =vnn—a—p).

In order to complete the description of radiation it is necessary to
have not only the frequencies but also the amplitudes. The amplitudes
Mmay be treated as complex vectors, each determined by six inde-
Pendent components, and they determine both the polarization and
the phase. As the amplitudes are also functions of the two variables
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n and «, the corresponding part of the radiation is given by the follow-

ing expressions:
Quantum-theoretical :

Re{U(n, n — «) elolr, n-a)t}, (1)
Classical:
Re(@a(n) elotmat, 2)

At first sight the phase contained in U would seem to be devoid of
physical significance in quantum theory, since in this theory frequen-
cies are in general not commensurable with their harmonics. However,
we shall see presently that also in quantum theory the phase has a
definite significance which is analogous to its significance in classical
theory. If we now consider a given quantity x(f) in classical theory,
this can be regarded as represented by a set of quantities of the form

Q[a(n) eiw(n)cxt,

which, depending upon whether the motion is periodic or not, can be
combined into a sum or integral which represents x(¢):

+ oo
x(n, t) = X Ux(n) elomat
or N (2a)

+ oo
x(n,t) = [ Ux(n) eleMatdy,

A similar combination of the corresponding quantum-theoretical
quantities seems to be impossible in a unique manner and therefore
not meaningful, in view of the equal weight of the variables » and
n—a. However, one may readily regard the ensemble of quantities
A(n, n—oa)elo(n, n-0t a5 a representation of the quantity x(f) and then
attempt to answer the above question: how is the quantity x(¢)2 to be
represented?

The answer in classical theory is obviously:

=00

Bs(n) elombt = 3, A, Ng—y elo@) (+6-n)t 3)
—00
or
+ oo
= [ UsWp—n el0(M @+6-0)tdq, (4)

— 00
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SO that
+oo

#(t)2 = 35 Bp(n) elomst (5)

—0oQ

or, respectively,
+ oo

=/ Bp(n) elomptdp. (6)
In quantum theory, it seems that the simplest and most natural
assumption would be to replace equations (3) and (4) by:
“+ oo
53(”,” - ﬁ) elo(n, =)t — ¥ S)[(n’ o cx)g[(” — 1 — ﬁ) elo(n, n—g)t (7)

— Q0

or

+ oo
= [ U, n— ) A(n — o, n — B) elo(n, n—Atda, (8)

and in fact this type of combination is an almost necessary consequence
of the frequency combination rules. On making assumptions (7) and
(8), one recognizes that the phases of the quantum-theoretical % have
just as great a physical significance as their classical analogues. Only
the origin of the time scale and hence a phase factor common to all the
%A is arbitrary and accordingly devoid of physical significance, but
the phases of the individual 9 enter in an essential manner into the
quantity B.1 A geometrical interpretation of such quantum-theo-
retical phase relations in analogy with those of classical theory seems
at present scarcely possible.

If we further ask for a representation for the quantity x(¢)3 we find
without difficulty:

Classical:
+00 +4co
Cln, y) = T Xa, 5 Ua(n)Up(n) Ay—a—p(n). (9)
Quantum-theoretical:
@(”, ‘n-——y —
+o0 400
= ¥ YusAn, n—a)An—o, n—a—p)An—a—pg, n—y) (10)

Or the corresponding integral forms.

1
. Cf.also H. A. Kramers and W. Heisenberg, loc.cit. The phases enter essentially
"Mto the expressions used there for the induced scattering moment.
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In a similar manner, one can find a quantum-theoretical represen-
tation for all quantities of the form x(f)», and if any function f[x(¢))
is given, one can always find the corresponding quantum-theoretica]
expression, provided the function can be expanded as a power series
in x. A significant difficulty arises, however, if we consider two quanti-
ties x(¢), y(¢), and ask after their product x(¢)y(¢). If x(¢) is characterized
by %, and y(!) by 8B, we obtain the following representations for
x(8)y(2):

Classical:
+ o0
Co(n) = 2 Ua(n) Bp-a(n).
Quantum-theoretical:
+ oo
Cn,n—p)= TaAn, n — )B(n — a, n — B).

Whereas in classical theory x()y(t) is always equal to y(¢)x(t), this
is not necessarily the case in quantum theory. In special instances,
e.g., in the expression x(t)x(¢)2, this difficulty does not arise.

If, as in the question posed at the beginning of this section, one is
interested in products of the form v(¢)9(t), then in quantum theory
this product v9 should be replaced by 4(vi+9v), in order that v be
the differential coefficient of 4v2. In a similar manner it would always
seem possible to find natural expressions for the quantum-theoretical
mean values, though they may be even more hypothetical than the
formulae (7) and (8).

Apart from the difficulty just mentioned, formulae of the type (7),
(8) should quite generally also suffice to express the interaction of the
electrons in an atom in terms of the characteristic amplitudes of the
electrons.

2. After these considerations which were concerned with the kine-
matics of quantum theory, we turn our attention to the dynamical
problem which aims at the determination of the A, », W from the
given forces of the system. In earlier theory this problem was solved
in two stages:

1. Integration of the equation of motion

¥ + f(x) = 0. (1)
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2. Determination of the constants for periodic motion through
$pdg = $midx = J(= nh). (12)

If one seeks to construct a quantum-mechanical formalism
corresponding as closely as possible to that of classical mechanics,
it is very natural to take over the equation of motion (11) directly
into quantum theory. At this point, however, it is necessary - in
order not to depart from the firm foundation provided by those
quantities that are in principle observable — to replace the quantities
% and f(x) by their quantum-theoretical representatives, as given in
§ 1. In classical theory it is possible to obtain the solution of (11) by
first expressing x as a Fourier series or Fourier integral with unde-
termined coefficients (and frequencies). In general, we then obtain an
infinite set of equations containing infinitely many unknowns, or
integral equations, which can be reduced to simple recursive relations
for the U in special cases only. In quantum theory we are at present
forced to adopt this method of solving equation (11) since, as has
been said before, it was not possible to define a quantum-theoretical
function directly analogous to the function x(x, ).

Consequently the quantum-theoretical solution of (11) is only
possible in the simplest cases. Before we consider such simple examples,
let us give a quantum-theoretical re-interpretation of the determina-
tion, from (12), of the constant of periodic motion. We assume that
(classically) the motion is periodic:

+00
"=, aa(n)eicxw,,t; (]3)
hence

+ o0
mi = m Yu ax(n)icw,elo®st

— 0

and

+o0
g mzdx = § mi2 dt = 2nm I, an(n)a—x(n)oelwy,.

Furthermore, since a—x(n)=ax(n), as x is to be real, it follows that
+ o0
§mx.2 dt = Zﬂm Efx Iaa('n«)!2a2wn. (14)

In the earlier theory this phase integral was usually set equal to
an integer multiple of 4, i.e., equal to nA, but such a condition does
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not fit naturally into the dynamical calculation. It appears, even whep
regarded from the point of view adopted hitherto, arbitrary in the
sense of the correspondence principle, because from this point of view
the J are determined only up to an additive constant as multiples of
h. Instead of (14) it would be more natural to write

d d §
_ pe -2 d¢
dn (#%) dn s,
that is,
+o0 d
h = 2nm Eaaa(awn.mal?). (15)

Such a condition obviously determines the a, only to within a
constant, and in practice this indeterminacy has given rise to diffi-
culties due to the occurrence of half-integral quantum numbers.

If we look for a quantum-theoretical relation corresponding to (14)
and (15) and containing observable quantities only, the uniqueness
which had been lost is automatically restored.

We have to admit that only equation (15) has a simple quantum-
theoretical reformulation which is related to Kramers’ dispersion
theory:1

h = 4am Ea{la(n, n+ o) [2w(n,n + a) — |a(n,n — o) |20(n,n — a)}. (16)
0

Yet this relation suffices to determine the a uniquely since the unde-
termined constant contained in the qudntities a is automatically
fixed by the condition that a ground state should exist, from which no
radiation is emitted. Let this ground state be denoted by n¢; then we
should have a(ng, #o—a)=0 (for «>0). Hence we may expect that the
question of half-integer or integer quantization does not arise in a
theoretical quantum mechanics based only upon relations between
observable quantities.

Equations (I11) and (16), if soluble, contain a complete determi-
nation not only of frequencies and energy values, but also of quantum-
theoretical transition probabilities. However, at present the actual
mathematical solution can be obtained only in the simplest cases. In
many systems, e.g. the hydrogen atom, a particular complication

1 This relation has already been derived from dispersion considerations bY
W. Kuhn, Zs. Phys. 33 (1925) 408, and W. Thomas, Naturwiss. 13 (1925) 627-
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arises because the solutions correspond to motion which is partly
periodic and partly aperiodic. As a consequence of this property, the
quantum-theoretical series (7), (8) and equation (16) decompose into
a sum and an integral. Quantum-mechanically such a decomposition
into ‘periodic and aperiodic motion’ cannot be carried out in general.

Nevertheless, one could regard equations (11) and (16) as a satis-
factory solution, at least in principle, of the dynamical problem if
it were possible to show that this solution agrees with (or at any rate
does not contradict) the quantum-mechanical relationships which we
know at present. It should, for instance, be established that the
introduction of a small perturbation into a dynamical problem leads
to additional terms in the energy, or frequency, of the type found by
Kramers and Born — but not of the type given by classical theory.
Furthermore, one should also investigate whether equation (11) in
the present quantum-theoretical form would in general give rise to
an energy integral }m#24-U(x)=const., and whether the energy so
derived satisfies the condition AW =#hw, in analogy with the classical
condition »=0W/d]. A general answer to these questions would
elucidate the intrinsic connections between previous quantum-
mechanical investigations and pave the way toward a consistent
quantum-mechanics based solely upon observable quantities. Apart
from a general connection between Kramer’s dispersion formula and
equations (11) and (16), we can answer the above questions only in
very special cases which may be solved by simple recursion relations.

The general connection between Kramers’ dispersion theory and
our equations (11) and (16) is as follows. From equation (11) (more
precisely, from the quantum-theoretical analogue) one finds, just as
in classical theory, that the oscillating electron behaves like a free
electron when acted upon by light of much higher frequency than
any eigenfrequency of the system. This result also follows from
Kramers’ dispersion theory if in addition one takes account of equation
(16). In fact, Kramers finds for the moment induced by a wave of
the form E cos 2st:

2 2 |[lan,n+ «)2(n,n + )
M — g2 e L _
eEcosthh % l 2 Bl ) — P

la(n, n — a)|2(n, n — a) }
N v2(n, n — o) — ¥2 ’
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so that for ¥>»(n, n+a),

2FEe2 cos 2nvi

M= — 3 Ya{la(n, n + «)|2(n,n + «)
14 h 0

— la(n, n — a)|2v(n, n — o)},
which, due to equation (16), becomes

¢2E cos 2nvt

4n2my2

M= —

3. As a simple example, the anharmonic oscillator will now be
treated:

%+ wlx + Ax?2 = 0. (17)
Classically, this equation is satisfied by a solution of the form
% = Aag + ay €os wt + Aag cos 2wt + A2ag cos 3wt + ... A7 la; cos Twt,

where the a are power series in A, the first terms of which are inde-
pendent of 4. Quantum-theoretically we attempt to find an analogous
expression, representing x by terms of the form
Aa(n, n); a(n,n — 1) cos w(n, n — 1)¢;
Aa(n, n — 2) cos w(n, n — 2)t;
. A7 1a(n, m — 1) cos w(n, n — 1)t ....

The recursion formulae which determine the @ and w (up to, but
excluding, terms of order 1) according to equations (3), (4) or (7), (8) are:

Classical:
wiao(n) + 4al(n) = O;
— w? 4+ 0} =0;
(— 40? + wg)as(n) + $ai = 0; (18)
(— 9w? + w?)as(n) + ajas = 0;
Quantum-theoretical :
wiao(n) + }a(n + 1, n) + a2(n, n — 1)] = 0;
— w2(n,n — 1) + 0l = 0;
[—w?(n, n—2)+0lla(n, n—2)+}[a(n, n—a(n—1, n—2)] = 0; (19)
[— w?(n, n — 3) + wila(n, n — 3)
+ila(n, n—1)a(n—1, n—3)]+4[a(n, n—2)a(n—2, n—3)] = 0;

----------------------
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The additional quantum condition is:
Classical (J=mnh):

d -k
l= anE}— E 17?a:2w.
Quantum-theoretical:
h=mnam3[lan + 1, n)2wmn + 7, n) — |an, n — 7)|2 w(n, n — 1)].
0

We obtain in first order, both classically and quantum-mechanically

(n + const)h

ain) or a(n,nm — 1) = p—

(20)

In quantum theory, the constant in equation (20) can be determined
from the condition that a(ng, no—1) should vanish in the ground
state. If we number the # in such a way that in the ground state » is
zero, i.e. no=0, then a2(n, n—1)=nh/amwy.

It thus follows from the recursive relations (18) that in classical
theory the coefficient a; has (to first order in 1) the form x(r)nir
where x(7) represents a factor independent of #. In quantum theory,
equation (19) implies

a(n,n — v) = x(t) l/

n!
(n —1)!’ (el

where x(r) is the same proportionality factor, independent of .
Naturally, for large values of # the quantum-theoretical value of a,
tends asymptotically to the classical value.

An obvious next step would be to try inserting the classical ex-
pression for the energy mx2+imwlx2+3imix3=W, because in the
present first-approximation calculation it actually is constant, even
when treated quantum-theoretically. Its value is given by (19), (20)
and (21) as:

Classical:
W = %hwo/z:rc. (22)
Quantum-theoretical, from (7) and (8):

W = (n + })hwo/2n (23)

(terms of order 42 have been excluded).
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Thus from the present viewpoint, even the energy of a harmonic
oscillator is not given by ‘classical mechanics’, i.e., by equation (22),
but has the form (23).

The more precise calculation, taking into account higher order
approximations in W, a, w will now be carried out for the simpler
example of an anharmonic oscillator %+ wix-+Ax3=0.

Classically, one can in this case set

X = aj cos wt + Aag cos 3wt + A2as cos Swt + ...;

quantum-theoretically we attempt to set by analogy
a(n, n — 1) cos w(n, n — 1)¢; Aa(n, n — 3) cos w(n, n — 3)¢;

The quantities a4 are once more power series in 2 whose first term
has the form, as in equation (21),

n!

a(n,n — 1) = x(1) V ’

(n — 7)!
as one finds by evaluating the equations corresponding to (18) and
(19).

If the evaluation of w and 4 from equations (18) and (19) is carried
out to order A2 or A respectively, one obtains

3nh 342
ym—1) = — A2 : - (17n2 + 7 ww (24
i, ) =t 4 8rwim 256wym2m? e - ) (4
nh 3nh
,n—1) = V—vm (1 — A o ) 25
Bl ) WM 167wym T ()
a(n, n — 3) 1 l/ L ( 1)(n — 2)
yn—3) = n(n — — 2):
32 1 a3wlms3 )

-(l _ 39(n — l)h). (26)

32nwim
The energy, defined as the constant term in the expression
Ima2 + Imojx? + tmix4,

(I could not prove in general that all periodic terms actually vanish,
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put this was the case for all terms evaluated) turns out to be

(n + 3)hwo 3(n% + n + 4)A?
= A
i 2n ™ 8 4n2wlm
43
— B iy (TR S g (@)

This energy can also be determined using the Kramers—Born ap-
proach by treating the term }maAx4 as a perturbation to the harmonic
oscillator. The fact that one obtains exactly the same result (27)
seems to me to furnish remarkable support for the quantum-mecha-
nical equations which have here been taken as basis. Furthermore, the
energy calculated from (27) satisfies the relation (cf. eq. 24):

wn, n — 1) 1

= 5 W) — W — 1)),

which can be regarded as a necessary condition for the possibility of a
determination of the transition probabilities according to equations
(11) and (16).

In conclusion we consider the case of a rotator and call attention
to the relationship of equations (7), (8) to the intensity formulae for
the Zeeman effect! and for multiplets.2

Consider the rotator as represented by an electron which circles a
nucleus with constant distance 4. Both classically and quantum-
theoretically, the ‘equations of motion’ simply state that the electron
describes a plane, uniform rotation at a distance @ and with angular
velocity w about the nucleus. The ‘quantum condition’ (16) yields,
according to (12),

h = — (2nmaw),
n

and according to (16)

b = 2nm{aaln + 1, n) — a%ln, 1 — 1)},

- S. Goudsmit and R. de L. Kronig, Naturwiss. 13 (1925) 90; H. Honl, Zs. £,

Phys. 31 (1925) 340.

SitR- de L. Kronig, Zs. f. Phys. 31 (1925) 885; A. Sommerfeld and H. Hoénl,
Zungsber, d. Preuss. Akad. d. Wiss. (1925) 141; H. N. Russell, Nature 115

11925) 835,
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from which, in both cases, it follows that

h(n + const)
2nma?

wn,n —1) =

The condition that the radiation should vanish in the ground state
(n9=0) leads to the formula

hn

wn,n—1) = e (28)

The energy is
W = imv2,
or, from equations (7), (8),
m wi(n, n—1) + wi(n+1, n) h?2
— _ __ g2 — 2

w="4 ! i (P ntd), (29

which again satisfies the condition w(n, n—1)=(27/h)[W (n) — W (n—1)).

As support for the validity of the formulae (28) and (29), which
differ from those of the usual theory, one might mention that, ac-
cording to Kratzer,! many band spectra (including spectra for which
the existence of an electron momentum is improbable) seem to require
formulae of type (28), (29), which, in order to avoid rupture with the
classical theory of mechanics, one had hitherto endeavoured to explain
through half-integer quantization.

In order to arrive at the Goudsmit—Kronig-Honl formula for the
rotator we have to leave the field of problems having one degree of
freedom. We assume that the rotator has a direction in space which is
subject to a very slow precession o about the z-axis of an external field.
Let the quantum number corresponding to this precession be m. The
motion is then represented by the quantities

z: am,n — 1;m,m)coswn,n— 1)
X+ iy: bin,n — 1;m, m — 1)elemn-tolk.
b(n n—1:m—1 m) ei[*w(n,n*1)+g]t-

The equations of motion are simply

1 Cf. for example, B. A. Kratzer, Sitzungsber. d. Bayr. Akad. (1922) p. 107
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Because of (7) this leads to1l
%{%az(n, n—1; m, m)+b2(n, n—1;m, m—1)+b2(n, n—1; m, m—+1)
+ 3a%(n 4+ 1, n;m,m) + 2(n + 1, n; m — 1, m)
+ 2n 4+ 1, n; m + 1, m)} = a2, (30)
an,m — 1;m,man — 1,n — 2; m, m)
=b(n,n—1;mm+ 1)b(n — 1,n —2;m + 1, m)
+b(m,n— 1;mm— 1)b(n — 1,n —2;m — 1,m). (31)

One also has the quantum condition from (16):

2am{bi(n, n — 1;m, m — \on, n — 1)

—b3m,n — 1;m — 1, m)w(n, n — 1)} = (m + const)h. (32)
The classical relations corresponding to these equations are

Yag + b7 + 0%, = a?;
1ak = b1b_q; (33)
2am(b%, — b2 )w = (m + const)h.

They suffice (up to the unknown constant added to m) to determine
g, b1, b_1 uniquely.

The simplest solution of the quantum-theoretical equations (30),
(31), (32) which presents itself is:

bn,m — 1, m, m — 1)=a1/(”+m+ 1)(n+m);
4n + P

b(n,n_];m_l,m)za"/(”—m)(n—m+l) ;
4n + P

: VY mt+m+ 1) — m)

a(n,n—l,m,m)__a/ " b .

These expressions agree with the formulae of Goudsmit, Kronig and
Honl. 1t is, however, not easily seen that these expressions represent
the only solution of equations (30), (31), (32), though this would seem
likely to me from consideration of the boundary conditions (vanishing

k Equation (30) is essentially identical with the Ornstein—Burger sum rules.
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of 2 and b at the ‘boundary’; cf. the papers of Kronig, Sommerfely
and Honl, Russell quoted above).

Considerations similar to the above, applied to the multiplet ip.
tensity formulae, lead to the result that these intensity rules are ip
agreement with equations (7) and (16). This finding may again be
regarded as furnishing support for the validity of the kinematic
equation (7).

Whether a method to determine quantum-theoretical data using
relations between observable quantities, such as that proposed here,
can be regarded as satisfactory in principle, or whether this method
after all represents far too rough an approach to the physical problem
of constructing a theoretical quantum mechanics, an obviously very
involved problem at the moment, can be decided only by a more
intensive mathematical investigation of the method which has been
very superficially employed here.,
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In July 1925 Heisenberg published a paper that ushered in the new era of quantum mechanics. This
epoch-making paper is generally regarded as being difficult to follow, partly because Heisenberg
provided few clues as to how he arrived at his results. We give details of the calculations of the type
that Heisenberg might have performed. As an example we consider one of the anharmonic oscillator
problems considered by Heisenberg, and use our reconstruction of his approach to solve it up to
second order in perturbation theory. The results are precisely those obtained in standard quantum
mechanics, and we suggest that a discussion of the approach, which is based on the direct
calculation of transition frequencies and amplitudes, could usefully be included in undergraduate
courses on quantum mechanics. 2@8b4 American Association of Physics Teachers.

[DOI: 10.1119/1.1775243

[. INTRODUCTION assumption that, having formulated a method that was ca-
pable of determining the relevant physical quantitidse

Heisenberg’s paper of July 19250on “Quantum- transition frequencies and amplitudebleisenberg then ap-
mechanical reinterpretation of kinematic and mechanicaPlied it to various simple mechanical systems, without any
relations,”>® was the breakthrough that quickly led to the further recourse to the kind of “inspired guesswork” that
first complete formulation of quantum mecharficéDespite ~ characterized the old quantum theory. Surprisingly, this point
its undoubtedly crucial historical role, Heisenberg's approactPf View appears to be novel. For example, MacKintiand
in this paper is not generally followed in undergraduateMehra and Rechenbefghave suggested that Heisenberg ar-
quantum mechanics courses, in contrast, for example, to Eifived at the crucial recursion relatiofsee Eqs(33)-(36) in
stein’s approach in the teaching of relativity. Indeed HeisenS€C- 11 B] by essentially guessing the appropriate generali-
berg’s paper is widely regarded as being difficult to underZation of their classical counterparts. We are unaware of any
stand and of mainly historical interest today. For example€vidence that can settle the issue. In any case, our analysis
Weinberd has written that “If the reader is mystified at what ShOWs that it is possible to read Heisenberg's paper as pro-
Heisenberg was doing, he or she is not alone. | have trie¥iding a completel(if limited) calculational method, the re-

several times to read the paper that Heisenberg wrote optlts of which are consistent with those of standard quantum

returning from Heligoland, and, although I think | under- mechanics. We also stress both the correctness and the prac-

stand quantum mechanics, | have never understood HeiseHQ"]‘mIy of ‘k’]"h(?t we r(]:onjec;ure to be Heis_entl)erglis C.aICLIJIa'
berg’s motivations for the mathematical steps in his papeftional method. We hope that our reappraisal will stimulate
nstructors to include at least some discussion of it in their

Theoretical physicists in their most successful work tend td
play one of two roles: they are eithesgesor magicians... It undergraduate courses.

is usually not difficult to understand the papers of sage-

physicists, but the papers of magician-physicists are oftel. HEISENBERG'S TRANSITION AMPLITUDE
incomprehensible. In this sense, Heisenberg’'s 1925 pap&PPROACH

was pure magic.”

There have been many discussions aimed at elucidati
the main ideas in Heisenberg's paper of which Refs. 3 and Heisenberg began his paper with a programmati¢c#l
8-18 represent only a partial selectidrOf course, it may to “discard all hope of observing hitherto unobservable
not be possible to render completely comprehensible thgquantities, such as the position and period of the electron,”
mysterious processes whereby physicists “jump over all inand instead to “try to establish a theoretical quantum me-
termediate steps to a new insight about natutefh our  chanics, analogous to classical mechanics, but in which only
opinion, however, one of the main barriers to understandingelations between observable quantities occur.” As an ex-
Heisenberg's paper is a more prosaic one: namely, he gaw@nple of such latter quantities, he immediately pointed to the
remarkably few details of the calculations he performed. energiesw(n) of the Bohr stationary states, together with

In Sec. Il we briefly review Heisenberg’s reasoning in set-the associated Einstein—Bohr frequenties
ting up his new calculational method. Then we present in 1
Sec. Il the details of a calculation typical of those we con- N _ _
jecture that he performed. Our reconstruction is based on the o(nn-a)= h [W(n)=W(n=a)], @

r@' Quantum kinematics
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and noted that these frequencies, which characterize the ra- _ ,

diation emitted in the transition—n— «, depend on two [X()]2=2 2 Xa(n) X, (n)elteraemt, )

variables. An example of a quantity he wished to exclude ¢

from the new theory is the time-dependent position coordi\We setB=a+ «’, and rewrite Eq(5) as

natex(t). In considering what might replace it, he turned to

the probabilities for transitions between stationary states. [X()]2=2 Y4(n)e'B=mt, (6)
Consider a simple one-dimensional model of an atom con- B P

sisting of an electron undergoing periodic motion, which isWhere

the type of system studied by Heisenberg. For a state char-

acterized by the labeh, the fundamental frequenay(n),

and the coordinate(n,t), we can represemt(n,t) as a Fou- Yg(n)= za: Xa(MXg—o(N). (@)

rier series

Thus[x(t)]? is represented classicallyia a Fourier serigs

_ . by the set of quantitie¥ z(n)exdiBw(n)t], the frequency

X(”at):a;w Xo(m)e' e, (20 Bw(n) being the simple combination[aw(n)+ (3
—a)w(n)]. In quantum theory, the corresponding represen-
where a is an integef* According to classical theory, the tative quantities must be written a8(n,n— g)exdiw(n,n

[

energy emitted per unit timghe powey in a transition cor- —p)t], and the question is what is the analogue of &?
responding to thexth harmonicaw(n) is® The crucial difference in the quantum case is that the fre-
quencies do not combine in the same way as the classical
dE e 4 5 harmonics, but rather in accordance with the Ritz combina-
“at _W[“w(”)] [Xa(m)*. 3 tion principle:

n,n—a)+ow(n—a,n—pB)=w(n,n—7H), 8
In the quantum theory, however, the transition frequency cor- g @)t wn=a B =wl A) @

multiple of a fundamental frequency, but is given by Er),  the particular frequency(n,n— f), it seems “almost nec-
Heisenberg introduced the quantum analogué i), writ- am_plltudes in such. a way as to ensure the frequency combi-
ten (in our notation asX(n,n— a).2’ Furthermore, the left- "ation Eq.(8), that is, as

hand side of Eq(3) has to be replaced by the product of the . - . B

transition probability per unit timeP(n,n—«), and the Y(n,n—pern mt:; X(n,n—a)e'emn=alt

emitted energytw(n,n—«). Thus Eq.(3) becomes

X _ _ io(n—a,n—p)t
, X(h—a,n—pB)e )

e
B — 13 — a2 (9)
P(n,n—a) 371_Eoﬁcs[w(n,n a)’|X(n,n—a)|*.
(4) or
It is the transition amplitudeX(n,n— «) which Heisenberg Y(n,n—ﬁ):E X(n,n—a)X(n—a,n—pB), (10
took to be “obseryable;” Iike' the transition frequencies, they a
depend on two discrete variabfés. which is Heisenberg’s rule for multiplying transition ampli-

_ Equation(4) refers, however, to only one specific transi- yges. Note particularly that the replacemens,(n)
tion. For a full description of atomic dynami¢as then con- —X(n,n—a), and similarly forY s(n) andX,_.(n) in Eq
ceived, we need to consider all the quantitie§(n,n @ pr(,Jduce ,a quite different resﬁult. Bra '

—a)exfio(nn—a)t]. In the classical case, the terms ejsenberg indicated the simple extension of the rule
Xq(n)exdiaw(n)t] may be combined to yiela(t) via Ed.  given in Eq.(10) to higher powergx(t)]", but noticed at
(2). But in the quantum theory, Heisenberg widtthat a  oncd! that a “significant difficulty arises, however, if we
similar combination of the corresponding quantum- consider two quantities(t),y(t) and ask after their product
theoretical quantities seems to be impossible in a un'un(t)y(t)... Whereas in classical theony(t)y(t) is always
manner and therefore not meaningful, in view of the equa . . .
weight of the variables andn— a [that is, in the amplitude equal toy(t)x(t), this is not necessarily the case in quantum
' theory.” Heisenberg used the word “difficulty” three times

X(n,n—a) and frequencyw(n,n—a)] ... HOWEVEr, ONe j, yoferring to this unexpected consequence of his multipli-
may readily regard the ensemble of quantiti¥tn,n  cation rule, but it very quickly became clear that the non-
—a)exdio(nn—a)t] as a representation of the quantity commutativity(in general of kinematical quantities in quan-
x(t)....” This way of representing(t), that is, as we would tum theory was the essential new idea in the paper.
now say, by a matrix, is the first of Heisenberg’'s “magical Born recognized E¢(10) as matrix multiplication(some-
jumps,” and surely a very large one. Representk{t) in  thing unknown to Heisenberg in July 192%nd he and Jor-
this way seems to be the sense in which Heisenberg considan rapidly produced the first pafi¢o state the fundamental
ered that he was offering a “reinterpretation of kinematiccommutation relatiortin modern notation
relations.” cn me

Heisenberg immediately posed the question: how is the Xp—px=it. 1D
quantityx(t)? to be represented? In classical theory, the anDirac's paper followed soon aftérand then the paper of
swer is straightforward. From E¢2) we obtain Born, Heisenberg, and Jord&n.

1371 Am. J. Phys., Vol. 72, No. 11, November 2004 Aitchison, MacManus, and Snyder 1371



The economy and force of Heisenberg’'s argument in *

reaching Eq(10) is remarkable, and it is at least worth con- h=47m, [|X(n+a,n)2o(n+a,n)—|X(n,n
sidering whether presenting it to undergraduates might help a=0
them to understand the “almost necessity” of non- — &)o(nn-a)] (16)

commuting quantities in quantum theory.
which is Eq.(H16) in our notatior>* As he later recalled, he
had noticed that “if | wrote down thifpresumably Eq(15)]
and tried to translate it according to the scheme of dispersion
B. Quantum dynamics theory, | got the Thomas-Kuhn sum rJlgq. (16)%39. And
) ) . . ) that is the point. Then | thought, That is apparently how it is
Having identified the transition amplitudes(n,n— «) done.”37
and frequencies(n,n— ) as the observables of interestin By “the scheme of dispersion theory,” Heisenberg re-
the new theory, Heisenberg then turned his attention to hovierred to what Jamméd calls Born’s correspondence rule,
they could be determined from the dynamics of the systempamely?®
In the old quantum theory, this determination would have

. Thy i - i dd(n)

E)neot?[ir:)r?one in two stages: by integration of the equation of a—- —®d(n)—d(N—a), (17)
X+f(x)=0, (12)  or rather to its iteration to the forth

and by determining the constants of the periodic motion ‘?(D(”'“)H n _ _

through the “quantum condition” “"an ®(n+a,n)=®(nn-a), (18

as used in the Kramers—Heisenberg theory of dispefSith.
jg pdg= fﬁ mx2dt=J(=nh), (13 It took Born only a few days to show that Heisenberg’s quan-
tum condition, Eq(16), was the diagonal matrix element of
where the integral is evaluated over one period. In regard t&q. (11), and to guess that the off-diagonal elements of
Eq. (12), Heisenberg wrof that it is “very natural” to take ~ Xp— pX were zero, a result that was shown to be compatible
the classical equation of motion over to quantum theory bywith the equations of motion by Born and Jordan.
replacing the classical quantitiegt) and f(x) by their ki- At this point it is appropriate to emphasize that Heisen-
nematical reinterpretatioris as in Sec. Il A(or, as we would  berg’s transition amplitudé(n,n—«a) is the same as the
say today, by taking matrix elements of the correspondingjuantum-mechanical matrix elemem— a|%X|n), where|n)
operator equation of motignHe noted that in the classical is the eigenstate with energy(n). The relation of Eq(16)
case a solution can be obtained by expreszi{ty as a Fou-  to the fundamental commutator E@.1) is discussed briefly
rier series, substitution of which into the equation of motionin Appendix A.
leads(in special casggo a set of recursion relations for the  Heisenberg notéd that the undetermined constant still
Fourier coefficients. In the quantum theory, Heisenbergtontained in the quantitie¥ of Eq. (16) [assuming the fre-
wrote tha ? “we are at present forced to adopt this method quencies known from Eq12)] would be determined by the
of solving equation Eq(12) [his Eq.(H11)] ... since it was  condition that a ground state should exist, from which no
not possible to define a quantum-theoretical function analoradiation is emittedisee Eqs(51) and(52) below]. He there-
gous to theclassical functionx(n,t).” In Sec. lll we shall  fore summarized the state of affairs thus far by the
consider the simple examplghe first of those chosen by statemerif that Egs.(12) and (16) “if soluble, contain a
Heisenbergf(x) = w3x+ Ax?, and obtain the appropriate re- complete determination not only of frequencies and energy
cursion relations in the classical and the quantum cases. Vvalues, but also of quantum-theoretical transition probabili-
A guantum-theoretical reinterpretation of H@3) is simi-  ties.” We draw attention to the strong claim here: that he has
larly required in terms of the transition amplitud¥¢n,n arrived at a new calculational method, which will completely
—a). In the classical case, the substitution of E2). into  determine the observable quantities. Let us now see in detail
Eq. (13) gives how this method works, for a harmonic oscillator perturbed
by an anharmonic force of the forix? per unit masé4®

A — 2 2 —
jg mdt=2am > [Xu(n)[?a’o(m=nh, (14 | HEISENBERG'S CALCULATIONAL METHOD
AND ITS APPLICATION TO THE ANHARMONIC

using X,(n)=[X_,(n)]*. Heisenberg argued that EQL4  OSCILLATOR
appeared arbitrary in the sense of the correspondence pri

ciple, because the latter determingadnly up to an additive I'z‘ Recursion relations in the quantum case

constant(times h). He therefore replaced Eq14) by the The classical equation of motion is
derivative form[Eqg. (H15)] “r w§x+)\x2=0. (19
o d We depart from the order of Heisenberg’ tation and
_ a 2 part from the order of Heisenberg's presentation an
h‘z”ma;w adn(ap(“(n)| @(n)). (19 begin by showing how—as he stated—E#9) leads to re-

cursion relations for the transition amplitud¥¢n,n— «).

The summation can alternatively be written as over positiverne (n,n—«) representati® of the first two terms in Eq.
values of @, replacing 2rm by 47m. In another crucial (19 is straightforward, being

jump, Heisenberg then replaced the differential in Ekf) . B
by a difference, giving [~ @?(n,n—a)+wg]X(n,n—a)e' =t (20)
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while that of the third term is, by Eq10),

N> X(n,n—B)X(n—B,n—a)eemn-ar, (22)
B

The (n,n— a) representative of Eq19) therefore yield¥’
[w2— w?(n,n—a)]X(n,n—a)+ 1>, X(n,n—p)
B

XX(n—B,n—a)=0, (22

which generates a recursion relation for each value ¢
=0,=1,£2,...). Forexample, fora=0 we obtain

w2X(n,n)+A[X(n,n)X(n,n)+X(n,n—1)X(n—1,n)

+X(n,n+1)X(n+1n)+---]=0. (23

(—40%+ wd)a,+ 3a2=0, (280

(280d)

which is the same as EqH18).*° The lowest order imn\
solution is obtained from Eq28) by settingw= w,, and
replacing eacla, by the corresponding one with a super-
script© [see Eq(25)].

In the quantum case, Heisenberg proposed to seek a solu-
tion analogous to Eq24). Of course, it is now a matter of
using the representation of(t) in terms of the quantities
X(n,n—a)exdio(n,n—a)t]. But it seems reasonable to as-
sume that, as the index increases from zero in integer
steps, each successive amplitude \@idl leading order in)
be suppressed by an additional powehpés in the classical
case. Thus Heisenberg suggested that, in the quantum case,
X(t) should be represented by terms of the form

(— 9w+ wd)az+a,a,=0,

No general solution for this infinite set of nonlinear algebraic
equations seems to be possible, so, following Heisenberg, we Aa(n,n), a(n,n—1)cosw(n,n—1)t,

turn to a perturbative approach.

B. Perturbation theory

To make the presentation self-contained, we need to dis-
cuss several ancillary results. Heisenberg began by consider-

ing the perturbative solution of the classical equati®g).
He wrote the solution in the form

X(t)=\ag+a; coswt+\a, cos 2wt + \%az cos 3wt

+-+\*"ta, cosawt+- -, (24)

where the coefficienta,, and w, are to be expanded as a
pmgver series i, the first terms of which are independent of

\A
ap=al+raV+ %P+, (259
a;=a®+ralV+a%a@+- -, (250
and
0=t No®+N\20@+--- (26)

We substitute Eq(24) into Eqg. (12), use standard trigono-
metric identities, and equate to zero the terms that are con- ,»2(n,n—1)+ a)(2)=0,

stant and which multiply cost, cos 2ut, etc., to obtain

Mowdag+ 2a2+[\%(ag+ 3a3)+:--]}=0, (273
(— 0?+ wd)a;+[N\%(a;a,+2aga,) +++]1=0, (27b
M(— 40+ wd)a,+ 32+ [\%(aja5+2agay) + -1}

=0, (270
N2{(— 9w+ wi)as+aja,+ [ N2(aja,+2apa3) +- -1}

=0, (270

where the dots stand for higher powers\oflf we drop the

terms of order? (and higher poweps and cancel overall

factors of\, Eq. (27) becomegfor A #0 anda;#0)
wlag+ 2a2=0,

(28a

(— 0’+wd)=0, (28b)

1373 Am. J. Phys., Vol. 72, No. 11, November 2004

Na(n,n—2)cosw(n,n—2)t,...,

A*"a(n,n—a)cosw(n,n—alt,..., (29
where, as in Eqs25) and (26),
a(n,n)=a®(n,n)+xa®(n,n)+r2a@(n,n)+---,
(30
a(n,n—1)=a®(n,n—1)+rxa®(n,n—1)
+2%2a®(n,n—1)+:--, (31)
and
o(n,n—a)=o@n,n-a)+ro®(n,n—a)
+N20P(nn—a)+---. (32

As Born and Jordan pointed otisome use of correspon-
dence arguments has been made here in assuming that as
—0, only transitions between adjacent states are possible.
We shall return to this point in Sec. Il C.

Heisenberg then simply wrote down what he asserted to be
the quantum version of E¢28), namely®

wda(n,n)+ i[a®(n+1n)+a%(n,n—1)]=0 (33
(34)
[—w?(n,n—2)+ w3la(n,n—2)+ 3[a(n,n—1)
xXa(n—1n—2)]=0, (35
[—w?(n,n—3)+w3la(n,n—3)+ 2a(n,n—1)
xa(n—1n—-3)+ ta(n,n—2)a(n—2n—-3)=0. (36)

The question we now address is how did Heisenberg arrive at
Egs.(33)-(36)?

We shall show that these equations can be straightfor-
wardly derived from Eq(22) using the ansat#29), and we
suggest that this is what Heisenberg did. This seems to be a
novel proposal. Tomonafalerived Eq.(22) but then dis-
cussed only the\—0 limit, that is, the simple harmonic
oscillator, a special case to which we shall return in Sec.
IIIC. The only other authors, to our knowledge, who have
discussed the presumed details of Heisenberg’s calculations
are’* Mehra and RechenbetyThey suggest that Heisenberg

Aitchison, MacManus, and Snyder 1373



guessed how to “translate,” “reinterpret,” or “reformulate” The casex=0 is clearly special, witiX(n,n)=\a(n,n).
(their words the classical equatiof28) into the quantum We may now write out the recurrence relations E2p)
ones, Eqs(33)—(36), in a way that was consistent with his explicitly for #=0,1,2, .., interms ofa(n,n— a) rather than
multiplication rule, Eq(10). Although such “inspired guess- x(n n—a). We shall include terms up to and including
work” was undoubtedly necessary in the stages leading Up tQrms of ordeir2. For =0 we obtain

Heisenberg’s papéiit seems more plausible to us that by the

time of the paper’s final formulation, Heisenberg realized\{w3a(n,n)+ [a?(n+1,n)+a?(n,n—1)]+\*[a%(n,n)

that he had a calculational method in which guesswork was

no longer necessary, and in which E(&3)—(36), in particu- + %(a’(n+2n)+a%(n,n—2))]}=0. (43)
lar, could be derived. . :

Unfortunately, we know of no documentary evidence that'V& note the connection with '25‘“273)' and that Eq(43)
directly proves(or disproves this suggestion, but we think "educes to Eq(33) when the\” term is dropped and an
there is some internal evidgpce for it. In the passage to whicRverall factor ofA is canceled. Similarly, forr=1 we obtain
attention was drawn earli€t, Heisenberg asserted that his ,_ 2 _ 2 _ 2 _
formalism constituted a complete method for calculating ev—( oi(nn=1Fwp)a(n,n=1)+rHa(nman,n-1)
erything that needs to be calculated. It is difficult to believe | 5y n—1)a(n—1n—1)+ L[a(n,n+1)
that Heisenberg did not realize that his method led directly to ’ ’ ’

Egs. (33)—(36), without the need for any “translations” of Xa(n+1ln—1)+a(n,n—2)a(n—2n—-1)]}=0 (44
the classical relations.

To apply the ansatz of Eq29) to Eq. (22), we need to [5€€ EQ(27D]. Fora=2 we have
relate the amplitudeX(n,n— «) to the corresponding quan- )\{(—wz(n,n—2)+w§)a(n,n—2)+ la(n,n—1)
tities A 'a(n,n—a). We first note that in the classical
case, xa(n—1n—2)+\[a(n,n)a(n,n—2)+a(n,n—2)

Xo(n)=XZ (n), (37 Xa(n—2n—2)+ 3a(n,n+1)a(n+1n—2)

because&(t) in Eq. (2) has to be real. Consider, without loss 1 B
of generality, the case>0. Then the quantum-theoretical +2a(n,n=3)a(n=3n-2)]}=0 (45)
analogue of the left-hand side of E&7) is X(n,n—«a), and  [see EQq.(270)]. For a=3 [see Eq.(27d)] we obtain

that of the right-hand side iX*(n—a,n) (see Ref. 2¥.
Hence the quantum-theoretical analogue of &7) is

X(n,n—a)=X*(n—a,n), (39 Xa(n—1n-3)+a(n,n—-2)a(n—2,n-3)]

which is nothing but the relation{n— «|X|n)=(n|X|n +\?[a(n,n)a(n,n—3)+a(n,n—3)a(n—3n-3)
—a)* for the Hermitian observabl&. Although X(n,n N .
—a) can in principle be completand Heisenberg twice dis- +za(nn+la(n+1n=3)+ za(n,n-4)

cus_sed the significance of the phas_es of s_uch amp_mudes xa(n—4n—-3)]}=0. (46)
Heisenberg seems to have assurtaslis certainly plausibje

that in the context of the classical cosine expansion in Eqlf we drop the terms multiplied bx?, Egs.(43)—(46) reduce
(24) and the corresponding quantum terms in E2§), the to Eqs.(33)—(36). This appears to be the first published deri-
X(n,n—a)’s should be chosen to be real, so that &)  Vation of the latter equations.

\2{(— w?(n,n—3)+ w)a(n,n—3)+ 3[a(n,n—1)

becomes In addition to these recurrence relations which follow
from the equations of motion, we also need the perturbative
X(n,n—a)=X(n—a,n), (B9  version of the quantum condition EG16).52 We include
that is, the matrix with elemen{(n,n— @)} is symmetric. terms of orden?, consistent with Eqs43)—(46), so that Eq.
Consider a typical term of Ed29), (16) becomes
a—1 _ _ h
Ara(nn—ajcogw(nn—ajt] %=az(n+1,n)w(n+1,n)—a2(n,n—1)w(n,n—1)
et S o
- a(n,n—a)[e'“(tNItyeriennmal] +2qa%(n+2n)w(n+2n)—a%(n,n—2)
na-1 » ) » | Xw(n,n—-2)]. (47)
_ _ fo(n,Nn—a)t fo(nN—a,n)t
) a(n,n—ajle +e Ik (40 We are now ready to obtain the solutions.

usingw(n,n—a)=—w(n—a,n) from Eq.(1). If we assume
that a(n,n—a)=a(n—a,n) as discussed for Eq39), we
see that it is consistent to write

C. The lowest-order solutions for the amplitudes and
frequencies

a—1 We begin by considering the lowest-order solutions in
X(n,n—a)= 5 a(n,n—a) (a>0) (41)  which all \? terms are dropped from Eq&t3) to (47), and
all quantities &’s andw’s) are replaced by the corresponding
and in general ones with a superscrigf) [compare Eqs(30)—(32)].>% In
Nlal-1 this case, Eq(44) reduces to
X(n,n—a)= 5 a(n,n—a) (a#0). (42 [—(0©(n,n—1))2+ w2]a©@(n,n—1)=0, (48)
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so that assuming®(n,n—1)+0, we obtain
w(o)(n,n—l)Zwo (49

for all n. If we substitute Eq(49) into the lowest-order ver-
sion of Eq.(47), we find

=1a® 2_14(0) _ 112
por [a™(n+1n)]°—[a™(n,n—1)]". (50
The solution of this difference equation is
0 —1)1%=
[@a™(n,n=1)] 7meo(nJrconstanl, (51

as given in Eq(H20).>® To determine the value of the con-
stant, Heisenberg used the idea that in the ground state th
can be no transition to a lower state. Thus

[al®(0,-1)]%=0, (52)

and the constant in E@51) is determined to be zero. Equa-
tion (51) then gives(up to a convention as to sign

a©®(n,n—1)=p4n, (53)
where
B=(h/mmawg)*2. (54)

Equations(49) and (53) were Heisenberg's first results,
and they pertain to the simpl@nperturbedl oscillator. We

can check Eq(53) against the usual quantum mechanical

calculation via

a@(n,n-1)=2XO(n,n-1)=2¢(n—1|x|nYy, (55

ﬂa/

w(z)(“_l)

a®(n,n—a)=A, (63)

[ n

(n—a)!’
whereA,, is a numerical factor depending en Eq. (63) is
equivalent to Eq(H21).

It is instructive to comment on the relation of the above
results to those that would be obtained in standard quantum-
mechanical perturbation theory. At first sight, it is surprising
to see nonzero amplitudes for two-quantiig. (61)], three-
quantum[Eqg. (62)], or a-quantum[Eq. (63)] transitions ap-
pearing at lowest order. But we have to remember that in
Heisenberg's perturbative ansatz, Eg9), the a-quantum
amplitude appears multiplied by a factaf~ . Thus, for

e%ample, the lowest order two-quantum amplitude is really
ra®(n,n—2), not justa®(n,n—2). Indeed, such a transi-
tion is to be expected precisely at ordef in conventional
perturbation theory. The amplitude {8 —2|%X|n) where, to
order\,

o<k|3<3|”>o

M =Injo+ 33

& (n—Khwo (64

K)o
The operator 3 connects [n)y to |[n+3)q,|n+1)g,|N
—1)4, and|n—3),, and similar connections occur fg(n
—2|, so that a nonzer®(\) amplitude is generated im
—2|%|n).

It is straightforward to check that E¢61) is indeed cor-
rect quantum-mechanically, but it is more tedious to check
Eq.(62), and distinctly unpromising to contemplate checking
Eq. (63) by doing a conventional perturbation calculation to

where the statefn), are unperturbed oscillator eigenstates.ordera— 1. For this particular problem, the improved pertur-

It is well known that*

o{n—1|X|n)o=

(56)

&

which agrees with Eq(53), using Eq.(54). A similar treat-
ment of Eq.(43) leads to

2

2m(l)o

a<°)(n,n)=—ﬂ—2(2n+1). (57)
4wy
Turning next to Eq(45), the lowest-order form is
(—[0@(n,n—2)1%+ w3)a®(n,n—2)
+1a@(n,n-1)a®(n-1n-2)=0. (58

Because the combination law E(B) must be true for the
lowest-order frequencies, we have

oOn,n-2)=0@(n,n-1)+0@(n—1n-2)=2w,,

(59
where we have used E(49), and in general
oOnn—a)=aw, (a=1273,..). (60)
If we use Eqs(53), (59), and(60), we obtain
,82
(0) —2)= _
a¥’(n,n—-2) G_wg n(n—1). (61
A similar treatment of Eq(46) yields
ﬁ3
(0) 3= —_ _
a¥’(n,n—3) 48w8 Vyn(n—=1)(n—2). (62

Consideration of the lowest-order term in Eg2) leads to
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bation theory represented by BEQ9) is clearly very useful.

After having calculated the amplitudes for this problem to
lowest order, Heisenberg next considered the energy. Unfor-
tunately he again gave no details of his calculation, beyond
saying that he used the classical expression for the energy,
namely

_1

2

W= im¥+ Imwdx®+ $maxs. (65)

It seems a reasonable conjecture, however, that he replaced
each term in Eq(65) by its corresponding matrix, as dis-
cussed in Sec. Il A. Thus?, for example, is represented by

a matrix whose if,n— «) element is

2 X(n,n—lB)X(n—IB’n_a)eiw(n,n—a)t, (66)
B

according to his multiplication rule, Eq10). A similar re-
placement is made for®, andx? is replaced by

> iw(n,n—B)X(n,n— B)e“nn-pt
5

><iw(n_ﬁ,n—a)x(n—ﬂin_a)eiw(n—'B,n—a)t

=> w(n,n—B)o(n—a,n-B)X(n,n—pB)
B

XX(n_B,n_ a,)eiw(n,nfa)t,

(67)

using w(n,m)=—w(m,n). The total energy is represented
by the matrix with elements

W(n,n—a)e'@mn-at, (68)
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It follows that if energy is to be conservdthat is, time- through the apparent device of introducing a perturbation,
independentthe off-diagonal elements must vanish: and then retaining only those parts of the solution that sur-
vive as the perturbation vanishes?
W(n,n—a)=0. (a#0). (69 For the sir%ple harmonic oscillator, the equation of motion

The terma=0 is time-independent, and may be taken to beis %+ w3x=0, which yields
the energy in the state. The crucial importance of checking 2 9 _
the condition Eq.(69) was clearly appreciated by Heisen- ~ [©@0~ @ (Mn=a)]X(n.n=a)=0 7D
berg. for the amplitudesX and frequenciew. It is reasonable to

To lowest order in\, the last term in Eq(65) may be retain the quantum condition, E¢L6), because this condi-
dropped. Furthermore, referring to Eq29), the only tion is supposed to hold for any force law. If we assume that
\-independent terms in thé-amplitudes are those involving the only nonvanishing amplitudes are those involving adja-
one-quantum jumps such as-n—1, corresponding in low- cent stategbecause, for example, in the classical case only a
est order to amplitudes such a€%(n,n—1)=2%a®(n,n  single harmonic is presefil, then becauseX(n,n—1)
—1). It then follows from Eqs(66) and (67) that the ele- =1a(n,n—1), Egs.(16) and (71) reduce to Eqs(50) and
mentsW(n,n), W(n,n—2) andW(n,n+2), and only these (48), respectively, and we quickly recover our previous re-
elements, are independent Bfwhen evaluated to lowest sults. This is indeed an efficient way to solve the quantum
order. In Appendix B we show that(n,n—2) vanishes to simple harmonic oscillatoY. For completeness, h_owever, it
lowest order, andN(n,n+2) vanishes similarly. Thus, to Would be desirable not to have to make the adjacent states
lowest order in\, the energy is indeed conservs Heisen-  2Ssumption. Born and quo‘aahowed how this could be
berg note¢l and is givenusing Eq.(66) and Eq.(67) with done, but their argument is somewhat involved. Soon there-

a=0 andB=+1] by after, of course, the wave mechanics of Sdimger and the
- operator approach of Dirac provided the derivations used
w(n,n)= 3m[(n,n—1)]7[X*(n,n—1)] ever since.
+3mLoP(n+1mPP[XO(n+1,0)]? D. The solutions up to and includingA? terms
+ Imw[XO(n,n—1)1?+ tmo] We now turn to the higher order corrections for the?
%(0) 172 term. Consider Eq(44) and retain terms of ordex. We set
XX (n+1n)] [see Eqs(25) and (26)]
=(n+ Htiwg, (70 w(n,n—1)=wo+ro®(n,n-1), (72
where we have used Eqg9), (53), and(54). Equation(70) a(n,n—1)=a®(n,n—-1)+rxa®(n,n—1), (73

is the result given by Heisenberg in Ei23). .

These lowest order results are the only ones Heisenber?f'd find
reported for the\x? term. We do not know whether he car- 2 wooM(n,n—1)a®(n,n—1)=0, (74)
ried out higher-order calculations for this case or not. Whats0 that
he wrote next is that the “more precise calculation, taking
into account higher order approximations\i, a, o will oM(n,n—1)=0. (75
now be carried out for the simpler example of an anharmoni(,ff we consider Eq(44) up to terms of ordek? and employ
oscillator+ w3+ Ax*=0.” This case is slightly simpler be- Egs.(53), (57), and(61) for the zeroth-order amplitudes, we

cause in the expression corresponding to the ari@8ionly  jpiain theO(\2) correction tow(n,n—1) [see Eq.(26)]:
the odd terms are present, thatag,\az,\%as, etc.

2
The results Heisenberg stated for the® problem include ) .. OB
terms up to ordek in the amplitudes, and terms up to order @(nn-1)= 12w03n. (76)

\? in the frequencyw(n,n—1) and in the energyv. Once . _
again, he gave no details of how he did the calculations. W The corresponding corrections @(n,n—1) are found
believe there can be little doubt that he went through th rom the quantum condition E416). To order\ we set
algebra of solving the appropriate recurrence relations up to  a(n+1,n)=a®(n+1n)+xa®(n+1n), (77
order\? in the requisite quantities. As far as we know, the . d find
details of such a calculation have not been given before, ang® " Eq.(73), and fin
we believe that it is worth giving them here, as they are of  \n+1a®(n+1,n)—Vna®(n,n—1)=0. (78)
both pedagogical and historical interest. In the following sec- . )
tion we shall obtain the solutions for thex? term (up to ~ Equation(78) has (tlr)]e solutiora (n,n—1)=c_onst_ant,(/ﬁ,
ordern?) which we have been considering, rather than starPut the conditiora'*’(0,~1)=0 [see Eq/(52)] implies that
afresh with thevx® term. The procedure is the same for both, (e constant must be zero, and so

Before leaving the lowest order calculations, we address a a®(n,n—1)=0. (79
guestion that may have occurred to the reader. Given that, at - . 2
this stage in his paper, the main results actually relate to thi! & Similar way, we obtain to order
simple harmonic oscillator rather than to the anharmonic 1133
one, why did Heisenberg not begin his discussion of toy  n+1a®(n+1n)— \/ﬁa(z)(n,n—1)=F(2n+1),
models with the simplest one of all, namely the simple har- “o
monic oscillator? And indeed, is it not possible to apply his (80)
procedure to the simple harmonic oscillator without goingwhich has the solution
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) 1138 for this term in the energy. If we combine Eq85), (86),
a®@(n,n-1)= W”\/ﬁ- (81)  and(88), we obtain the energy up to ordg?,
0
, . : 1 5\2h?
We now find the higher order corrections &n,n) by W(n,n)=| n+ 5 hwo— ———2(n?+n+11/30, (89
considering Eq(43). We obtaina(n,n)=0 and 12mwg
4 a result® that agrees with classical perturbation theory when
a®(n,n)=- ig(gmur 30n+11). (82) nNis Iarge.‘,50 and is in agreement with standard second-order
72wy perturbation theory in quantum mecharfis.

As mentioned, Heisenberg did not give results for xixé

Similarly, we find from Eq.(45) a™*/(n,n—=2)=0 and term beyond zeroth order. He did, however, give the results

, 3p* for the A\x® term up to and includin@? terms in the energy,
a®(n,n-2)= F(Zn—l)vn(n—l), (83 and\ terms in the amplitudes. By “the energy” we mean, as
wg . )
usual, the ,n) element of the energy matrix, which as
where we have used noted in Sec. llIC is independent of time. We also should

check that the off-diagonal elemeMgn,n— «) vanish[see

2 — 2 2
o®P(n,n-2)=w®(nn-1)+0@n-1n-2) Eq.(69)]. These are the terms that woultinonzerg carry a

532 periodic time-dependence, and Heisenberg \ifotkeat “|
=———=(2n-1). (84) could not prove in general that all periodic terms actually
12w vanish, but this was the case for all the terms evaluated.” We

do not know how many off-diagonal term&(n,n—«) he
evaluated, but he clearly regarded their vanishing as a crucial
test of the formalism. In Appendix B we outline the calcula-
tion of all off-diagonal terms for th& x> term up to orden,

as an example of the kind of calculation Heisenberg probably
did, finishing it late one night on Heligolarfd.

These results suffice for our purposenlis large, they agree
with those obtained for the classicak? anharmonic oscil-
lator using the method of successive approximatins.

As an indirect check of their quantum mechanical validity,
we now turn to the energy evaluated to ordér Consider
first the (n,n) element of%mwgkz. This matrix element is
given to orden?, by

%mw%{ %[(a(o)(n,n— 1))+ (a®(n.n+1))7] IV. CONCLUSION

We have tried to remove some of the barriers to under-
A2 0 ) ) 0 standing Heisenberg’s 1925 paper by providing the details of
+ 7[4(3( )(n,n))?+2a®(n,n—1)a®(n-1n) calculations of the type we believe he performed. We hope
that more people will thereby be encouraged to appreciate

+2a@(n,n+1)a®(n+1,n)+(a®n,n-2))2 this remarkable paper.
1 5 1 'Irhe f?ct ii tha}t Hiaisenb%(g’s “amplitlude tc):lalculus” V\;]err(]sr,1
(0) 29l =y 2| P - at least for the simple one-dimensional problems to which he
+(@(n.n+2)) ]] 2 Mo 2 n+ 2) applied it. It is an eminently practical procedure, requiring no

a2 sophisticated mathematical knowledge to implement. Be-
SB™\ (24 n+11/30 85) cause it uses the correct equations of motion and incorpo-
120 ' rates the fundamental commutator, Effl), via the quantum
condition, Eg.(16), the answers obtained are correct, in
Similarly, using Eq.(67) up to order\? with a=0, the  agreement with conventional quantum mechanics.
(n,n) element of%mé(2 is found to be We believe that Heisenberg's approach, as applied to
simple dynamical systems, has much pedagogical value, and
B 1) 58°\? could usefully be included in undergraduate courses on quan-
2"  240f tum mechanics. The multiplication rule, E4.0), has a con-
vincing physical rationale, even for those wfiixe Heisen-
Finally we consider ther(,n) element of the potential energy berg do not recognize it as matrix multiplication. Indeed,
imA%3. To obtain the result to order?, we need to calculate this piece of quantum physics could provide an exciting ap-
the (n,n) element ofk® only to order\. If we use plication for those learning about matrices in a concurrent
mathematics course. The simple examples of @), in
equations such as ER2) or the analogous one for thex®

+

1
E mwg

2

(n?+n+ 11/3@} (86)

&3 — _ _ —
X (”’”)‘g EB X(n,n=e)X(n=a,n=p) term, introduce students directly to the fundamental quantum
idea that a transition from one state to another occurs via all
XX(n—=p,n), (87)  possible intermediate states, something that can take time to

we find that there are no zeroth-order terms, but twelve termg - < 92 " the traditional wave-mechanical approach. The so-
f order A [ I that litud h ax d fUtion of the quantum_swn_ple ha_rmonlc os_cﬂlator3 sketched at

of order reca at ampiitudes suc (n,n) an the end of Sec IlI D, is simple in comparison with the stan-

X(n,n—2) each carry one power of]. We evaluate these qarg methods. Finally, the type of perturbation theory em-

terms using Eqs(53), (57), and(61), and obtain ployed here provides an instructive introduction to the tech-
5mA2B* nigue, being more easily related to the classical analysis than
— —2(n2+n+ 11/30 (88) is conventional quantum-mechanical perturbation theory
24w (which students tend to find very formal
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It i§ true that many important_problems in quantum me-will contribute, because the amplitud&¢n,n— «) are sup-
chanics are much more conveniently handled in the wavepressed by increasing powers)obs« increases. In fact, for
mechanical formalism: unbound problems are an obvious exa=2 the leading power ok in W(n,n— a) is A%~ 2, which

ample, but even the Coulomb problem required a famougyises from terms such a¥(n,n—1)X(n—1n-«) and
tour de forceby Pauli® Nevertheless, a useful seed may be)\X(n n—1)X(n—1n—2)X(n—2n—a). Thus to ordemn

sown, so that when students meet problems involving a finit - _
number of discrete states—for example, in the treatment Oﬁ_v%)need to calculate onlyv(n,n—1),W(n,n=2),W(n,n

spin—the introduction of matrices will come as less of a N
shock. And they may enjoy the realization that the somewhat (@ W(n,n—1). There are foud(\) contributions to the

. : . 1 200
mysteriously named “matrix elements” of wave mechanics(n.n—1) element of;mwgX*:

are indeed the elements of Heisenberg’s matrices.

APPENDIX A: THE QUANTUM CONDITION, EQ.
(16), AND Xp—pX=i#

Consider the f,n) element of &X—XX), which is

> X(n,n—a)iw(n—a,n)X(n—a,n)

— D iw(n,n—a)X(n,n—a)X(n—a,n). (A1)

In the first term of Eq.(Al), the sum overa>0 may be
rewritten as

—i Y w(nn—a)|X(n,n-a)|?

a>0

(A2)

using w(n,n—a)=—-w(n—a,n) from Eqg. (1) and X(n
—a,n)=X*(n,n—«a) from Eq.(38). Similarly, the sum over
a<0 becomes

izo o(n+ a,n)|X(n+ a,n)|? (A3)

on changinge to — «. Similar steps for the second term of
Eqg. (Al) lead to the result

(KX —&X)(n,n) = 2i 20 [w(n+a,n)|[X(n+a,n)|?

—w(n,n—a)|X(n,n—a)|?]
=2ih/(4mm), (A4)

where the last step follows from E€L6). We setp=m% and
find
(Xp—pX)(n,n)=if (A5)

for all values ofn. Equation(A5) was found by Borff

tmwir{a@(n,na®(n,n-1)+a®(n,n-1)
xa®(n—-1n-1)+ i[a®@(n,n+1)a®(n+1n-1)
+a@n,n-2)a®@n-2n-1)]}
=— Zmng3nyn.

There are twdO(\) contributions to therf,n—1) element
of Im%&:

(B1)

— Ixm{o@(n,n+1)0@n+1n-1)a®(n,n+1)
xaO(n+1n-1)+0®(n,n-2)0®(n-2n-1)
xa®(n,n-2)a®@mn-2n-1)}= Lmrgnyn. (B2

There are thre©(\) contributions to therf,n—1) element

of smA%®:

Zm{a®n,n-1)a®n-1na®n,n—1)
+a®(n,n-1)a@mn-1n-2)a®n-2n-1)
+a®(n,n+1)a®(n+1n)a@n,n-1)}
=Limrgenyn.

The sum of Eqs(B1)—(B3) vanishes, as required.
(b) W(n,n—2). The leading contribution is independent
of . From the termsmw3%?, it is

(B3)

tmwia@(n,n-1)a®(n-1,n-2), (B4)
which is canceled by the corresponding term frgm3@.
The next terms ar@®(\?), for example from the leading
term in the f,n—2) element ofsAm3C.

(c) W(n,n—3). There are twdD(\) contributions from
IMwik?:

shortly after reading Heisenberg’s paper. In further develops moir{a®(n,n—1)a@(n—1,n-3)

ments the value of the fundamental commutak@r— pX,

namelyi#, was taken to be a basic postulate. The sum rule

in Eq. (16) is then derived by taking then(n) matrix ele-
ment of the relatiod &,[H,X]]=%2/m.

APPENDIX B: CALCULATION OF THE OFF-
DIAGONAL MATRIX ELEMENTS OF THE ENERGY
W(n,n—a) FOR THE Ax? TERM

We shall show that, forr# 0, all the elementsn,n— «)
of the energy operatgm3+ mw3%?+ :Am3¢ vanish up to
order\. We begin by noting that at any given ordemponly
a limited number of elementg/(n,n—1),W(n,n—2), ...
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+a®(n,n-2)a®(n—2n-3)}
=L2mrB3/n(n—1)(n—2).

There are twdD(\) contributions fromm3:

(B5)

— M\ {0@(,n-1)a®(n,n-1)0@(n-1n-3)
xa®(n—1n-3)+w®(n,n-2)
xa®(n,n-2)w@n-2n-3)a®n-2n-3)}

=—HAmB3Yn(n—1)(n—2).

There is only onéD(\) contribution from3max®:

(B6)
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2;4'1])\(,:1(0)“],”_:I_)a(O)(n_ 1,n_2)a(0)(n_2,n_3) 28Convent?onal notation, subsequent to R(_af. 4, would repraeex_ by a
second indexm, say. We prefer to remain as close as possible to the

=1 3./ _ _ notation of Heisenberg's paper.
zahmByn(n=1)(n-2). (B7) Reference 2, p. 264.
The sum of Eqs(B5)—(B7) vanishes, as required. “Reference 2, p. 265.

3lReference 2, p. 266.
32
dEJectronic mail: i.aitchisonl@physics.oxford.ac.uk 3 Re)‘erence 2 p. 267. ) o .
. Heisenberg, “Uer quantentheoretische Umdeutung kinematischer und34aLrhIS step appar_ently did not occur to h".n immediately. _See Ref. 11, p. 231.
Actually not quite. We have taken the liberty of changing the order of the

mechanischer Beziehungen,” Z. Phy8, 879—-893(1925. . ] . e . . -
2This is the title of the English translation, which is paper 12 in Ref. 3, pp. ?r:guemﬁgiisor thsfgigrm;rgéhge%?gegég;yrec) order is as given in
261-276. We shall refer exclusively to this translation, and to the equa-35W Thqomas “Uber die Z%hl der Dispersioneléktronen die einem station-

tions in it as(H1), (H2), .... . 7 d d ¥orlaufige Mitteil "N )
33ources of Quantum Mechanjegited by B. L. van der Waerdeplorth- aren Zustande zugeordnet siriorlaufige Mitteilung,” Naturwissen-
schaftenl3, 627(1925.

Holland, Amsterdam, 1967A collection of reprints in translation. 36y > ; . .
M. Born and P. Jordan, “Zur Quantenmechanik,” Z. Phgd, 858—888 . Kuhn, “Uber die Gesamtstiee der von einem Zustande ausgehenden

(1925, paper 13 in Ref. 3. Absorptionslinien,” Z. Phys33, 408—-412(1925, paper 11 in Ref. 3.

3 ) : .
5P. A. M. Dirac, “The fundamental equations of quantum mechanics,” 38W' Heisenberg, as discussed in Ref. 11, pp. 243 ff.

Proc. R. Soc. London, Ser. 209, 642—653(1926, paper 14 in Ref. 3. 39Referenc? 9, p. 193p is any func_tlonn defined for stationary states.
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The 1925 paper “On quantum mechanics” by M. Born and P. Jordan, and the sequel “On quantum
mechanics I’ by M. Born, W. Heisenberg, and P. Jordan, developed Heisenberg’s pioneering theory
into the first complete formulation of quantum mechanics. The Born and Jordan paper is the subject
of the present article. This paper introduced matrices to physicists. We discuss the original postulates
of quantum mechanics, present the two-part discovery of the law of commutation, and clarify the
origin of Heisenberg’s equation. We show how the 1925 proof of energy conservation and Bohr’s
frequency condition served as the gold standard with which to measure the validity of the new
quantum mechanics. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

The name “quantum mechanics” was coined by Max
Born.! For Born and others, quantum mechanics denoted a
canonical theory of atomic and electronic motion of the same
level of generality and consistency as classical mechanics.
The transition from classical mechanics to a true quantum
mechanics remained an elusive goal prior to 1925.

Heisenberg made the breakthrough in his historic 1925
paper, “Quantum-theoretical reinterpretation of kinematic
and mechanical relations.” Heisenberg’s bold idea was to
retain the classical equations of Newton but to replace the
classical position coordinate with a “quantum-theoretical
quantity.” The new position quantity contains information
about the measurable line spectrum of an atom rather than
the unobservable orbit of the electron. Born realized that
Heisenberg’s kinematical rule for multiplying position quan-
tities was equivalent to the mathematical rule for multiplying
matrices. The next step was to formalize Heisenberg’s theory
using the language of matrices.

The first comprehensive exposition on quantum mechanics
in matrix form was written by Born and Jordan,4 and the
sequel was written by Born, Heisenberg, and Jordan.’ Dirac
independently discovered the general equations of quantum
mechanics without using matrix theory.6 These papers devel-
oped a Hamiltonian mechanics of the atom in a completely
new quantum (noncommutative) format. These papers ush-
ered in a new era in theoretical physics where Hermitian
matrices, commutators, and eigenvalue problems became the
mathematical trademark of the atomic world. We discuss the
first paper “On quantum mechanics.™

This formulation of quantum mechanics, now referred to
as matrix mechanics,7 marked one of the most intense peri-
ods of discovery in physics. The ideas and formalism behind
the original matrix mechanics are absent in most textbooks.
Recent articles discuss the correspondence between classical
harmonics and quantum jumps,8 the calculational details of
Heisenberg’s pa?er,9 and the role of Born in the creation of
quantum theory. % References 11-19 represent a sampling of
the many sources on the development of quantum mechan-
ics.

Given Born and Jordan’s pivotal role in the discovery of
quantum mechanics, it is natural to wonder why there are no
equations named after them,” and why they did not share the
Nobel Prize with others.”' In 1933 Heisenberg wrote Born
saying “The fact that I am to receive the Nobel Prize alone,
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for work done in Goéttingen in collaboration—you, Jordan,
and I, this fact depresses me and I hardly know what to write
to you. I am, of course, glad that our common efforts are
now appreciated, and I enjoy the recollection of the beautiful
time of collaboration. I also believe that all good physicists
know how great was your and Jordan’s contribution to the
structure of quantum mechanics—and this remains un-
changed by a wrong decision from outside. Yet I myself can
do nothing but thank you again for all the fine collaboration
and feel a little ashamed.”>

Engraved on Max Born’s tombstone is a one-line epitaph:
pq—qp=h/2mi. Born composed this elegant equation in
early July 1925 and «called it “die verschirfte
Quantenbedingung”4—the sharpened quantum condition.
This equation is now known as the law of commutation and
is the hallmark of quantum algebra.

In the contemporary approach to teaching quantum me-
chanics, matrix mechanics is usually introduced after a thor-
ough discussion of wave mechanics. The Heisenberg picture
is viewed as a unitary transformation of the Schrodinger
picture.24 How was matrix mechanics formulated in 1925
when the Schrodinger Zpicture was nowhere in sight? The
Born and Jordan paper” represents matrix mechanics in its
purest form.

II. BACKGROUND TO “ON QUANTUM
MECHANICS”

Heisenberg’s program, as indicated by the title of his
paper,2 consisted of constructing quantum-theoretical rela-
tions by reinterpreting the classical relations. To appreciate
what Born and Jordan did with Heisenberg’s reinterpreta-
tions, we discuss in the Appendix four key relations from
Heisenberg’s paper.2 Heisenberg wrote the classical and
quantum versions of each relation in parallel—as formula
couplets. Heisenberg has been likened to an “expert decoder
who reads a cryptogram.”25 The correspondence principle&26
acted as a “code book” for translating a classical relation into
its quantum counterpart. Unlike his predecessors who used
the correspondence principle to produce specific relations,
Heisenberg produced an entirely new theory—complete with
a new representation of position and a new rule of multipli-
cation, together with an equation of motion and a quantum
condition whose solution determined the atomic observables
(energies, frequencies, and transition amplitudes).
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Matrices are not explicitly mentioned in Heisenberg’s pa-
per. He did not arrange his quantum-theoretical quantities
into a table or array. In looking back on his discovery,
Heisenberg wrote, “At that time I must confess I did not
know what a matrix was and did not know the rules of ma-
trix multiplication.”18 In the last sentence of his paper he
wrote “whether this method after all represents far too rough
an approach to the physical program of constructing a theo-
retical quantum mechanics, an obviously very involved prob-
lem at the moment, can be decided only by a more intensive
mathematical investigation of the method which has been
very superficially employed here.””’

Born took up Heisenberg’s challenge to pursue “a more
intensive mathematical investigation.” At the time Heisen-
berg wrote his paper, he was Born’s assistant at the Univer-
sity of Gottingen. Born recalls the moment of inspiration
when he realized that position and momentum were
matrices:*®

After having sent Heisenberg’s paper to the
Zeitschrift fiir Physik for publication, I began to
ponder about his symbolic multiplication, and was
soon so involved in it...For I felt there was some-
thing fundamental behind it...And one morning,
about 10 July 1925, I suddenly saw the light:
Heisenberg’s symbolic multiplication was nothing
but the matrix calculus, well known to me since
my student days from the lectures of Rosanes in
Breslau.

I found this by just simplifying the notation a little:
instead of g(n,n+ 7), where n is the quantum num-
ber of one state and 7 the integer indicating the
transition, I wrote g(n,m), and rewriting Heisen-
berg’s form of Bohr’s quantum condition, I recog-
nized at once its formal significance. It meant that
the two matrix products pq and qp are not identi-
cal. I was familiar with the fact that matrix multi-
plication is not commutative; therefore I was not
too much puzzled by this result. Closer inspection
showed that Heisenberg’s formula gave only the
value of the diagonal elements (m=n) of the ma-
trix pq—qp; it said they were all equal and had the
value h/2mi where h is Planck’s constant and i
=v-1. But what were the other elements (m # n)?

Here my own constructive work began. Repeating
Heisenberg’s calculation in matrix notation, I soon
convinced myself that the only reasonable value of
the nondiagonal elements should be zero, and I
wrote the strange equation

h
pq-qp=-—1, (1)
2171

where 1 is the unit matrix. But this was only a
guess, and all my attempts to prove it failed.

On 19 July 1925, Born invited his former assistant Wolf-
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gang Pauli to collaborate on the matrix program. Pauli de-
clined the invitation.”’ The next day, Born asked his student
Pascual Jordan to assist him. Jordan accepted the invitation
and in a few days proved Born’s conjecture that all nondi-
agonal elements of pq—qp must vanish. The rest of the new
quantum mechanics rapidly solidified. The Born and Jordan
paper was received by the Zeitschrift fiir Physik on 27 Sep-
tember 1925, two months after Heisenberg’s paper was re-
ceived by the same journal. All the essentials of matrix me-
chanics as we know the subject today fill the pages of this
paper.

In the abstract Born and Jordan wrote “The recently pub-
lished theoretical approach of Heisenberg is here developed
into a systematic theory of quantum mechanics (in the first
place for systems having one degree of freedom) with the aid
of mathematical matrix methods.”*” In the introduction they
go on to write “The physical reasoning which led Heisenberg
to this development has been so clearly described by him
that any supplementary remarks appear superfluous. But, as
he himself indicates, in its formal, mathematical aspects his
approach is but in its initial stages. His hypotheses have been
applied only to simple examples without being fully carried
through to a generalized theory. Having been in an advanta-
geous position to familiarize ourselves with his ideas
throughout their formative stages, we now strive (since his
investigations have been concluded) to clarify the math-
ematically formal content of his approach and present some
of our results here. These indicate that it is in fact possible,
starting with the basic premises given by Heisenberg, to
build up a closed mathematical theory of quantum mechanics
which displays strikingly close analogies with classical me-
chanics, but at the same time preserves the characteristic
features of quantum phenomena.”31

The reader is introduced to the notion of a matrix in the
third paragraph of the introduction: “The mathematical basis
of Heisenberg’s treatment is the law of multiplication of
quantum-theoretical quantities, which he derived from an in-
genious consideration of correspondence arguments. The de-
velopment of his formalism, which we give here, is based
upon the fact that this rule of multiplication is none other
than the well-known mathematical rule of matrix multiplica-
tion. The infinite square array which appears at the start of
the next section, termed a matrix, is a representation of a
physical quantity which is given in classical theory as a func-
tion of time. The mathematical method of treatment inherent
in the new quantum mechanics is thereby characterized by
the employment of matrix analysis in place of the usual
number analysis.”

The Born-Jordan paper4 is divided into four chapters.
Chapter 1 on “Matrix calculation” introduces the mathemat-
ics (algebra and calculus) of matrices to physicists. Chapter 2
on “Dynamics” establishes the fundamental postulates of
quantum mechanics, such as the law of commutation, and
derives the important theorems, such as the conservation of
energy. Chapter 3 on “Investigation of the anharmonic oscil-
lator” contains the first rigorous (correspondence free) calcu-
lation of the energy spectrum of a quantum-mechanical har-
monic  oscillator. Chapter 4 on “Remarks on
electrodynamics” contains a procedure—the first of its
kind—to quantize the electromagnetic field. We focus on the
material in Chap. 2 because it contains the essential physics
of matrix mechanics.
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III. THE ORIGINAL POSTULATES OF QUANTUM
MECHANICS

Current presentations of quantum mechanics frequently
are based on a set of postulates. 32 The Born-Jordan postu-
lates of quantum mechanics were crafted before wave me-
chanics was formulated and thus are quite different than the
Schrodinger-based postulates in current textbooks. The origi-
nal postulates come as close as possible to the classical-
mechanical laws while maintaining complete quantum-
mechanical integrity.

Section III, “The basic laws,” in Chap. 2 of the Born—
Jordan paper is five pages long and contains approximately
thirty equations. We have imposed a contemporary postula-
tory approach on this section by identifying five fundamental
passages from the text. We call these five fundamental ideas
“the postulates.” We have preserved the original phrasing,
notation, and logic of Born and Jordan. The labeling and the
naming of the postulates is ours.

Postulate 1. Position and Momentum. Born and Jordan
1ntr0duce the position and momentum matrices by writing
that™

The dynamical system is to be described by the
spatial coordinate q and the momentum p, these
being represented by the matrices

2miv(nm)t )

(q=g(nm)e

s

(p = p(nm)e™). )

Here the v(nm) denote the quantum-theoretical fre-
quencies associated with the transitions between
states described by the quantum numbers n and m.
The matrices (2) are to be Hermitian, e.g., on trans-
position of the matrices, each element is to go over
into its complex conjugate value, a condition
which should apply for all real 7. We thus have

q(nm)q(mn) = |q(nm)|* 3)

and

v(nm) = — v(mn). (4)

If g is a Cartesian coordinate, then the expression
(3) is a measure of the probabilities of the transi-
tions n=m.

The preceding passage placed Hermitian matrices into the
physics limelight. Prior to the Born—Jordan paper, matrices
were rarely seen in physics.’* Hermitian matrices were even
stranger. Physicists were reluctant to accept such an abstract
mathematical entity as a description of physical reality.

For Born and Jordan, q and p do not specify the position
and momentum of an electron in an atom. Heisenberg
stressed that quantum theory should focus only on the ob-
servable properties, namely the frequency and intensity of
the atomic radiation and not the position and period of the
electron. The quantities q and p represent position and mo-
mentum in the sense that q and p satisfy matrix equations of
motion that are identical in form to those satisfied by the
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position and momentum of classical mechanics. In the Bohr
atom the electron undergoes periodic motion in a well de-
fined orbit around the nucleus with a certain classical fre-
quency. In the Heisenberg—Born—Jordan atom there is no
longer an orbit, but there is some sort of periodic “quantum
motion” of the electron characterized by the set of frequen-
cies v(nm) and amplitudes g(nm). Physicists believed that
something inside the atom must vibrate with the right fre-
quencies even though they could not visualize what the
quantum oscillations looked like. The mechanical properties
(q,p) of the quantum motion contain complete information
on the spectral properties (frequency, intensity) of the emit-
ted radiation.

The diagonal elements of a matrix correspond to the
states, and the off-diagonal elements correspond to the tran-
sitions. An important property of all dynamical matrices is
that the diagonal elements are independent of time. The Her-
mitian rule in Eq. (4) implies the relation v(nn)=0. Thus the
time factor of the nth diagonal term in any matrix is
2= 1 - As we shall see, the time-independent entries in
a diagonal matrix are related to the constant values of a con-
served quantity.

In their purely mathematical introduction to matrices
(Chap. 1), Born and Jordan use the following symbols to
denote a matrix

a(00) a(01) a(02)

a(10) a(11) a(12)

a = (a(nm)) = a(20) a(21) a(22) ' ®)

The bracketed symbol (a(nm)), which displays inner ele-
ments a(nm) contained within outer brackets ( ), is the short-
hand notation for the array in Eq. (5). By writing the matrix
elements as a(nm), rather than a,,,, Born and Jordan made
direct contact with Heisenberg’s quantum- theoretlcal quanti-
ties a(n,n—a) (see the Appendix). They wrote® “Matrix
multiplication is defined by the rule ‘rows times columns,’
familiar from the ordinary theory of determinants:

0

a =bc means a(nm) = D, b(nk)c(km) . ” (6)
k=0

This multiplication rule was first given (for finite square ma-
trices) by Arthur Cayley % Little did Cayley know in 1855
that his mathematical “row times column” expression
b(nk)c(km) would describe the physical process of an elec-
tron making the transition n—k—m in an atom.

Born and Jordan wrote in Postulate 1 that the quantity
lg(nm)|? provides “a measure of the probabilities of the tran-
sitions n<—m " They justify this profound claim in the last
chapter Born and Jordan’s one-line claim about transition
probabilities is the only statistical statement in their postu-
lates. Physics would have to wait several months before
Schrodinger’s wave function W(x) and Born’s probability
function |W(x)|* entered the scene. Born discovered the con-
nection between |W(x)|> and position probability, and was
also the first physicist (with Jordan) to formalize the connec-
tion between |g(nm)|*> and the transition probability via a
“quantum electrodynamic” argument.38 As a pioneer statisti-
cal interpreter of quantum mechanics, it is interesting to
speculate that Born might have discovered how to form a
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linear superposition of the periodic matrix elements
g(nm)e>™" in order to obtain another statistical object,
namely the expectation value (q). Early on, Born, Heisen-
berg, and Jordan did superimpose matrix elements,”’ but did
not supply the statistical interpretation.

Postulate 2. Frequency Combination Prmczple After de-
ﬁnlng q and p, Born and Jordan wrote 3% “Further, we shall
require that

v(jk) + v(kl) + v(lj)=0.” (7)

The frequency sum rule in Eq. (7) is the fundamental con-
straint on the quantum-theoretical frequencies. This rule is
based on the Ritz combination principle, which explains the
relations of the spectral lines of atomic spectroscopy. 40 Equa-
tion (7) is the quantum analogue of the “Fourier combination
principle”, v(k—j)+v(l-k)+v(j—1)=0, where v(a)=av(l)
is the frequency of the ath harmonic component of a Fourier
series. The frequency spectrum of classical periodic motion
obeys this Fourier sum rule. The equal Fourier spacing of
classical lines is replaced by the irregular Ritzian spacing of
quantal lines. In the correspondence limit of large quantum
numbers and small quantum jumps the atomic spectrum of
Ritz reduces to the harmonic spectrum of Fourier.>*® Be-
cause the Ritz rule was considered an exact law of atomic
spectroscopy, and because Fourier series played a vital role
in Heisenberg’s analysis, it made sense for Born and Jordan
to posit the frequency rule in Eq. (7) as a basic law.

One might be tempted to regard Eq. (7) as equivalent to
the Bohr frequency condition, E(n)—E(m)=hv(nm), where
E(n) is the energy of the stationary state n. For Born and
Jordan, Eq. (7) says nothing about energy. They note that
Egs. (4) and (7) imply that there exists spectral terms W,
such that

hv(nm)=W,-W,,. (8)

At this postulatory stage, the term W, of the spectrum is
unrelated to the energy E(n) of the state. Heisenberg empha-
sized this distinction between “term” and energX in a letter
to Pauli summarizing the Born—Jordan theory.” Born and
Jordan adopt Eq. (7) as a postulate—one based solely on the
observable spectral quantities »(nm) without reference to any
mechanical quantities E(n). The Bohr frequency condition is
not something they assume a priori, it is something that must
be rigorously proved.

The Ritz rule insures that the nm element of any dynami-
cal matrix (any function of p and q) oscillates with the same
frequency v(nm) as the nm element of p and q. For example,
if the 3—2 elements of p and q oscillate at 500 MHz, then
the 3 —2 elements of p%, q, pq, q°, p>+q>, etc. each oscil-
late at 500 MHz. In all calculations involving the canonical
matrices p and q, no new frequencies are generated. A con-
sistent quantum theory must preserve the frequency spectrum
of a particular atom because the spectrum is the spectro-
scopic signature of the atom. The calculations must not
change the identity of the atom. Based on the rules for ma-
nipulating matrices and combining frequencies, Born and
Jordan wrote that “it follows that a function g(pq) invariably
takes on the form

g= (g(nm)eZﬂ'iV(nm)l) (9)

and the matrix (g(nm)) therein results from identically the
same process applied to the matrices (g(nm)), (p(nm)) as
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was employed to find g from q, p.”42 Because e27")" s the
universal time factor common to all dynamical matrices, they
note that it can be dropped from Eq. (2) in favor of the
shorter notation q=(g(nm)) and p=(p(nm)).

Why does the Ritz rule insure that the time factors of
g(pq) are identical to the time factors of p and q? Consider
the potential energy function q>. The nm element of q?,
which we denote by qz(nm), is obtained from the elements of
q via the multiplication rule

q2(nm) — 2 q(nk)62Triv(nk)tq(km)eZvriv(km)r_ (10)
k

Given the Ritz relation v(nm)=v(nk)+ v(km), which follows
from Eqgs. (4) and (7), Eq. (10) reduces to

o) = [2 q(nk)q(km)]em“m”. (11)
k

It follows that the nm time factor of q? is the same as the nm
time factor of q.

We see that the theoretical rule for multiplying mechanical
amplitudes, a(nm)=2;b(nk)c(km), is intimately related to
the experimental rule for adding spectral frequencies,
v(nm)=v(nk)+v(km). The Ritz rule occupied a prominent
place in Heisenberg’s discovery of the multiplication rule
(see the Appendix). Whenever a contemporary physicist cal-
culates the total amplitude of the quantum jump n—k—m,
the steps involved can be traced back to the frequency com-
bination principle of Ritz.

Postulate 3. The Equation of Motion. Born and Jordan
introduce the law of quantum dynamics by ertlng

In the case of a Hamilton function having the form
1
H=—p’+U(q), (12)
2m
we shall assume, as did Heisenberg, that the equa-

tions of motion have just the same form as in the
classical theory, so that we can write:

q=—=—p, (13a)
ap
. JH JU
p=-—=- (13b)
aq aq

This Hamiltonian formulation of quantum dynamics general-
ized Heisenberg’s Newtonian approach.44 The assumption by
Heisenberg and Born and Jordan that quantum dynamics
looks the same as classical dynamics was a bold and deep
assumption. For them, the problem with classical mechanics
was not the dynamics (the form of the equations of motion),
but rather the kinematics (the meaning of position and mo-
mentum).

Postulate 4. Energy Spectrum. Born and Jordan reveal the
connection between the allowed energies of a conservative
system and the numbers in the Hamiltonian matrix:

“The diagonal elements H(nn) of H are inter-
preted, according to Heisenberg, as the energies of
the various states of the system.”45

William A. Fedak and Jeffrey J. Prentis 131



This statement introduced a radical new idea into main-
stream physics: calculating an energy spectrum reduces to
finding the components of a diagonal matrix.*® Although
Born and Jordan did not mention the word eigenvalue in Ref.
4, Born, Heisenberg, and Jordan would soon formalize the
idea of calculating an energy spectrum by solving an eigen-
value problem.5 The ad hoc rules for calculating a quantized
energy in the old quantum theory were replaced by a system-
atic mathematical program.

Born and Jordan considered exclusively conservative sys-
tems for which H does not depend explicitly on time. The
connection between conserved quantities and diagonal matri-
ces will be discussed later. For now, recall that the diagonal
elements of any matrix are independent of time. For the spe-
cial case where all the non-diagonal elements of a dynamical
matrix g(pq) vanish, the quantity g is a constant of the mo-
tion. A postulate must be introduced to specify the physical
meaning of the constant elements in g.

In the old quantum theory it was difficult to explain why
the energy was quantized. The discontinuity in energy had to
be postulated or artificially imposed. Matrices are naturally
quantized. The quantization of energy is built into the dis-
crete row-column structure of the matrix array. In the old
theory Bohr’s concept of a stationary state of energy E, was
a central concept. Physicists grappled with the questions:
Where does E, fit into the theory? How is E, calculated?
Bohr’s concept of the energy of the stationary state finally
found a rigorous place in the new matrix scheme."’

Postulate 5. The Quantum Condition. Born and Jordan
state that the elements of p and q for any quantum mechani-
cal system must satisfy the “quantum condition’:

S (plak)ghn) — g(k)plin)) = 5 (14)
k Tl

Given the significance of Eq. (14) in the development of
quantum mechanics, we quote Born and Jordan’s “deriva-
tion” of this equation:

The equation

1/v
J= fﬁpd%f pqdt (15)
0

of “classical” quantum theory can, on introducing
the Fourier expansions of p and ¢,

©

p= 2 pem™m,
; (16)
q= 2 ¢,
be transformed into
=200 S, e (gp). (17)
e OJ

The following expressions should correspond:
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)

wa Ta%(qrp_r) (18)

with

[

1
- 2 (gin+ mn)p(n,n+ 1)

h .

—q(n,n—7)p(n - 7.n)), (19)

where in the right-hand expression those g(nm),
p(nm) which take on a negative index are to be set
equal to zero. In this way we obtain the quantiza-
tion condition corresponding to Eq. (17) as

S (plak)gln) —g(ak)plin) = 5= (20)
P i

This is a system of infinitely many equations,
namely one for each value of n*®

Why did Born and Jordan take the derivative of the action
integral in Eq. (15) to arrive at Eq. (17)? Heisenberg per-
formed a similar maneuver (see the Appendix). One reason is
to eliminate any explicit dependence on the integer variable
n from the basic laws. Another reason is to generate a differ-
ential expression that can readily be translated via the corre-
spondence principle into a difference expression containing
only transition quantities. In effect, a state relation is con-
verted into a change-in-state relation. In the old quantum
theory the Bohr—Sommerfeld quantum condition, $pdg=nh,
determined how all state quantities depend on n. Such an ad
hoc quantization algorithm has no proper place in a rigorous
quantum theory, where n should not appear explicitly in any
of the fundamental laws. The way in which g(nm), p(nm),
v(nm) depend on (nm) should not be artificially imposed, but
should be naturally determined by fundamental relations in-
volving only the canonical variables q and p, without any
explicit dependence on the state labels n and m. Equation
(20) is one such fundamental relation.

In 1924 Born introduced the technique of replacing differ-
entials by differences to make the “formal passage from clas-
sical mechanics to a ‘quantum mechanics’.”* This corre-
spondence rule played an important role in allowing Born
and others to develop the equations of quantum mechanics.”
To motivate Born’s rule note that the fundamental orbital
frequency of a classical periodic system is equal to dE/dJ (E
is energy and J=§pdq is an action),”’ whereas the spectral
frequency of an atomic system is equal to AE/h. Hence, the
passage from a classical to a quantum frequency is made b;'
replacing the derivative dE/dJ by the difference AE/h. :
Born conjectured that this correspondence is valid for any
quantity ®. He wrote “We are therefore as good as forced to
adopt the rule that we have to replace a classically calculated
quantity, whenever it is of the form 7d®/dJ by the linear
average or difference quotient [®(n+7)—P(n)]/ h.>® The
correspondence between Egs. (18) and (19) follows from
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Born’s rule by letting ® be ®(n)=g(n,n—7pn-r,n),
where g(n,n—17) corresponds to ¢, and p(n—7,n) corre-
sponds to p_, or pf.

Born and Jordan remarked that Eq. (20) implies that p and
q can never be finite matrices.” For the special case p
=mq they also noted that the general condition in Eq. (20)
reduces to Heisenberg’s form of the quantum condition (see
the Appendix). Heisenberg did not realize that his quantiza-
tion rule was a relation between pq and qp.55

Planck’s constant / enters into the theory via the quantum
condition in Eq. (20). The quantum condition expresses the
following deep law of nature: All the diagonal components of
Pq-—qp must equal the universal constant h/2i.

What about the nondiagonal components of pq—qp? Born
claimed that they were all equal to zero. Jordan proved
Born’s claim. It is important to emphasize that Postulate 5
says nothing about the nondiagonal elements. Born and Jor-
dan were careful to distinguish the postulated statements
(laws of nature) from the derivable results (consequences of
the postulates). Born’s development of the diagonal part of
pq—qp and Jordan’s derivation of the nondiagonal part con-
stitute the two-part discovery of the law of commutation.

IV. THE LAW OF COMMUTATION

Born and Jordan write the following equation in Sec. IV of
“On quantum mechanics™:

h
pq-qp=-—1. (21)
2171

They call Eq. (21) the “sharpened quantum condition” be-
cause it sharpened the condition in Eq. (20), which only fixes
the diagonal elements, to one which fixes all the elements. In
a letter to Pauli, Heisenberg referred to Eq. (21) as a “fun-
damental law of this mechanics” and as “Born’s very clever
idea.”® Indeed, the commutation law in Eq. (21) is one of
the most fundamental relations in quantum mechanics. This
equation introduces Planck’s constant and the imaginary
number 7 into the theory in the most basic way possible. It is
the golden rule of quantum algebra and makes quantum cal-
culations unique. The way in which all dynamical properties
of a system depend on /4 can be traced back to the simple
way in which pq—qp depend on . In short, the commuta-
tion law in Eq. (21) stores information on the discontinuity,
the non-commutativity, the uncertainty, and the complexity
of the quantum world.

In their paper Born and Jordan proved that the off-
diagonal elements of pq—qp are equal to zero by first estab-
lishing a “diagonality theorem,” which they state as follows:
“If v(nm)#0 when n#m, a condition which we wish to
assume, then the formula g=0 denotes that g is a diagonal
matrix with g(nm)=34,,g(nn).”>" This theorem establishes
the connection between the structural (diagonality) and the
temporal (constancy) properties of a dynamical matrix. It
provided physicists with a whole new way to look at conser-
vation principles: In quantum mechanics, conserved quanti-
ties are represented by diagonal matrices.

Born and Jordan proved the diagonality theorem as fol-
lows. Because all dynamical matrices g(pq) have the form in
Eq. (9), the time derivative of g is
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g = 2i(v(nm) g(nm)e>™ (22)

If g=0, then Eq. (22) implies the relation v(nm)g(nm)=0 for
all (nm). This relation is always true for the diagonal ele-
ments because v(nn) is always equal to zero. For the off-
diagonal elements, the relation »(nm)g(nm)=0 implies that
g(nm) must equal zero, because it is assumed that v(nm)
# 0 for n# m. Thus, g is a diagonal matrix.

Hence, to show that pq—qp is a diagonal matrix, Born
and Jordan showed that the time derivative of pq—qp is
equal to zero. They introduced the matrix d=pq—qp and
expressed the time derivative of d as

d=pq +pd - qp - qp. (23)

They used the canonical equations of motion in Eq. (13) to
write Eq. (23) as

JH JH H H (24)
=q - —q P~ ——P.
Jq  9q g Ip
They next demonstrated that the combmatlon of der1vat1ves
in Eq. (24) leads to a vanishing result™ and say that *

follows that d=0 and d is a diagonal matrix. The diagonal
elements of d are, however, specified by the quantum condi-
tion (20). Summarizing, we obtain the equation

h
pq-qp=-_1, (25)
210

on introducing the unit matrix 1. We call Eq. (25) the ‘sharp-
ened quantum condition’ and base all further conclusions on
% Fundamental results that propagate from Eq. (25) in-
clude the equation of motion, g=(27i/h)(Hg-gH) (see Sec.
V), the Heisenberg uncertainty principle, ApAg=h/4r, and

the Schrodinger operator, p=(h/2mi)d/dq.

It is important to emphasize the two distinct origins of
pq-qp=(1/2mi)1. The diagonal part, (Pq-qp)diagonal
=h/2mi is a law—an exact decoding of the approximate law
$pdq=nh. The nondiagonal part, (Pq—Qqp)uondiagona =0 is a
theorem—a logical consequence of the equations of motion.
From a practical point of view Eq. (25) represents vital in-
formation on the line spectrum of an atom by defining a
system of algebraic equations that place strong constraints on
the magnitudes of g(nm), p(nm), and v(nm).

V. THE EQUATION OF MOTION

Born and Jordan proved that the equation of motion de-
scribing the time evolution of any dynamical quantity g(pq)
is

S
g="," (Hg—gH). (26)

Equatlon (26) is now often referred to as the Heisenberg
equatlon "In Ref. 2 the only equation of motion is Newton’s
second law, which Heisenberg wrote as x+f(x)=0 (see the
Appendix).

The “commutator” of mechanical quantities is a recurring
theme in the Born—Jordan theory. The quantity pq—qp lies at
the core of their theory. Equation (26) reveals how the quan-
tity Hg—gH is synonymous with the time evolution of g.
Thanks to Born and Jordan, as well as Dirac who established
the connection between commutators and classical Poisson
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brackets,” the commutator is now an integral part of modern
quantum theory. The change in focus from commuting vari-
ables to noncommuting variables represents a paradigm shift
in quantum theory.

The original derivation of Eq. (26) is different from
present-day derivations. In the usual textbook presentation
Eq. (26) is derived from a unitary transformatlon of the states
and operators in the Schrodinger plcture * In 1925, the
Schrodinger picture did not exist. To derive Eq. (26) from
their postulates Born and Jordan developed a new quantum-
theoretical technology that is now referred to as “‘commuta-
tor algebra.” They began the proof by stating the following
generalizations of Eq. (25):

p'q=qp"+ L (27)

277

h

n=l 28
- (28)

q'p=pq"

which can readily be derived by induction. They considered
Hamiltonians of the form

H=H,(p) + Hy(q), (29)
where H,(p) and H,(q) are represented by power series
Hl = 2 asps7
s
H,=, bgq’. (30)

After writing these expressions, they wrote® “Formulae (27)
and (28) indicate that

Hq- qH= =2 (31)
-4 2 dp’

Hp-pH=— ™8 (32)
PP = aq

Comparison with the equations of motion (13) yields

. 2w

q=-,~(Hq-qH), (33)

o2

p=—,~(Hp-pH). (34)

Denoting the matrix Hg—gH by |g| for brevity, one has

H H H
= b+a| |, (35)
ab a b
from which generally for g=g(pq) one may conclude that
- 2mi|H 27i
&= | g ——(Hg gH).” (36)

The derivation of Eq. (36) clearly displays Born and Jordan’s
expertise in commutator algebra. The essential step to go
from Eq. (27) to Eq. (31) is to note that Eq. (27) can be
rewritten as a commutator-derivative relation, p"q-—qp”
=(h/2wi)dp™/dp, which is equivalent to the nth term of the
series representation of Eq. (31). The generalized commuta-
tion rules in Egs. (27) and (28), and the relation between
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commutators and derivatives in Egs. (31) and (32) are now
standard operator equations of contemporary quantum
theory.

With the words, “Denoting the matrix Hg—gH by |
Born and Jordan formalized the notion of a commutator and
introduced physicists to this important quantum-theoretical
object. The appearance of Eq. (36) in Ref. 4 marks the first
printed statement of the general equation of motion for a
dynamical quantity in quantum mechanics.

VI. THE ENERGY THEOREMS

Heisenberg, Born, and Jordan considered the conservation
of energy and the Bohr frequency condition as universal laws
that should emerge as logical consequences of the fundamen-
tal postulates. Proving energy conservation and the fre-
quency condition was the ultimate measure of the power of
the postulates and the validity of the theory ? Born and Jor-
dan began Sec. IV of Ref. 4 by writing “The content of the
preceding paragraphs furnishes the basic rules of the new
quantum mechanics in their entirety. All the other laws of
quantum mechanics, whose general validity is to be verified,
must be derivable from these basic tenets. As instances of
such laws to be proved, the law of energy conservation and
the Bohr freguency condition primarily enter into
consideration.’

The energy theorems are stated as follows:®

H=0 (energy conservation), (37)

hv(nm) = H(nn) — H(mm)  (frequency condition). (38)

Equations (37) and (38) are remarkable statements on the
temporal behav1or of the system and the logical structure of
the theory.®® Equation (37) says that H, which depends on
the matrices p and q is always a constant of the motion even
though p=p(7) and q=q(7) depend on time. In short, the 7 in
H(p(7),q(z)) must completely disappear. Equation (37) re-
veals the time independence of H, and Eq. (38) specifies how
H itself determines the time dependence of all other dynami-
cal quantities.

Why should v(nm), H(nn), and H(mm) be related? These
quantities are completely different structural elements of dif-
ferent matrices. The parameter »(nm) is a transition quantity
that characterizes the off-diagonal, time-dependent part of q
and p. In contrast, H(nn) is a state quantity that characterizes
the diagonal, time-independent part of H(pq). It is a non-
trivial claim to say that these mechanical elements are re-
lated.

It is important to distinguish between the Bohr meaning of
E,—E,=hv and the Born—-Jordan meaning of H(nn)
—H(mm)=hv(nm). For Bohr, E, denotes the mechanical en-
ergy of the electron and v denotes the spectral frequency of
the radiation. In the old quantum theory there exists ad hoc,
semiclassical rules to calculate E,. There did not exist any
mechanical rules to calculate v, independent of E, and E,,.
The relation between E,—E,, and v was postulated. Born and
Jordan did not postulate any connection between H(nn),
H(mm), and v(nm). The basic mechanical laws (law of mo-
tion and law of commutation) allow them to calculate the
frequencies v(nm) which paramaterize q and the energies
H(nn) stored in H. The theorem in Eq. (38) states that the
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calculated values of the mechanical parameters H(nn),
H(mm), and v(nm) will always satisfy the relation H(nn)
—H(mm)=hv(nm).

The equation of motion (36) is the key to proving the
energy theorems. Born and Jordan wrote “In particular, if in
Eq. (36) we set g=H, we obtain

H=0. (39)

Now that we have verified the energy-conservation law and
recognized the matrix H to be diagonal [by the diagonality
theorem, H=0=H is diagonal], Egs. (33) and (34) can be
put into the form

hv(nm)q(nm) = (H(nn) — H(mm))q(nm), (40)

hv(nm)p(nm) = (H(nn) — H(mm))p(nm), (41)

from which the frequency condition follows.”®” Given the
importance of this result, it is worthwhile to elaborate on the
proof. Because the nmm component of any matrix g is
g(nm)e2™m the nm component of the matrix relation in
Eq. (33) is

2ariv(nm)g(nm)e>™m

=2 (gt
k

_ (nk)H(km))ezm[”("k)“’(k’”)]’. (42)
q

Given the diagonality of H, H(nk)=H(nn)s,, and H(km)
=H(mm)&,,, and the Ritz rule, v(nk)+v(km)=v(nm), Eq.
(42) reduces to

v(nm) = %(H(nn) - H(mm)). (43)

In this way Born and Jordan demonstrated how Bohr’s fre-
quency condition, hv(nm)=H(nn)—H(mm), is simply a sca-
lar component of the matrix equation, hq=2mi(Hq—qH). In
any presentation of quantum mechanics it is important to
explain how and where Bohr’s frequency condition logically
fits into the formal structure.%®

According to Postulate 4, the nth diagonal element H(nn)
of H is equal to the energy of the nth stationary state. Logi-
cally, this postulate is needed to interpret Eq. (38) as the
original frequency condition conjectured by Bohr. Born and
Jordan note that Egs. (8) and (38) imply that the mechanical
energy H(nn) is related to the spectral term W, as follows:
W,=H(nn)+ constant.”

This mechanical proof of the Bohr frequency condition
established an explicit connection between time evolution
and energy. In the matrix scheme all mechanical quantities
(p, q, and g(pq)) evolve in time via the set of factors
2™t where  v(nm)=(H(nn)—H(mm))/h. Thus, all
g-functions have the form”°

g= (g(nm)eZm’(H(nn)—H(mm))I/h) ) (44)

Equation (44) exhibits how the difference in energy between
state n and state m is the “driving force” behind the time
evolution (quantum oscillations) associated with the change
of state n—m.

In the introduction of their paper, Born and Jordan write
“With the aid of [the equations of motion and the quantum
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condition], one can prove the general validity of the law of
conservation of energy and the Bohr frequency relation in the
sense conjectured by Heisenberg: this proof could not be
carried through in its entirety b;/ him even for the simple
examples which he considered.” ! Because p and q do not
commute, the mechanism responsible for energy conserva-
tion in quantum mechanics is significantly different than the
classical mechanism. Born and Jordan emphasize this differ-
ence by writing “Whereas in classical mechanics energy con-

servation (H=0) is directly apparent from the canonical
equations, the same law of energy conservation in quantum

mechanics, H=0 lies, as one can see, more deeply hidden
beneath the surface. That its demonstrability from the as-
sumed postulates is far from being trivial will be appreciated
if, following more closely the classical method of proof, one

sets out to prove H to be constant simply by evaluating H™?

We carry out Born and Jordan’s suggestion “to prove H to

be constant simply by evaluating H” for the special Hamil-
tonian

H=p’+¢’. (45)

In order to focus on the energy calculus of the p and q
matrices, we have omitted the scalar coefficients in Eq. (45).

If we write Eq. (45) as H=pp+qqgq, calculate H, and use the
equations of motion q=2p, p=-3q>, we find"

H=q(pq-qp) + (qp - p@)a. (46)
Equation (46) reveals how the value of pq—qp uniquely
determines the value of H. The quantum condition, pq—qp

=(h/2mi)1, reduces Eq. (46) to H=0. In classical mechanics
the classical condition, pg—¢gp=0, is taken for granted in
proving energy conservation. In quantum mechanics the con-
dition that specifies the nonzero value of pq—qp plays a
nontrivial role in establishing energy conservation. This non-
triviality is what Born and Jordan meant when they wrote
that energy conservation in quantum mechanics “lies more
deeply hidden beneath the surface.”

Proving the law of energy conservation and the Bohr fre-
quency condition was the decisive test of the theory—the
final validation of the new quantum mechanics. All of the
pieces of the “quantum puzzle” now fit together. After prov-
ing the energy theorems, Born and Jordan wrote that “The
fact that energy-conservation and frequency laws could be
proved in so general a context would seem to us to furnish
strong grounds to hope that this theory embraces truly deep-
seated physical laws.”"*

VII. CONCLUSION

To put the discovery of quantum mechanics in matrix form
into perspective, we summarize the contributions of Heisen-
berg and Born—Jordan. Heisenberg’s breakthrough consists
of four quantum-theoretical reinterpretations (see the Appen-
dix):

1. Replace the position coordinate x(z) by the set of transi-
tion components a(n,n—a)e'"=r,
2. Replace x2(r) with the set =.a(n,n—a)e'®""~q(n

—a,n _B)eiw(n—a,n—ﬁ)t‘

3. Keep Newton’s second law, ¥+ f(x)=0, but replace x as
before.
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4. Replace the old quantum condition, nh= gﬁmxzdt, with h
=4mmZ fla(n+a,n)Pw(n+a,n)-la(n,n-a)>w(n,n

-a)}.

The quantum mechanics of Born and Jordan consists of
five postulates:

L Q=(gmm)e 0, p=(p(am)e2mHom),
2. v(jk)+v(kl)+v(1j)=0,

3. q=dH/ap, p=—dH/dq,

4. E,=H(nn), and

5. (PA=9qP) giagonar =1/ 27,

and four theorems

L. (pq - qp)nondiagonzﬂ: 0,
2. §=(12mi/h)(Hg—-gH),

3. H=0, and
4. hv(nm)=H(nn)—H(mm).

Quantum mechanics evolved at a rapid pace after the pa-
pers of Heisenberg and Born—Jordan Dirac’s paper was re-
ceived on 7 November 1925.° Born, Helsenberg, and Jor-
dan’s paper was received on 16 November 1925.° The first
“textbook™ on quantum mechanics appeared in 1926 In a
series of papers during the spring of 1926, Schrédinger set
forth the theory of wave mechanics.”® In a paper received
June 25, 1926 Born introduced the statistical interpretation of
the wave function.”” The Nobel Prize was awarded to
Heisenberg in 1932 (delayed until 1933) to Schrédinger and
Dirac in 1933, and to Born in 1954.

APPENDIX: HEISENBERG’S FOUR
BREAKTHROUGH IDEAS

We divide Heisenberg’s paper2 into four major reinterpre-
tations. For the most part we will preserve Heisenberg’s
original notation and arguments.

Reinterpretation 1: Position. Heisenberg considered one-
dimensional periodic systems. The classical motion of the
system (in a stationary state labeled n) is described by the
time-dependent position x(n, 0n.”® Heisenberg represents this
periodic function by the Fourier series

x(n,0) = D, a,(n)e' @™, (A1)

Unless otherwise noted, sums over integers go from — to c°.
The ath Fourier component related to the nth stationary state
has amplitude a,(n) and frequency aw(n). According to the
correspondence principle, the ath Fourier component of the
classical motion in the state n corresponds to the quantum
jump from state n to state n—a. 826 Motivated by this prin-
ciple, Helsenberg replaced the classical component
a,(n)e!®@ ™t by the transition component a(n,n
—a)e!mn=a1 7 We could say that the Fourier harmonic is
replaced by a “Heisenberg harmonic.” Unlike the sum over
the classical components in Eq. (Al), Heisenberg realized
that a similar sum over the transition components is mean-
ingless. Such a quantum Fourier series could not describe the
electron motion in one stationary state (n) because each term
in the sum describes a transition process associated with two
states (n and n—a).

Heisenberg’s next step was bold and ingenious. Instead of
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reinterpreting x(¢) as a sum over transition components, he
represented the position by the ser of transition components.
We symbolically denote Heisenberg’s reinterpretation as

(A2)

x — {a(n,n — a)e'n-9n,
Equation (A2) is the first breakthrough relation.

Reinterpretation 2: Multiplication. To calculate the energy
of a harmonic oscillator, Heisenberg needed to know the
quantity x*>. How do you square a set of transition compo-
nents? Heisenberg posed this fundamental question twice in
his paper.80 His answer gave birth to the algebraic structure
of quantum mechanics. We restate Heisenberg’s question as
“If x is represented by {a(n,n—a)e!""~9"} and x? is repre-
sented by {b(n,n—B)e A1 how is b(n,n— ) related to
aln,n—-a)?”

Heisenberg answered this question by reinterpreting the
square of a Fourier series with the help of the Ritz principle.
He evidently was convinced that quantum multiplication,
whatever it looked like, must reduce to Fourier-series multi-
plication in the classical limit. The square of Eq. (A1) gives

2(n,t) = 2 bg(n)ePo™, (A3)
B
where the Bth Fourier amplitude is
bp(n) = 2 o(M)ag o(n). (Ad)

In the new quantum theory Heisenberg replaceed Egs. (A3)
and (A4) with

x> — {b(n,n - p)e'rn-P1y, (A5)
where the n— n— 3 transition amplitude is
b(n,n—B) = > aln,n - a)aln - a,n - B). (A6)

In constructing Eq. (A6) Heisenberg uncovered the symbolic
algebra of atomic processes.

The logic behind the quantum rule of multiplication can be
summarized as follows. Ritz’s sum rule for atomic frequen-
cies, w(n,n-pB)=wn,n—a)+wn-a,n-B), implies the
product rule for Heisenberg’s kinematic elements, ¢'®-"-P)
=elolnn-aligioti-an-p)t \which is the backbone of the multipli-
cation rule in Eq. (A6). Equation (A6) allowed Heisenberg to
algebraically manipulate the transition components.

Reinterpretation 3: Motion. Equations (A2), (A5), and
(A6) represent the new “kinematics” of quantum theory—the
new meaning of the position x. Heisenberg next turned his
attention to the new “mechanics.” The goal of Heisenberg’s
mechanics is to determine the amplitudes, frequencies, and
energies from the given forces. Heisenberg noted that in the
old quantum theory a,(n) and w(n) are determined by solv-
ing the classical equation of motion

i+ f(x)=0

and quantizing the classical solution—making it depend on
n—via the quantum condition

jg mxdx =nh.

In Egs. (A7) and (A8) f(x) is the force (per mass) function
and m is the mass.

(A7)

(A8)
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Heisenberg assumed that Newton’s second law in Eq. (A7)
is valid in the new quantum theory provided that the classical
quantity x is replaced by the set of quantities in Eq. (A2), and
f(x) is calculated according to the new rules of amplitude
algebra. Keeping the same form of Newton’s law of dynam-
ics, but adopting the new kinematic meaning of x is the third
Heisenberg breakthrough.

Reinterpretation 4: Quantization. How did Heisenberg re-
interpret the old quantization condition in Eq. (A8)? Given
the Fourier series in Eq. (Al), the quantization condition,
nh=$mxdt, can be expressed in terms of the Fourier param-
eters a,(n) and w(n) as

nh=2mm>, la (n)|>Po(n). (A9)

For Heisenberg, setting $pdx equal to an integer multiple of
h was an arbitrary rule that did not fit naturally into the
dynamical scheme. Because his theory focuses exclusively
on transition quantities, Heisenberg needed to translate the
old quantum condition that fixes the properties of the states
to a new condition that fixes the properties of the transitions
between states. Heisenberg believed'* that what matters is
the difference between $pdx evaluated for neighboring
states: [$pdx],—[$pdx],_,. He therefore took the derivative
of Eq. (A9) with respect to n to eliminate the forced n de-
pendence and to produce a differential relation that can be
reinterpreted as a difference relation between transition
quantities. In short, Heisenberg converted

h= 2wm§ a%qaa(n)vaw(n)) (A10)
to
h= 4wm§‘6 {la(n + a,n)Pw(n + a,n)
- Ia(n,_n - a)fo(n,n-a)}. (Al1)

In a sense Heisenberg’s “amplitude condition” in Eq. (A11)
is the counterpart to Bohr’s frequency condition (Ritz’s fre-
quency combination rule). Heisenberg’s condition relates the
amplitudes of different lines within an atomic spectrum and
Bohr’s condition relates the frequencies. Equation (A11) is
the fourth Heisenberg breaxkthrough.81

Equations (A7) and (All) constitute Heisenberg’s new
mechanics. In principle, these two equations can be solved to
find a(n,n—a) and w(n,n—a). No one before Heisenberg
knew how to calculate the amplitude of a quantum jump.
Equations (A2), (A6), (A7), and (All) define Heisenberg’s
program for constructing the line spectrum of an atom from
the given force on the electron.
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SCIENTIFIC APTITUDE AND AUTISM

There’s even some evidence that scientific abilities are associated with traits characteristic of
autism, the psychological disorder whose symptoms include difficulties in social relationships and
communication, or its milder version, Asperger syndrome. One recent study, for instance, exam-
ined different groups according to the Autism-Spectrum Quotient test, which measures autistic
traits. Scientists scored higher than nonscientists on this test, and within the sciences, mathema-
ticians, physical scientists, and engineers scored higher than biomedical scientists.
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