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Knots and physics: Old wine in new bottles &

Allen C. Hirshfeld”
Physics Department, The University of Dortmund, D-44221 Dortmund, Germany

(Received 3 July 1997; accepted 15 May 1p98

The history of the interplay between physics and mathematics in the theory of knots is briefly
reviewed. In particular, Gauss’ original definition of the linking number in the context of
electromagnetism is presented, along with analytical, algebraical, and geometrical derivations. In a
modern context, the linking number appears in the first-order term in the perturbation expansion of
a Wilson loop in Chern—Simons quantum field theory. New knot invariants, the Vassiliev numbers,
arise in higher-order terms of the expansion, and can be written in a form which shows them to be
generalizations of the linking number. @98 American Association of Physics Teachers.

[. INTRODUCTION hope was to find some invariant which could distinguish
knots of distinct equivalence classes. All the invariants found
The theory of knots is a fascinating branch of topology,to date indeed have the property that distinct values of the
often pleasing and surprising us with new and unexpectethvariant signify inequivalent knots. However, the converse
connections between algebra, geometry, and analysis. It ais not true: Inequivalent knots may yield the same value for
tracts the nonspecialist because its objects can be plasticalifye invariant. Mathematicians are now involved in the search
represented and imagined. Its central question—when caior a classof invariants, for which distinct knots would gen-
two knots be continuously deformed into each other?—iserate distinct values for at least some invariants in the class.
simple to formulate, yet continues to challenge successiv&he status of this search will be further discussed below.
generations of mathematicians. The roots of the subject go
back to questions which arose in physical contexts. Recenf GaUSS’ DISCOVERY: THE LINKING NUMBER
decades have seen a strong revival of interest, as new links to
physics, and also to such diverse fields as theoretical chem- Gauss’ note on knot theory appears in Volume V of the
istry and molecular biology, have come to light. complete works. It reads: Of the Geometria Situswhich
The first recorded result involving knot theory was foundwas foreseen by Leibnitz, and into which only a pair of ge-
by Carl Friedrich Gauss. It appeared in the posthumous edpmeters (Euler and Vandermonde) were granted a bare
tion of his unpublished works, in a section devoted to re-glimpse, we know and possess today, a century and a half
marks on electrodynamiésThe breadth of Gauss’ interests later, little more than nothing
is phenomenal; he made epochal contributions to number A principal task at the interface cdBeometria Situsand
theory, analysigGauss’ divergence theorgpstatistics(the ~ Geometria Magnitudinisvill be to determine the linking of
Gaussian distribution, least squgreastronomy, geodesy two closed or infinite lines
(non-Euclidean geometryand physics—theoretical physi- Let x, y, z be the coordinates of a given point on the first
cists still use Gaussian units, and the strength of the magnetlime, x’, y’, z' those of a point on the second, and
field is measured in gauss. His longest and most productive

collaboration was with the physicist Wilhelm Weber—they |:f f [(x=x")2+(y—y")2+(z—2")2] ¥ (x—x")
worked on the theory and phenomenology of magnetism.

Next to the Gdtingen Observatoryalso built according to x _ oy _

Gauss' specificationshe constructed a laboratory for the (dydz —dzdy)+(y=y’)(dzdx —dxdz)
study of magnetism made entirely of wood—even the join- +(z—2')(dxdy —dydx)],

ings avoided the use of metal nails. Together with the ex- . . .
plorer Alexander von Humboldt he laid out plans for athen the integral taken over both linesdsrn, where n is the

world-wide network of measuring stations to determine thei"King number. This value is mutual, i.e. it is unaltered when

terrestial magnetic field. In the course of his travels in North-N€ two lines are interchanged

ern Russia, von Humboldt made the first measurements of January 22, 1833

the field declinatiort. Characteristically, Gauss provides no hint of how he arrived
The fundamental problem of knot theory is illustrated in at his result. However, the editor of théorks through care-

Fig. 1. The question is—are the two knots shown equivalentul study of the context in which the remark appears, was

(in the sense that the one can be continuously deformed intable to deduce the method he probably used. | shall discuss

the othe), or not? The answer is not immediately apparentthis method in Sec. V.

The first person to attempt a systematic listing of knots, P. G. We first of all ask ourselves: What is this result doing in

Tait, thought they were distinct, and included both in histhe volume on mathematical physics, in the middle of the

table of knots with ten crossinddt took almost a hundred section on electromagnetism? | present here an answer to this

years until Perko proved that they are actually equivalent. question which can easily be understood by a modern under-
In the attempt to find a systematic way of answering suclgraduate physics student.

guestions an ever-growing list of knot invariants has been Consider the integral of a magnetic fidddaround a closed

developed: these are quantities associated with a given knotrcuit c. Stokes’ theorem relates the value of this integral to

which are unaffected by continuous deformations. The initialcurl B: If B is irrotational the field is conservative and the

1060 Am. J. Phys66 (12), December 1998 © 1998 American Association of Physics Teachers 1060

9l:geiel €20z AInr gL



Fig. 1. A pair of knots.

Fig. 3. Topological invariance of the linking number.

integral vanishes. Stokes’s theorem was not available to
Gauss in this form in 1833, although we today consider it to

be a variant of Gauss’ own divergence theoreourl B is dx-dx’ X (x—x")
controlled by Maxwell's equation: For the case of steady 3QB-dx=| % 3§ —_— 4
currents we have c o Jo X=X
Inserting this into Eq(2) yields
3€CB-dx= fscurIB-dS=4wJSJ-dS=4wl, D n=i é é (x—x")-dxxdx’ -
47 Jo Jo [x—x']®

whereSis any oriented surface spanning the closed cayve

j the electric current density, andhe electric current‘ﬂow— where we have used the cyclic property of the triple product

ing through the surfac& This result is of course Ampe’s  in the numerator to rearrange the order of the factors. With

law. We generally present it in a first course on electrodythe notationsx=(x,y,z), x'=(x',y’,z’) anddx=(dx,dy,

namics for the case of a simple circular curve around aryz) dx’'=(dx’,dy’,dz’), this is just the integral in Gauss’

infinite straight wire, see Fig.(3). If a current is flowing in | te.

the wire it must constitute part of a closed circuit, so a more | s easy to see that the numberis unaffected by con-

realistic representation is achieved if we close the ends of thg,,ous deformations of either of the loops. Consider, e.g.,

wire as in Fig. 2b). Mathematicians would say that we have ihe sjtyation depicted in Fig. 3. We wish to compare the

therepy |dent|f|ed3the points at |nf|n|ty3and compactified the,esits obtained for the original circuitand the deformed

Euclidean spacé” to the three-spher8”, a common strat-  ¢jreyit ¢’. Consider an oriented surface, such as that denoted

egy in knotltheorsy, where knots are defined as embeddings ¢f Fig. 3 by S which is bounded by the curvesandc’.

the circleS™ in S°. o , Applying Stokes’s theorem, and paying attention to the ori-
The situation depicted in Fig.(8) can be continuously antation of the boundary @, yields

deformed into the configuration depicted in Figc)2 which

is known as the Hopf link. A link is the disjoint union of two

or more knots. Obviously the two components in Fig. 2 are s

linked, and the number which Gauss callattempts to mea- .

sure the degree of linking. For the Hopf link the linking since curlB=4mj=0 throughoutS Hence,

number is 1. For the configuration shown in Figd)2 where 1 1

the current-carrying wire winds times around the circuit, = § B-dx= gy fﬁ B-dx’. (7)

c c’

curl B-dS=f

B-dx— fﬁB-der jg B-dx'=0, (6)
aS c c’

f}; B-dx=4nl, (2
¢ ll. THE ANALYTICAL APPROACH

and the linking number is. , ) For a general configuration the task of evaluating Gauss’
We see that the linking number is related to the integral ofntegral seems formidable; for a certain simple configuration

the magnetic field, but how can we recover the integral exyf the loops in space Spivikvrites: “You may easily con-

pression of Gauss? The answer is given by the law of Biotjince yourself that evaluating the linking number n by the

Savart. above integral is hopeless...However, since we have just
dx’ X(x—x") ascertained that the value ofis unaffected by a continuous
B(x)=1 —_— (3) deformation of the link components we may use this fact in
e |x=x order to find a configuration for which the integral becomes
It follows that manageable.

How to arrive at such a configuration is indicated in Fig. 4.

We consider the projection of the three-dimensional link

onto a two-dimensional plane, where the projection is chosen
T — in such a way that the image of the link in the plane exhibits
at most a finite number of isolated double points. This intu-
itively plausible procedure can be rigorously justiffed.
Choose a circle centered on each crossing whose radius is so
small that no other crossing falls within it, and imagine a
cylinder in three-space with this circle as its base. Now de-
Fig. 2. Current-carrying wires. form the link in three-space in such a way that the two

@ (b) ) ()
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Fig. 4. The flat knot limit.
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strands intersecting each of these cylinders are horizontal, e / N
and perpendicular to each other, at least within the cylinder.
Furthermore, parametrise the curves with parametexsd Fig. 5. The Reidemeister moves.
s’ in such a way that the segments enter the cylinder at the
points corresponding te=s’ = — 1, and leave it at the points

s=s’=+1. We also require thdk(s)|=|x'(s")|=1. When
the segments are oriented as in Fig. 4, the parametrisaticm' THE ALGEBRAICAL APPROACH

within the crossing region s Up to now | have attempted to motivate and illustrate the

x=(s,02), x'=(0s',2"), concept of the linking number by referring to the relatively
simple configurations shown in the figures. Expressib?)
x(s)=(1,0,0, x'(s')=(0,1,0, (8) is, however, completely general. It is valid for links with an
_ _ arbitrary number of components, where each component
dx=x(s)ds, dx'=x'(s")ds'. may itself be knotted in some more or less complicated way.

This is the expression for the linking number used in the

The contribution to the integr&b) from the region involving algebraical or combinatorial approach to knot theory. In

the kth crossing then becomes this approach the central objects are lihk diagrams which
are the plane projections of the links supplied with the nec-

n(k) = i J’l dsfl ds’ h ) essary crossing information; the conventiore{&)=+1 at

47 )1 1 \/m3 the kth crossing if the upper strand must be rotatednter-

clockwiseto get to the direction of the lower strand, and

1 1 e(k)=—1 if the rotation isclockwise
— arctar( —> , (10) Link diagrams are used extensively in knot theory. A fun-
™ hy2+h? damental result due to Reidemeister is that two links are

, equivalent if and only if their associated diagrams can be
whereh=z-2". . made to coincide by a finite succession of the moves shown

Now deform the link further in such a way that the strandsin Fig. 5. Of course, continuous deformations in the plane
everywhere approach the projection plane, in the limit lyingwhich do not involve crossings are also allowed.
in this plane, except in the vicinity of the crossing points, |t js intuitively clear that these moves do not affect the
where the overlying strand lies directly above, but infinitesi-topological nature of the link; the deep part of Reidemeis-
mally close to, the underlying strand. This of course stillter's result is that these moves are sufficient. To be complete,
leaves the.value of the Imkmg number invariant. In Ref. 8 wethe moves listed here must be distinguished according to the
refer to this procedure asking the flat knot limitin Eq.  grientations of the various segments, and complemented by
(10) it corresponds to the limih— 0, which yields their obvious counterparts involving alternative choices for

the overcrossings and undercrossings.
n(k)=z sgr(h) = ze(k). (12) It is an elemgntary exercise to ch?eck that expres&lah

The crossing numbes(k) = +1 if the segmentx lies above ~ fOF the linking number is invariant under each of the Reide-
dx’ in the original three-dimensional configuratigne call meister moves. This provides ambinatorial proof of the

this case arovercrossing and e(k)=—1 in the case of an fact that the linking number is a link invariant, which was

. . . already established abovfor a restricted cageby anana-
undercrossingWe further note that the integrand Va”'SheS|¥tical )rlnethod. @ ey

outside the crossing regions, for in this case the denominato
is nonvanishing but the numerator vanishes, since it involves
the triple product of three vectors in a plane. Hence the in-
tegral over the complete link is V. THE GEOMETRICAL APPROACH

1 | will consider here one more method of establishing
n=§k: n(k) = Ezk: e(k), (12 Gauss' result, presumably that used by Gauss himself. In the
course of his investigations of magnetostatic phenomena,
where the summation is over all the crossings which involveGauss noticed that the magnetic field at a p&ifriduced by
strands belonging to distinct link components. a steady current in a loop' can be calculated with the help
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Fig. 7. The Whitehead link.

@

Fig. 6. Solid angles. without cutting at least one of the components. But the link-

ing number does not distinguish the Whitehead link from the
trivial link shown in Fig. 1b).
of amagnetostatic potentiaihich is equal to the solid angle  The geometrical method can also be extended to more
Q(x) subtended by a surfa@ spanning the loog’ as seen general cases than those illustrated in the figures. To do this

from x. The formula is we would use a fundamental result of Seifert, which tells us
_ that an arbitrary knot can be spanned by a connected, ori-

Bx)=1VQ(x), (13 ented surfacé.However, for such cases the method quickly
where loses its intuitive appeal, and modern mathematical texts in-
(X' —x)-dS voke more general concepts to describe the linking number,

= such as thalegreeof a mapping'® Despite these develop-
x) f W (19 ments, tom Digec]K1L tells us,pEqu:n afterr) all these decadgs
and| is the electric current flowing in the circuit. The sign there is still nothing in topology to match (Gauss’) result for
convention for the solid angle is that it is positive when the€l€gance and insight”.

projection of the outward normal to the oriented surface onto

the direction of the line-of-sight is positive, and negativey|, FURTHER DEVELOPMENTS IN KNOT

when this projection is negative. The formula is most easilyryeoRY

established by starting from the Biot—Savart law and using

standard vector identiti€sinserting this into Eq(2) yields After Gauss’ remark concerning the linking number, and
1 1 another remark he made on winding numbers and crossing

n=—— fB.dX:_ %(VQ).dX information, some further results concerning knots were
4l Je 47 Je found by his student Listing. But the systematic study of

knots began with the investigations of the Scottish mathema-

_ i [QxH—Qx)], (15) tician P._G. Taiﬁ_Tait was intergsted_ in_HeImhoIz’s_findings

41 concerning persistent vortex rings in incompressible fluids,
and communicated these results to W. G. Thon($oa later
Lord Kelvin). Thomson was thereby inspired to his theory of
“vortex atoms,” in which the atoms of the various elements
2(c). i i N _ correspond to differently knotted vortex rings in the ether.

You can easily convince yourself th&(x")—Q(x")  pyt this way the notion sounds to us naive, but Tait's words
=4 for an arbitrary surfac&’. For example, ifS’ is pla-  «There is, of course, an infinite number of possible modes of
nar, this just means that when you are standing directly iRjipration for every vortex.. seem almost uncannily pro-
front of an extended wall you see it covering a solid angle Ofphetic when we remember that Sctimger finally suc-
2, and when you are directly behind the wall the solid angleceeded in calculating the frequencies of atomic radiations
is —2m. For a sphere with an opening, as in Fig. 6, you seg;sing a method devised for finding the frequencies of the
a solid angle of)=47—()' from a point inside the sphere normal modes of a vibrating string. We may also be re-
and directly opposite the openiririg. 6@], and a solid minded of modern string theories of the elementary particles.
angle of — Q' from a point just outside the sphefim any  In any case, Tait was motivated to embark on a systematic
direction which does not point to the opening your line-of- cataloging of the knots with up to ten crossings, generating
sight meets the sphetaiice, and the corresponding contri- in the process the famous series of “Tait conjectures,” some
butions to the solid angle have opposite signs and cancedf which have just been proven in the last decade. The mod-
Fig. 6b)]. ern theory of magnetic flux tubes in perfectly conducting

The geometrical method thus again yields a linking num-ncompressible fluids may be considered an extension of
ber +1 for the Hopf link shown in Fig. @) andn for the link  Helmholtz’s work on vortex rings?
in Fig. 2(d). We may say that we get a contribution-6fl. to After Tait's work many important developments in knot
the linking number each time one link component goesheory were made in the first half of this century by math-
though an oriented surface spanned by the other link compa@maticians such as Seifert and Alexander. The next signifi-
nent in the direction of the outward normal, and a contribu-cant conjunction of physics and knot theory occurred in
tion of —1 each time it goes through in the opposite direc-1985, when the physicist V. Jones realized the relevance of
tion. We easily see with this method that for the so-calledhis results concerning von Neumann algebras to the theory of
Whitehead link shown in Fig. (@ the linking number is knots, and introduced an important invariant calledlbees
zero! This illustrates the point mentioned in Sec. I, that apolynomial®® This turned out to be only the first in a whole
single link invariant is not sufficient to classify links. It is series of new invariants. In the course of this work intimate
certainly clear that the components of the Whitehead linkrelationships between knot theory and soluble models in sta-
really are linked, in the sense that they cannot be separatetistical mechanics were uncovered. In this context the meth-

wherex* and x~ are the points orc directly above and
below the surfaces’ for the simple case depicted in Fig.
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ods of the theory ofjuantum groupsplayed an important VII. CHERN —SIMONS THEORY AND VASSILIEV
role. This whole development is often referred to as thdNVARIANTS
Jones revolutiort

It turns out, however, that even with the help of all these The Chern—Simons theory is a gauge field theory, where
new invariants we are not in a position to solve the originalthe gauge fieldsﬂ\i(x) are defined on the spac®. The
problem of classifying knots and links. The latest twist in ourindex u runs from 1 to 3, corresponding to the three dimen-
story involves the work of the Russian mathematiciansions of S3, and the indexa is a group index which runs
Vassiliev!* Vassiliev proposed a class of new invariantsfrom 1 to dimG, whereG is the gauge group. The action is
which he called invariants of finite type. He conjectured that K
this class might be powerful enough to solve the classifica- g .- _— f d3x e“" M A2(x)3,A%(X)
tion problem. 8m a

A surprising link between quantum field theory and knot
theory was discovered in a separate line of development. In = 5 fapALOALOAL(X)], (16

the early 1970’s theoretical physicists became interested iyhere e#"* is the totally antisymmetric Levi—Cevita tensor,

nonperturbative effects in quantum field theories, especially are the structure constants of the gauge group, and re-

in their topological aspects, which are relevant to studies opeated indices are summed. The Wilson loop associated with

solitons, integral quantum numbers, tunneling effects ing knotk in S3 is

Yang—Mills theory, and anomaliés Topological effects re-

sult, e.g., when a Chern—Simons term is present in the La- _ ; a

grangian of the field theory under consideration. Such field W(K)=tr P exp{l fﬁ(AM(X)TadX#) ' (a7

theories were studied, beginning in 1980, by Jaékiand

othersl” where theT, are the generators of the gauge group, &nd
Chern—Simons forms originally arose in mathematics indenotes path ordering of the terms in the expansion of

connection with studies of invariant polynomials and deth® exponential. For a _I|nk with n components,

Rham cohomology classéA gauge field theory in three -=1K1,.--Kn},  the — Wilson loop is  WI(L)

dimensions which has a Chern—Simons form for its Lagrang-—" W(K1)...W(Kp).

ian is an example of #gopological field theorysince its ac- The vacuum expectation value of the Wilson loop is
tion is metric independent. The observables of a gauge ) _
theory are quantities which physicists call “Wilson loops,” <W(K)>:f TIAW(K) texpiScd Al), (18

closely related to what mathematicians call “holonomies.”

In a topological field theory the vacuum expectation value ofwhere [ A indicates a Feynman integral over the gauge

such a Wilson loop cannot depend on any metric propertief€lds. The propagator function in quantum field theory is
. ; ab 1\ _/pa bryr ; ;

of the loop, in contrast, e.g., to Yang—Mills theory, where D3, (X,x") =(A%(x)A.(x")), for the Chern—Simons theory it

this expectation value depends on the area of the loop in works out, in the Landau gauge, to

way which is connected with theonfinemenphenomena of i (x—x")\

the strong interaction. The expectation value in a topologi- Da‘;(x,x’)z — 5ab6w,}\ —.

cal field theory can thus only depend on how the loop is . k |x=x'|

knotted, in other words it must be a knot invariant. Follow- When the expectation Va|L(&8) is expanded in terms of the

ing up on suggestions made by Polyakband Atiyah?  inverse coupling constant, the first-order term is

Witter?® proved in 1989 that in the @) Chern—Simons

theory the expectation value of a given loop is related to the 3g dx* #; dx’” Dzb(x,x’)= 520

(19

(x—=x")-dxxdx’

Jones polynomial of that loop. It was later shown that using v [x—x'|?
other gauge groups yields many of the other new knot (20
invariants. Comparing this expression to E¢) we see that it is

In a series of papers by Witten's erstwhile studentnothing other than our old friend the linking number.
Bar-Natar?:* the topologists Birman and Lir,and the field  Polyako? was the first to notice the occurrence of the link-
theorists Guadagninét al,?® it was proven that the indi- ing number in this context, thus drawing attention to a pos-
vidual terms in the perturbation expansion of the vacuumsible connection between Chern—Simons theory and knot
expectation value in powers of the inverse coupling constartheory. Since we are here considering a single knot, i.e., a
correspond to the Vassiliev numbers. Bar-Natan and othemne-component link, one may legitimately ask what is being
have already proven that the Vassiliev invariants indeedinked here. The answer involves the regularisation proce-
separate a large class of kndfs. dure used to make sense of the Feynman integrals. In anal-

Chern—Simons theory and knot solutions continue as ac?gy to the familiampoint-splitting methodone regularises the
tive research areas in theoretical physics. I refer here only ti£rms in the Chern—Simons theory by usingmed knots
applications involving quantum gravit},cosmology?® and = That is, the one-dimensional knot is first thickened to a two-
finite-energy soliton&? dimensional ribbon, and at the end of the calculation the

In the final section of this paper | shall make some of thesdVidth of the ribbon is set to zero. The linking number in Eg.

last remarks more explicit, indicate how the connection be-(zo) actually describes how the edges of the ribbon are

: . linked when the ribbon is twisted, see Fig. 8.
tween knot theory and quantum field theory came to light, : ; T .
and sketch some recent work which shows that at least somea\lljv'genroiong&?z% dt?gurf:cihterrgt_iilr:;l?snia’[sleory with the
of the Vassiliev invariants may be cast in the form of “gen- Jauge group '
eralized linking numbers.” (W(K))Y=~Jk(q), (21
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Fig. 9. The standard ascending diagram for the trefoil knot.

(T

Fig. 8. A framed knot.

whereJk(q) is the Jones polynomial associated to the knot
K, andq=exp(—2mi/k).23 To make the connection indicated
in this relation precise would involve field-theoretic techni-
calities beyond the scope of this article. For details see ReEZhern—Simons theorv. and found similar expressions for the
23 and references therein. A theorem of Birman andLin Vassiliev i . ﬁ 22 Il as for i pr .
concerning the Jones polynomial then implies that the s:epa-asdSI '?\é mvallr_lamvg( ). ?Skv%vge as for invariants associ-
rate terms in the perturbation series @(K)) are Vassiliev ated with multicomponent links.
invariants.

The standard technique involving Feynman diagrams mapACKNOWLEDGMENTS
be used to calculate the terms of the perturbation series. In ) L _
performing this calculation for the second-order term we en-_ | Wish to thank Professor Friedrich Hehl, of the Physics
countered Feynman integrals which, in analogy to the intePepartment of the University of Cologne, who encouraged

gral for the linking number in Sec. 11, could be evaluated by M€ to write up this material in its present form. The original
use of theflat knot limit For the relevant second-order Vas- WOrk referred to in this paper was done in collaboration with

siliev invariant(also known as the total twis) we found by
this method the following expressién:

1 o
vo(K)=—+ 2 [e(jr1,j3)€e(i2.]a)
4 11>12>13>14

—€i1.J3)€i2.0a)]- (22

The notation used in this expression is explained below.

Dr. Uwe Sassenberg and Thomas kdo. Much of what we
know about knot theory and Chern—Simons theory we have
learned from Professor Dieter Erle, of the Mathematics De-
partment of the University of Dortmund, and Professor
Enore Guadagnini, of the Physics Department of the Univer-
sity of Pisa.

dThis paper was presented as an invited talk at the Spring Meeting of the
German Physical Society in Munich, 17—-21 March 1997.

First, choose for the oriented knot diagram an arbitrary butvgectronic mail: hirsh@hal.physik.uni-dortmund.de

fixed point, thebasepointit turns out that all final results are
independent of this arbitrary choijcéNow, starting from this

point, traverse the knot in the direction dictated by its orien-

K. Murasugi,Knot Theory and its Application@8irkhauser, Basel, 1996
2C. F. GaussWorks V(Gattingen, 1877.
SW. K. Blhler, Gauss: A Biographical Stud§Springer, Berlin, 198
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