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Knots and physics: Old wine in new bottles a…

Allen C. Hirshfeldb)

Physics Department, The University of Dortmund, D-44221 Dortmund, Germany

~Received 3 July 1997; accepted 15 May 1998!

The history of the interplay between physics and mathematics in the theory of knots is briefly
reviewed. In particular, Gauss’ original definition of the linking number in the context of
electromagnetism is presented, along with analytical, algebraical, and geometrical derivations. In a
modern context, the linking number appears in the first-order term in the perturbation expansion of
a Wilson loop in Chern–Simons quantum field theory. New knot invariants, the Vassiliev numbers,
arise in higher-order terms of the expansion, and can be written in a form which shows them to be
generalizations of the linking number. ©1998 American Association of Physics Teachers.
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I. INTRODUCTION

The theory of knots is a fascinating branch of topolog
often pleasing and surprising us with new and unexpec
connections between algebra, geometry, and analysis. I
tracts the nonspecialist because its objects can be plasti
represented and imagined. Its central question—when
two knots be continuously deformed into each other?—
simple to formulate, yet continues to challenge succes
generations of mathematicians. The roots of the subjec
back to questions which arose in physical contexts. Rec
decades have seen a strong revival of interest, as new lin
physics, and also to such diverse fields as theoretical ch
istry and molecular biology, have come to light.1

The first recorded result involving knot theory was fou
by Carl Friedrich Gauss. It appeared in the posthumous
tion of his unpublished works, in a section devoted to
marks on electrodynamics.2 The breadth of Gauss’ interes
is phenomenal; he made epochal contributions to num
theory, analysis~Gauss’ divergence theorem!, statistics~the
Gaussian distribution, least squares!, astronomy, geodes
~non-Euclidean geometry!, and physics—theoretical phys
cists still use Gaussian units, and the strength of the magn
field is measured in gauss. His longest and most produc
collaboration was with the physicist Wilhelm Weber—th
worked on the theory and phenomenology of magneti
Next to the Go¨ttingen Observatory~also built according to
Gauss’ specifications! he constructed a laboratory for th
study of magnetism made entirely of wood—even the jo
ings avoided the use of metal nails. Together with the
plorer Alexander von Humboldt he laid out plans for
world-wide network of measuring stations to determine
terrestial magnetic field. In the course of his travels in Nor
ern Russia, von Humboldt made the first measurement
the field declination.3

The fundamental problem of knot theory is illustrated
Fig. 1. The question is—are the two knots shown equiva
~in the sense that the one can be continuously deformed
the other!, or not? The answer is not immediately appare
The first person to attempt a systematic listing of knots, P
Tait, thought they were distinct, and included both in h
table of knots with ten crossings.4 It took almost a hundred
years until Perko proved that they are actually equivalen5

In the attempt to find a systematic way of answering su
questions an ever-growing list of knot invariants has be
developed: these are quantities associated with a given
which are unaffected by continuous deformations. The ini
1060 Am. J. Phys.66 ~12!, December 1998
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hope was to find some invariant which could distingui
knots of distinct equivalence classes. All the invariants fou
to date indeed have the property that distinct values of
invariant signify inequivalent knots. However, the conver
is not true: Inequivalent knots may yield the same value
the invariant. Mathematicians are now involved in the sea
for a classof invariants, for which distinct knots would gen
erate distinct values for at least some invariants in the cl
The status of this search will be further discussed below

II. GAUSS’ DISCOVERY: THE LINKING NUMBER

Gauss’ note on knot theory appears in Volume V of t
complete works. It reads: ‘‘Of the Geometria Situs,which
was foreseen by Leibnitz, and into which only a pair of g
ometers (Euler and Vandermonde) were granted a b
glimpse, we know and possess today, a century and a
later, little more than nothing.

A principal task at the interface ofGeometria Situsand
Geometria Magnitudiniswill be to determine the linking o
two closed or infinite lines.

Let x, y, z be the coordinates of a given point on the fi
line, x8, y8, z8 those of a point on the second, and

I 5E E @~x2x8!21~y2y8!21~z2z8!2#23/2@~x2x8!

3~dydz82dzdy8!1~y2y8!~dzdx82dxdz8!

1~z2z8!~dxdy82dydx8!#,

then the integral taken over both lines is4pn, where n is the
linking number. This value is mutual, i.e. it is unaltered wh
the two lines are interchanged.

January 22, 1833’’

Characteristically, Gauss provides no hint of how he arriv
at his result. However, the editor of theWorks, through care-
ful study of the context in which the remark appears, w
able to deduce the method he probably used. I shall disc
this method in Sec. V.

We first of all ask ourselves: What is this result doing
the volume on mathematical physics, in the middle of t
section on electromagnetism? I present here an answer to
question which can easily be understood by a modern un
graduate physics student.

Consider the integral of a magnetic fieldB around a closed
circuit c. Stokes’ theorem relates the value of this integral
curl B: If B is irrotational the field is conservative and th
1060© 1998 American Association of Physics Teachers
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integral vanishes. Stokes’s theorem was not available
Gauss in this form in 1833, although we today consider i
be a variant of Gauss’ own divergence theorem.6 curl B is
controlled by Maxwell’s equation: For the case of stea
currents we have

R
c
B–dx5E

S
curl B–dS54pE

S
j–dS54pI , ~1!

whereS is any oriented surface spanning the closed curvc,
j the electric current density, andI the electric current flow-
ing through the surfaceS. This result is of course Ampe`re’s
law. We generally present it in a first course on electro
namics for the case of a simple circular curve around
infinite straight wire, see Fig. 2~a!. If a current is flowing in
the wire it must constitute part of a closed circuit, so a m
realistic representation is achieved if we close the ends of
wire as in Fig. 2~b!. Mathematicians would say that we hav
thereby identified the points at infinity and compactified t
Euclidean spaceR3 to the three-sphereS3, a common strat-
egy in knot theory, where knots are defined as embedding
the circleS1 in S3.

The situation depicted in Fig. 2~b! can be continuously
deformed into the configuration depicted in Fig. 2~c!, which
is known as the Hopf link. A link is the disjoint union of tw
or more knots. Obviously the two components in Fig. 2
linked, and the number which Gauss callsn attempts to mea-
sure the degree of linking. For the Hopf link the linkin
number is 1. For the configuration shown in Fig. 2~d!, where
the current-carrying wire windsn times around the circuitc,

R
c
B–dx54pnI, ~2!

and the linking number isn.
We see that the linking number is related to the integra

the magnetic field, but how can we recover the integral
pression of Gauss? The answer is given by the law of Bi
Savart:

B~x!5I R
c8

dx83~x2x8!

ux2x8u3
. ~3!

It follows that

Fig. 1. A pair of knots.

Fig. 2. Current-carrying wires.
1061 Am. J. Phys., Vol. 66, No. 12, December 1998
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R
c
B–dx5I R

c
R

c8

dx–dx83~x2x8!

ux2x8u3 . ~4!

Inserting this into Eq.~2! yields

n5
1

4p R
c
R

c8

~x2x8!–dx3dx8

ux2x8u3
, ~5!

where we have used the cyclic property of the triple prod
in the numerator to rearrange the order of the factors. W
the notationsx5(x,y,z), x85(x8,y8,z8) and dx5(dx,dy,
dz), dx85(dx8,dy8,dz8), this is just the integral in Gauss
note.

It is easy to see that the numbern is unaffected by con-
tinuous deformations of either of the loops. Consider, e
the situation depicted in Fig. 3. We wish to compare t
results obtained for the original circuitc and the deformed
circuit c8. Consider an oriented surface, such as that deno
in Fig. 3 by S, which is bounded by the curvesc and c8.
Applying Stokes’s theorem, and paying attention to the o
entation of the boundary ofS, yields

E
S
curl B–dS5E

]S
B–dx2 R

c
B–dx1 R

c8
B–dx850, ~6!

since curlB54p j50 throughoutS. Hence,

n5
1

4pI R
c
B–dx5

1

4pI R
c8

B–dx8. ~7!

III. THE ANALYTICAL APPROACH

For a general configuration the task of evaluating Gau
integral seems formidable; for a certain simple configurat
of the loops in space Spivak6 writes: ‘‘You may easily con-
vince yourself that evaluating the linking number n by t
above integral is hopeless...’’. However, since we have jus
ascertained that the value ofn is unaffected by a continuou
deformation of the link components we may use this fact
order to find a configuration for which the integral becom
manageable.

How to arrive at such a configuration is indicated in Fig.
We consider the projection of the three-dimensional li
onto a two-dimensional plane, where the projection is cho
in such a way that the image of the link in the plane exhib
at most a finite number of isolated double points. This in
itively plausible procedure can be rigorously justified7

Choose a circle centered on each crossing whose radius
small that no other crossing falls within it, and imagine
cylinder in three-space with this circle as its base. Now
form the link in three-space in such a way that the tw

Fig. 3. Topological invariance of the linking number.
1061Allen C. Hirshfeld



nt
e

th
s

ti

d
ng
ts
si
til
we

es
at
ve
in

lv

he
ly

n
ent
ay.
he

ec-

d

n-
are
be
wn
ne

he
is-
ete,
the
by

for

e-

s

ng
the
na,

p

 18 July 2023 13:38:16
strands intersecting each of these cylinders are horizo
and perpendicular to each other, at least within the cylind
Furthermore, parametrise the curves with parameterss and
s8 in such a way that the segments enter the cylinder at
points corresponding tos5s8521, and leave it at the point
s5s8511. We also require thatuẋ(s)u5uẋ8(s8)u51. When
the segments are oriented as in Fig. 4, the parametrisa
within the crossing region is

x5~s,0,z!, x85~0,s8,z8!,

ẋ~s!5~1,0,0!, ẋ8~s8!5~0,1,0!, ~8!

dx5 ẋ~s!ds, dx85 ẋ8~s8!ds8.

The contribution to the integral~5! from the region involving
the kth crossing then becomes

n~k!5
1

4p
E

21

1

dsE
21

1

ds8
h

Ah21s21s82
3 ~9!

5
1

p
arctanS 1

hA21h2D , ~10!

whereh5z2z8.
Now deform the link further in such a way that the stran

everywhere approach the projection plane, in the limit lyi
in this plane, except in the vicinity of the crossing poin
where the overlying strand lies directly above, but infinite
mally close to, the underlying strand. This of course s
leaves the value of the linking number invariant. In Ref. 8
refer to this procedure astaking the flat knot limit. In Eq.
~10! it corresponds to the limith→0, which yields

n~k!5 1
2 sgn~h!5 1

2e~k!. ~11!

The crossing numbere(k)511 if the segmentdx lies above
dx8 in the original three-dimensional configuration~we call
this case anovercrossing!, ande(k)521 in the case of an
undercrossing. We further note that the integrand vanish
outside the crossing regions, for in this case the denomin
is nonvanishing but the numerator vanishes, since it invol
the triple product of three vectors in a plane. Hence the
tegral over the complete link is

n5(
k

n~k!5
1

2(k
e~k!, ~12!

where the summation is over all the crossings which invo
strands belonging to distinct link components.

Fig. 4. The flat knot limit.
1062 Am. J. Phys., Vol. 66, No. 12, December 1998
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IV. THE ALGEBRAICAL APPROACH

Up to now I have attempted to motivate and illustrate t
concept of the linking number by referring to the relative
simple configurations shown in the figures. Expression~12!
is, however, completely general. It is valid for links with a
arbitrary number of components, where each compon
may itself be knotted in some more or less complicated w
This is the expression for the linking number used in t
algebraical, or combinatorial, approach to knot theory. In
this approach the central objects are thelink diagrams, which
are the plane projections of the links supplied with the n
essary crossing information; the convention ise(k)511 at
the kth crossing if the upper strand must be rotatedcounter-
clockwiseto get to the direction of the lower strand, an
e(k)521 if the rotation isclockwise.

Link diagrams are used extensively in knot theory. A fu
damental result due to Reidemeister is that two links
equivalent if and only if their associated diagrams can
made to coincide by a finite succession of the moves sho
in Fig. 5. Of course, continuous deformations in the pla
which do not involve crossings are also allowed.

It is intuitively clear that these moves do not affect t
topological nature of the link; the deep part of Reideme
ter’s result is that these moves are sufficient. To be compl
the moves listed here must be distinguished according to
orientations of the various segments, and complemented
their obvious counterparts involving alternative choices
the overcrossings and undercrossings.

It is an elementary exercise to check that expression~12!
for the linking number is invariant under each of the Reid
meister moves. This provides acombinatorialproof of the
fact that the linking number is a link invariant, which wa
already established above~for a restricted case! by an ana-
lytical method.

V. THE GEOMETRICAL APPROACH

I will consider here one more method of establishi
Gauss’ result, presumably that used by Gauss himself. In
course of his investigations of magnetostatic phenome
Gauss noticed that the magnetic field at a pointx induced by
a steady current in a loopc8 can be calculated with the hel

Fig. 5. The Reidemeister moves.
1062Allen C. Hirshfeld
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of amagnetostatic potential, which is equal to the solid angl
V~x! subtended by a surfaceS8 spanning the loopc8 as seen
from x. The formula is

B~x!5I“V~x!, ~13!

where

V~x!5E ~x82x!–dS8

ux82xu3
, ~14!

and I is the electric current flowing in the circuit. The sig
convention for the solid angle is that it is positive when t
projection of the outward normal to the oriented surface o
the direction of the line-of-sight is positive, and negati
when this projection is negative. The formula is most eas
established by starting from the Biot–Savart law and us
standard vector identities.9 Inserting this into Eq.~2! yields

n5
1

4pI R
c
B–dx5

1

4p R
c
~“V!–dx

5
1

4p
@V~x1!2V~x2!#, ~15!

where x1 and x2 are the points onc directly above and
below the surfaceS8 for the simple case depicted in Fig
2~c!.

You can easily convince yourself thatV(x1)2V(x2)
54p for an arbitrary surfaceS8. For example, ifS8 is pla-
nar, this just means that when you are standing directly
front of an extended wall you see it covering a solid angle
2p, and when you are directly behind the wall the solid an
is 22p. For a sphere with an opening, as in Fig. 6, you s
a solid angle ofV54p2V8 from a point inside the spher
and directly opposite the opening@Fig. 6~a!#, and a solid
angle of2V8 from a point just outside the sphere@in any
direction which does not point to the opening your line-o
sight meets the spheretwice, and the corresponding contr
butions to the solid angle have opposite signs and can
Fig. 6~b!#.

The geometrical method thus again yields a linking nu
ber11 for the Hopf link shown in Fig. 2~c! andn for the link
in Fig. 2~d!. We may say that we get a contribution of11 to
the linking number each time one link component go
though an oriented surface spanned by the other link com
nent in the direction of the outward normal, and a contrib
tion of 21 each time it goes through in the opposite dire
tion. We easily see with this method that for the so-cal
Whitehead link shown in Fig. 7~a! the linking number is
zero! This illustrates the point mentioned in Sec. I, tha
single link invariant is not sufficient to classify links. It i
certainly clear that the components of the Whitehead l
really are linked, in the sense that they cannot be separa

Fig. 6. Solid angles.
1063 Am. J. Phys., Vol. 66, No. 12, December 1998
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without cutting at least one of the components. But the lin
ing number does not distinguish the Whitehead link from
trivial link shown in Fig. 7~b!.

The geometrical method can also be extended to m
general cases than those illustrated in the figures. To do
we would use a fundamental result of Seifert, which tells
that an arbitrary knot can be spanned by a connected,
ented surface.7 However, for such cases the method quick
loses its intuitive appeal, and modern mathematical texts
voke more general concepts to describe the linking num
such as thedegreeof a mapping.10 Despite these develop
ments, tom Dieck11 tells us, ‘‘Even after all these decade
there is still nothing in topology to match (Gauss’) result f
elegance and insight...’’.

VI. FURTHER DEVELOPMENTS IN KNOT
THEORY

After Gauss’ remark concerning the linking number, a
another remark he made on winding numbers and cros
information, some further results concerning knots we
found by his student Listing. But the systematic study
knots began with the investigations of the Scottish mathe
tician P. G. Tait.4 Tait was interested in Helmholz’s finding
concerning persistent vortex rings in incompressible flui
and communicated these results to W. G. Thomson~the later
Lord Kelvin!. Thomson was thereby inspired to his theory
‘‘vortex atoms,’’ in which the atoms of the various elemen
correspond to differently knotted vortex rings in the eth
Put this way the notion sounds to us naive, but Tait’s wo
‘‘ There is, of course, an infinite number of possible mode
vibration for every vortex...’’ seem almost uncannily pro-
phetic when we remember that Schro¨dinger finally suc-
ceeded in calculating the frequencies of atomic radiati
using a method devised for finding the frequencies of
normal modes of a vibrating string. We may also be
minded of modern string theories of the elementary partic
In any case, Tait was motivated to embark on a system
cataloging of the knots with up to ten crossings, generat
in the process the famous series of ‘‘Tait conjectures,’’ so
of which have just been proven in the last decade. The m
ern theory of magnetic flux tubes in perfectly conducti
incompressible fluids may be considered an extension
Helmholtz’s work on vortex rings.12

After Tait’s work many important developments in kn
theory were made in the first half of this century by ma
ematicians such as Seifert and Alexander. The next sig
cant conjunction of physics and knot theory occurred
1985, when the physicist V. Jones realized the relevanc
his results concerning von Neumann algebras to the theor
knots, and introduced an important invariant called theJones
polynomial.13 This turned out to be only the first in a whol
series of new invariants. In the course of this work intima
relationships between knot theory and soluble models in
tistical mechanics were uncovered. In this context the me

Fig. 7. The Whitehead link.
1063Allen C. Hirshfeld
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ods of the theory ofquantum groupsplayed an important
role. This whole development is often referred to as
Jones revolution.1

It turns out, however, that even with the help of all the
new invariants we are not in a position to solve the origi
problem of classifying knots and links. The latest twist in o
story involves the work of the Russian mathematic
Vassiliev.14 Vassiliev proposed a class of new invarian
which he called invariants of finite type. He conjectured th
this class might be powerful enough to solve the classifi
tion problem.

A surprising link between quantum field theory and kn
theory was discovered in a separate line of developmen
the early 1970’s theoretical physicists became intereste
nonperturbative effects in quantum field theories, especi
in their topological aspects, which are relevant to studies
solitons, integral quantum numbers, tunneling effects
Yang–Mills theory, and anomalies.15 Topological effects re-
sult, e.g., when a Chern–Simons term is present in the
grangian of the field theory under consideration. Such fi
theories were studied, beginning in 1980, by Jackiw16 and
others.17

Chern–Simons forms originally arose in mathematics
connection with studies of invariant polynomials and
Rham cohomology classes.18 A gauge field theory in three
dimensions which has a Chern–Simons form for its Lagra
ian is an example of atopological field theory, since its ac-
tion is metric independent. The observables of a ga
theory are quantities which physicists call ‘‘Wilson loops
closely related to what mathematicians call ‘‘holonomies
In a topological field theory the vacuum expectation value
such a Wilson loop cannot depend on any metric proper
of the loop, in contrast, e.g., to Yang–Mills theory, whe
this expectation value depends on the area of the loop
way which is connected with theconfinementphenomena of
the strong interactions.19 The expectation value in a topolog
cal field theory can thus only depend on how the loop
knotted, in other words it must be a knot invariant. Follo
ing up on suggestions made by Polyakov20 and Atiyah,21

Witten22 proved in 1989 that in the SU~2! Chern–Simons
theory the expectation value of a given loop is related to
Jones polynomial of that loop. It was later shown that us
other gauge groups yields many of the other new k
invariants.23

In a series of papers by Witten’s erstwhile stude
Bar-Natan,24 the topologists Birman and Lin,25 and the field
theorists Guadagniniet al.,26 it was proven that the indi-
vidual terms in the perturbation expansion of the vacu
expectation value in powers of the inverse coupling cons
correspond to the Vassiliev numbers. Bar-Natan and oth
have already proven that the Vassiliev invariants inde
separate a large class of knots.27

Chern–Simons theory and knot solutions continue as
tive research areas in theoretical physics. I refer here onl
applications involving quantum gravity,28 cosmology,29 and
finite-energy solitons.30

In the final section of this paper I shall make some of th
last remarks more explicit, indicate how the connection
tween knot theory and quantum field theory came to lig
and sketch some recent work which shows that at least s
of the Vassiliev invariants may be cast in the form of ‘‘ge
eralized linking numbers.’’
1064 Am. J. Phys., Vol. 66, No. 12, December 1998
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VII. CHERN –SIMONS THEORY AND VASSILIEV
INVARIANTS

The Chern–Simons theory is a gauge field theory, wh
the gauge fieldsAm

a (x) are defined on the spaceS3. The
index m runs from 1 to 3, corresponding to the three dime
sions of S3, and the indexa is a group index which runs
from 1 to dimG, whereG is the gauge group. The action

SCS5
k

8p E d3x emnl@Am
a ~x!]nAl

a~x!

2 1
3 f abcAm

a ~x!An
b~x!Al

c~x!#, ~16!

whereemnl is the totally antisymmetric Levi–Cevita tenso
f abc are the structure constants of the gauge group, and
peated indices are summed. The Wilson loop associated
a knotK in S3 is

W~K !5tr PFexpS i R
K
Am

a ~x!TadxmD G , ~17!

where theTa are the generators of the gauge group, andP
denotes path ordering of the terms in the expansion
the exponential. For a link with n components,
L5$K1 ,...,Kn%, the Wilson loop is W(L)
5W(K1)...W(Kn).

The vacuum expectation value of the Wilson loop is

^W~K !&5E DA$W~K !%exp~ iSCS@A# !, ~18!

where *DA indicates a Feynman integral over the gau
fields. The propagator function in quantum field theory
Dmn

ab(x,x8)5^Am
a (x)An

b(x8)&, for the Chern–Simons theory i
works out, in the Landau gauge, to

Dmn
ab~x,x8!5

i

k
dabemnl

~x2x8!l

ux2x8u3
. ~19!

When the expectation value~18! is expanded in terms of the
inverse coupling constant, the first-order term is

R dxm R dx8n Dmn
ab~x,x8!5dabE ~x2x8!–dx3dx8

ux2x8u3
.

~20!

Comparing this expression to Eq.~5! we see that it is
nothing other than our old friend the linking numbe
Polyakov20 was the first to notice the occurrence of the lin
ing number in this context, thus drawing attention to a p
sible connection between Chern–Simons theory and k
theory. Since we are here considering a single knot, i.e
one-component link, one may legitimately ask what is be
linked here. The answer involves the regularisation pro
dure used to make sense of the Feynman integrals. In a
ogy to the familiarpoint-splitting method, one regularises the
terms in the Chern–Simons theory by usingframed knots.22

That is, the one-dimensional knot is first thickened to a tw
dimensional ribbon, and at the end of the calculation
width of the ribbon is set to zero. The linking number in E
~20! actually describes how the edges of the ribbon
linked when the ribbon is twisted, see Fig. 8.

Witten considered the Chern–Simons theory with t
gauge group SU~2!, and found that in this case

^W~K !&'JK~q!, ~21!
1064Allen C. Hirshfeld
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whereJK(q) is the Jones polynomial associated to the k
K, andq5exp(22pi/k).23 To make the connection indicate
in this relation precise would involve field-theoretic techn
calities beyond the scope of this article. For details see R
23 and references therein. A theorem of Birman and Li25

concerning the Jones polynomial then implies that the se
rate terms in the perturbation series for^W(K)& are Vassiliev
invariants.

The standard technique involving Feynman diagrams m
be used to calculate the terms of the perturbation series
performing this calculation for the second-order term we
countered Feynman integrals which, in analogy to the in
gral for the linking number in Sec. III, could be evaluated
use of theflat knot limit. For the relevant second-order Va
siliev invariant~also known as the total twist31! we found by
this method the following expression:8

v2~K !5
1

4 (
j 1. j 2. j 3. j 4

@e~ j 1 , j 3!e~ j 2 , j 4!

2ea~ j 1 , j 3!ea~ j 2 , j 4!#. ~22!

The notation used in this expression is explained bel
First, choose for the oriented knot diagram an arbitrary
fixed point, thebasepoint~it turns out that all final results ar
independent of this arbitrary choice!. Now, starting from this
point, traverse the knot in the direction dictated by its orie
tation. Each time a crossing is encountered assign it a n
ber, e.g., the number 1 for the first crossing. On travers
the entire knot each crossing will be encountered exa
twice, so each crossing is characterized by two numb
Now define thecrossing function: e( j 1 , j 2)511 if the num-
bers j 1 , j 2 are associated with the same crossing, and
crossing is anovercrossing; e( j 1 , j 2)521 if it is an under-
crossing; e( j 1 , j 2)50 if j 1 , j 2 are associated with differen
crossings. The indicesj i obviously run from 1 to 2m, where
m is the number of crossings. This takes care of the first te
in Eq. ~22!.

The second term in Eq.~22! involves the concept of the
standard ascending diagram Ka associated with a knot dia
gram K. Start from the basepoint of the original diagramK
and traverse it again in the direction of its orientation, b
this time, each time you encounter a crossingfor the first
time, change it into an undercrossing, irrespective of whet
it was originally an overcrossing or an undercrossing. T
resulting diagram is thestandard ascending diagram Ka . It
turns out that for any knotK, the diagramKa is always the
knot diagram associated with thetrivial knot, which is just an
unknotted loop. This is illustrated for the trefoil knot in Fi
9. Finally,ea( j 1 , j 2) is the crossing function for the standa
ascending diagramKa .

Comparing Eq.~22! with Eq. ~12!, we see in what sens
the Vassiliev invariantv2(K) may be considered a genera
sation of the linking number, the first link invariant of all.

We have also calculated the third-order terms in the
pansion of the expectation values of the Wilson loops in

Fig. 8. A framed knot.
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Chern–Simons theory, and found similar expressions for
Vassiliev invariantv3(K),32 as well as for invariants assoc
ated with multicomponent links.33
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