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We discuss the concept of spontaneous" breaking of gauge sTmmetry in super- 
conductors and superfluids and, in particular, the circumstances trader which the 
absolute phase of a superfluid can be physically meaningful and experimentally 
relevant. We argue that the stu@ of this question pushes us toward the frontiers 
of what we understand about the quantum measurement process, and underline the 
need for a new theoretical framework that keeps pace with modern technological 
capabilities. 

1. I N T R O D U C T I O N  

The concept of spontaneously broken gauge symmetry (hereafter SBGS) is 
nowadays generally believed to be the key to understanding the phenomena 
of superconductivity and superfluidity. In this note we will raise and discuss 
some of the conceptual problems associated with this idea. For reasons of 
space we will consider explicitly only the case of a Bose superfluid and 
restrict ourselves to questions connected with the breaking of the global  

U(1) symmetry (i.e., we will neglect the local gauge-invariance aspects 
which give the phenomenon its name). We do not attempt to comment on 
analogous questions which might arise in a particle-physics context. 
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2. T H E  I D E A  O F  SBGS 

We review very briefly the basic concept of SBGS, assuming that the 
reader already has some familiarity with this subject. (I) We consider a 
neutral Bose system described by field operators ~,(r), O*(r) which satisfy 
the standard Bose commutation relations 

[0(r), O*(r')] = 6 ( r -  r'), [O(r), O(r')] = [0*(r), 0+(r')] =0  (1) 

The Hamiltonian is assumed to contain only (a) one- and two-particle 
potential energy terms which are functions only of the local particle density 
N(r)=-0t(r) O(r) and (b) kinetic-energy terms containing the product 
V0*(r) .V0(r ). Clearly, any such Hamiltonian will be invariant under the 
global U(1 ) transformation 

0(r) --+ 0(r) exp iz (2) 

where Z is a fixed real number independent of r and t. As a result, there 
exists a corresponding "Noether charge" which is conserved, namely the 
total particle number 

~r-= i ~*(r) ,p(r) dr -= ~ N(r) dr (3) 

We note for future reference that if we define an overall "phase" operator 
by the formal prescription 

f ~,(r) dr = A exp i0~ (A, ~ Hermitian operators) (4) 

then we have the "number-phase commutation relation" 

(A similar local commutation relation can be derived, f2~ but is of no 
importance for our present discussion.) 

The idea of SBGS may be understood by analogy with the behavior 
of an isotropic Heisenberg ferromagnet, In this latter case, the 0(3) 
symmetry of the Hamiltonian is "spontaneously broken" below the Curie 
temperature, in that the magnetization picks out a given direction and 
the thermodynamic equilibrium state is no longer invariant under O(3), 
Similarly, in the equilibrium Bose superfluid below the 2-transition the 
U(1) symmetry (2) is spontaneously broken: the system chooses a state in 
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which the expectation value of O(r) is no longer zero (as it is in the normal 
state) but rather tends in the thermodynamic limit to a finite value: 

(~,(r))  = const va 0 (6) 

More generally, one assumes that in the physically relevant (not necessarily 
equilibrium) states of the liquid which correspond to superfluid behavior 
one can define an "order parameter" g~(r, t) by the prescription 

~(r, t)-- ( O ( r : t ) )  # 0  (7) 

where ( 0 ( r : t ) )  means the expectation value of the operator 0(r) at time 
t. We note that the order parameter is a complex object and therefore has 
(prima facie, at least--but see below) a definite absolute phase as well as 
a definite phase variation in space and time [just as the direction of 
magnetization at a given point in a ferromagnet has (prima facie!) an 
absolute significance]; it is this feature on which we will particularly focus 
in what follows. Once given the concept of an order parameter, one can 
proceed to associate appropriate energies with its space and time variations 
and to derive the phenomena of superfluidity or superconductivity in the 
standard way: see, e.g., Ref. 3. In the following we shall, however, usually 
not be concerned with continuous space variations of gt(r, t) and will 
therefore take it to be constant within any given "bulk" region. 

3. H O W  SERIOUSLY S H O U L D  WE TAKE IT? 

First, a rather trivial but apparently not universally appreciated point: 
it is perfectly possible to define the concept of an order parameter gt(r, t) 
without invoking the idea of SBGS. To do this, we assume that the 
one-particle density matrix has a single eigenvalue No ~ N while all other 
eigenvalues are O(I). We then diagonalize this density matrix for the given 
time t and call the one-particle state corresponding to the large eigenvalue 
[which for a general (nonequilibrium) situation is not necessarily the zero- 
momentum state or even an eigenstate of any particular Hamittonian] 
~bo(r:t). Then we simply define 

~(r, t) - , f ~ o  ~o(r, t) (8) 

For all practical purposes the quantity defined by (8) has the same properties 
as that defined by (7). However, the definition (8) has, arguably, two 
advantages: First, while 7qr, t) still has an "absolute" phase, it is 
immediately and explicitly clear that this phase has no physical significance, 
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since it simply corresponds to a particular convention for the choice of the 
hases of the single-particle wave functions, which is completely arbitrary. 
Second, the definition (8) focuses attention on the assumption that one and 
only one single-particle state is macroscopically occupied. 

To see the significance of this last point, let us consider an intriguing 
problem which was raised and discussed a few years ago by Siggia and 
Ruckenstein (SR). (4~ In the last decade or so it has become possible to 
prepare atomic hydrogen in a strongly spin-polarized state, so that the 
electronic spin degree of freedom is effectively frozen out and the system 
effectively behaves like a collection of bosons of spin 1/2 (corresponding to 
the nuclear spin degree of freedom, which is not frozen out at the relevant 
temperatures) (see, e.g., Ref. 5). Suppose now we could prepare the system 
at some temperature T such that T~< T, #nB~ T, (where Ta=Bose 
condensation temperature, # ,=nuclear  moment, B=magrletic field), so 
that both 1" and ~ nuclear spin states have an appreciable (and nearly 
equal) population. We then imagine "quenching" the system through T~, 
the cooling power being provided by collisions (e.g., with the cell walls) 
which conserve nuclear spin. Presumably, Bose condensation then occurs in 
both the nuclear spin populations. What is the correct description of the 
resulting state of the system? 

SR's approach to this problem is based on the concept of SBGS and 
runs crudely as follows: If Bose condensation occurs in both the nuclear 
spin populations, there must be an order parameter ~t  = (~'T > for the Y 
spins and another one ~ == ( ¢ ; )  for the $ spins (as usual we neglect for 
present purposes any spatial variation). But since gz and ~ are complex 
numbers, their relative phase must be well defined, that is 

<¢t > = exp(i A~b)<~ > (9) 

But this means that it is possible to find a direction in the xy-plane such 
that when 1" and J, are defined with respect to this direction we have 
<q,+ > = 0, <~O T > # 0: i.e., the magnetization of the sample spontaneously 
develops a nonzero component in the xy-plane! 

We want to stress that this apparently bizarre conclusion may well be 
physically correct, once various small symmetry-breaking terms in the 
Hamiltonian are taken into account (cf. Ref. 4). However, the point we 
want to emphasize in the present context is that this conclusion does not 
follow simply from the observation that Bose condensation occurs in both 
the J, and 1" bands. Essentially, SR's ansatz for the final state q~ of the 
many-body system (taken for simplicity to be at T= 0) is schematically 

60 = const(a~b T + b~)+) N (10) 
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whereas the mere fact of Bose condensation in both bands would be 
equally compatible with (for example) the state 

q5 = const ~N/20N/2 (11 ) 

which clearly corresponds to zero transverse magnetization. Whether the 
true ground state is actually more like (10) or (11) (or something different 
from either) would seem to depend on fairly delicate considerations which 
are qualitatively similar to those we shall encounter in the next section and 
Sec. 4 in the context of Josephson junctions, and which may be specific to 
the particular system considered. 

We now turn to the principal difficulty in taking the idea of SBGS 
literally for an isolated system: If we do so, then the absolute phase ~b 
defined by Eq. (4) has a well-defined expectation value, and it therefore 
immediately follows from (5) that the total particle number cannot be well 
defined. In fact, it is easy to show from (5) that the existence of a 
well-defined absolute phase for an isolated superfluid system requires the 
wave function in the particle-number representation to be of the form 

cl)= ~ ax~hN, aN= [aNte is'o (12) 
N 

i.e., a coherent superposition (not a mixture!) of states corresponding to 
different total particle number (or baryon number). The rest of this paper 
will be devoted to the question of whether, and how, we can make sense 
of this apparently exotic idea. Of course, as is well known, (6) it is always 
possible to form a state of definite particle number by the prescription 

IN) = f eiN~ [(} ) dr} (13) 

where I~b) is an eigenstate of the phase. The question is (a) whether it is 
necessary to do this, and (b) whether it may sometimes be misleading to 
do it. 

It should be emphasized that the answer to the question we have just 
raised--in effect, "does an isolated supertluid possess a phase?'---can have, 
in principle, experimental consequences. This may be illustrated by an 
intriguing thought experiment proposed by P. W. Anderson(7): Imagine 
that we collect and condense two sets of helium atoms at opposite ends of 
the Earth. We then bring the two buckets of helium so formed close 
together and at some moment connect them ("instantaneously": this is a 
gedanken experiment, not a practical one!) through a Josephson superleak. 
We know from the general theory of Josephson junctions (8) (see next 
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section) t h a t / f  there is a definite relative phase A~ between the condensate 
in the two buckets, a Josephson current proportional to sin A~b will flow 
between them. Now, which of the following two statements, if either, about 
the behavior of the system immediately following the connection is correct? 

(a) No Josephson current flows on any trial. 

(b) In general, on each particular trial, a Josephson current flows, 
but the corresponding relative phase is random and unpredictable. 

Anderson favors conclusion (b), and certainly if one believed the 
hypothesis of SBSG interpreted as above [i.e., as implying Eq. (12)] one 
would be inexorably forced to this conclusion. 4 

4. JOSEPHSON COUPLING AND DECOUPLING 

To examine the question raised at the end of the last section, and 
related questions, it is convenient to start by considering the equilibrium 
state of two similar superfluid systems coupled by a weak link (Josephson 
junction). If the systems are sufficiently large, we can neglect to a first 
approximation any "capacitative" energy between them (i.e., any energy 
which depends on the relative number of particles on the two sides of the 
link, cf. below) and write the ground-state many-body wave function 
schematically in the form 

~b ~ (a~b z~ + b0R) N (14) 

where OL(OR) is the Schr6dinger amplitude for a particle to be on the left 
(right) of the junction. Here we will not worry about the absolute phase 
(for which there is no possible reference standard, cf. above), but rather 
concentrate on the relative phase of two superfluids that are eventually 
decoupled; this relative phase [arg(a/b)] wilt be denoted ~b. Thus (14) can 
be conveniently rewritten 

q~ "~ (lal ei¢/20L + IbI e-iO/2@R)N (15) 

If, now, we define an operator A~=-~iANi such that ~R, ~L are, 
respectively, eigenstates of ANi with eigenvalues + 1, - 1, then it is easy to 
show (cf. Ref. 9) by explicit calculation that the matrix elements of the 
operator AN" between states of the form (15) are identical to those of the 

4 Anderson's own reasons for favoring (b) are somewhat more subtle and seem to involve, 
implicitly, the considerations mentioned in Sec. 5 below. 
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operator -i3/~(~, i.e., within the relevant manifold A N  and 6 are conjugate 
variables: 

[AN, 4] = - i  (16) 

In general, the Josephson coupling energy depends on ~, in the 
simplest cases as - c o s  ¢. Thus, if there are no competing energies, the 
ground state is of the form (15) with q~ = 0. However, in general there will 
be a term in the Hamiltonian which depends on the conjugate variable AN; 
in the case of a realistic (charged) superconductor the main contributor to 
this term is the capacitance energy which is associated with any finite 
volume, while for the truly neutral superfluid the compressibility or 
gravitational energy gives rise to a term of similar form (but much smaller). 
Thus the general form of the relevant terms is 

H,~,((~, AN) = - E j  cos ~b + ½~c-*(AN) 2 (17) 

where ~c is some coefficient related to the capacitance, compressibility, or 
gravitational effects (e.g., for a superconductor it is C/4e 2, the factor of 4 
coming from the fact that the "bosons" are Cooper pairs). While in recent 
years ultrasmall-capacitance junctions have been fabricated which may 
have ~:-~> Es, the usual situation is that teE:>> 1; under this condition the 
ground state is essentially that of a simple harmonic oscillator, with large 
fluctuations in N and ~b very well defined: 

~2 ~ ( ( ~ U ) 2 ) -  1 ~ ( ~ E j ) -  1 ~ 1 (18) 

Suppose now that equilibrium has been established and we "suddenly" 
decouple the two bulk superfluids, e.g., by cutting the Josephson weak link 
with a high-power laser. The coefficient of cos ~b is now effectively zero (or 
exponentially small compared to its previous value). Does the quantity 
stay well defined? There are two rather different physical effects which we 
need to consider. First, just as in a harmonic oscillator in which the spring 
constant is suddenly set to zero, the "kinetic-energy" term (here the term 
in AN 2) will tend to broaden the wave packet in coordinate space. (7) It is 
straightforward to estimate this effect~°); we find that in the limit KEj>> t 
the time taken for the spread in ~ to become of order 2~z (indicating total 
lack of definition of the phase) is given by the estimate 

1: ,., 2~ x /2  h(K3/Ej) 1/4 (19) 

For a pair of superconductors with E s ~ 5 eV, C ~ 1 nF (a fairly large value 
in practice) this gives ~ --~ 25 ns. For a pair of buckets of superfluid helium 
with free surfaces of area 1 cm 2 and a Josephson coupling energy of the 
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order of t K (cf. Ref. 11), we find that dephasing due to gravitational forces 
takes a much larger time, ~ 100 years, while for the corresponding closed 
geometry compressibility forces would give a time about three orders of 
magnitude smaller 5 (about one month). 

The second effect which we have to consider is the dephasing effect of 
a random environment. While a known, c-number force which couples 
linearly to AN would give only a fixed and calculable precession of ~b, even 
linear coupling to a quantum (and hence intrinsically random) environ- 
ment will lead to some degree of dephasing. Of course, this effect is also 
present in the coupled situation, but this may be effectively opposed by the 
Josephson coupling energy, l i t  should be noted, incidentally, that in practice 
the very act of severing contact (e.g., by physically cutting a Josephson 
junction) may itself cut off the most effective dissipation mechanismus such 
as the tunneling of normal quasiparticles. ~12~] 

At the time of writing we have not carried out a concrete calculation 
of this effect for the case of physical interest, where the isolated system is 
described by Eq. (17) (although it should not be difficult to do so, and 
indeed the results may be implicit in some of the existing literature on 
quantum dissipation). However, we have carried out a detailed calcula- 
tion ~1°) for a closely related problem, namely that of a "spin-boson" system 
for which the tunneling matrix element A is suddenly switched off at t = 0, 
and the result is instructive. We recall that with the "standard" notation 
(see, e.g., Ref. 13) the effects of the environment are entirely described by 
a spectral function J(c0), which for low co can be assumed to go like e)s; the 
coupled equilibrium system shows a finite degree of coherence at T =  0 
(that is, a finite expectation value of the operator a x in the notation of 
Ref. 13) if and only if J(o)) either tends to zero with ~o faster than m itself 
(s > 1, "superohmic" case) or is equal to ~co (s = 1, "ohmic" case) with the 
dimensionless parameter e less than 1 (see, e.g., Ref. 14). Our calculation 
assumes that for t < 0 the equilibrium state is described approximately by 
the variational wave function of Ref. 15 (which conforms to the above 
statements), and studies the evolution following decoupling (A ~ 0 )  at 
t = 0. At zero temperature, we find that for the ohmic case with ~ < 1 the 
quanity ( a x )  decays to zero algebraically with time [as (Art) -2~, where 
Ar is the renormalized tunneling matrix element(13~], whereas in the 
"superohmic" case ( a x )  tends to a finite value for t ~ o v ,  i.e., the 
coherence is never totally destroyed by the environment. These asymptotic 
laws are modified at nonzero temperatures if t ~> h/kT (the former laws are 
still valid if co;-1 ~ t ~ h / k T ,  where co~ is an upper cutoff in the spectrum 

s Anderson (Re[ 7) quotes a dephasing time, for the superfluid helium case, of order 108 years. 
It is not clear to us on what assumptions this estimate is based. 
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function). In the ohmic case with ~< 1, (a~)  decays exponentially with 
time [as (ax)~exp(-~kTt/h), if kT~Ar]. As to the superohmic cases, 
( ax )  decays algebraically with time, if s = 2, and tends to a constant value, 
if s=3 .  

The asymptotic laws that we have obtained for the case of a two-level 
system yield qualitative information on the long-time behavior of a 
decoupled Josephson function if one exploits the analogy, ~ ~ AN and 
#~ ~ cos ~. The degree of definition of the relative phase ~ is closely related 
to the coherence between the states with different relative number of 
particles (which is given by the value of the off-diagonal terms of the 
reduced density matrix in the representation of AN eigenstates), in the 
same way as, in the spin-boson problem, a good degree of coherence 
between eigenstates of a: must exist for a~ to be well defined. 

The qualitative upshot of these considerations is that for any given 
physical system the relative phase ~ becomes ill-defined in the limit t ~ oo, 
but that the time (call it z~) for this to occur may well be long enough to 
allow, in principle at least, interesting experiments. This raises at least two 
different questions: 

(1) 

(2) 

We will 
a future 

If we confine ourselves to times much shorter than z~, is it 
possible to set up a "standard of phase"? 

At times t >> ~ ,  what exactly does "ill-defined" mean? 

discuss the second question in the next section: the first is left for 
occasion. 

5. CLASSICAL AND QUANTUM IGNORANCE: DOES 
"MEASUREMENT" CREATE A RELATIVE PHASE? 

In Sec. 3 we saw that, whatever is the case at short times, at 
sufficiently long times the relative phase of two superfluids which were once 
in contact (and hence, presumably, afortiori that of two which have never 
been in contact) is ill defined. This apparently innocuous statement raises 
at least two very intriguing questions, to illustrate which we focus on the 
thought experiment described in Sec. 2, in which the two superfluids are 
suddenly brought into contact and one asks whether or not a Josephson 
current flows between them. 

The first question concerns the relation between "classical ignorance" 
and "quantum ignorance." If we had neglected the dephasing effects 
explored in Sec. 3 and assumed, instead, that the two systems had been 
subjected to some classical but unknown potential difference during the 
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period of their separation, then we could hardly avoid the conclusion that 
the answer (b) of Sec. 2 is correct. Is answer (b) still correct if the dephasing 
is due rather to the mechanisms of Sec. 3? We believe it is not: i.e., that in 
this case no Josephson current will flow on any trial [answer (a)] and the 
system, starting in effect in an incoherent mixture of relative number 
eigenstates, will simply radiate photons, etc., until it attains the ground 
state of its new Hamiltonian including the Josephson coupling (such a 
ground state corresponding, of course, to ~b = 0 and hence no current). An 
intriguing aspect of this conjecture is that it prima facie suggests that the 
reduced density matrix pNNr (which would be identical in the two cases 
considered) does not  give all the information needed to predict the result 
of all possible experiments on the (physically isolated) system, contrary to 
what a naive reading of :many textbooks of quantum theory might lead one 
to assume. This illustrates the ambiguities of applying standard quantum 
measurement theory to this kind of case (cf. below). 

However, before drawing conclusions about the results of actual 
experiments, one should face up to the following question: Even if we allow 
that prior to the reconnection the state of the two systems was correctly 
described by an incoherent mixture of number eigenstates, does the act of 
"looking to see" whether a Josephson current flows itself force the system 
into an eigenstate of current and hence of relative phase ? If we take at face 
value the statements so often made in quantum measurement theory, that 
"measurement projects the system into an eigenstate of the measured 
quantity," then it would seem that the answer is yes; and hence (since the 
concept of the "occurrence" or not of an event in the absence of a specifica- 
tion of how it is to be observed is alien to quantum mechanics) that answer 
(b) of Sec. 2 is indeed after all correct. Yet if one thinks about it seriously, 
this answer is bizarre in the extreme. In principle there is nothing to stop 
us from considering a case where the magnitude of the Josephson current 
is of order of, say, kiloamps. If we agree that in the absence of a "measure- 
ment" of the current the system is (initially at least) in a mixture of 
eigenstates of relative number and hence not in an eigenstate of current 
(relative phase), can it really be that by placing, let us say, a miniscule 
compass needle next to the system, with a weak light beam to read off its 
position, we can force the system to "realize" a definite macroscopic value 
of the current? Common sense certainly rebels against this conclusion, and 
we believe that in this case common sense is right. The problem is that we 
are implicitly trying to apply the quantum measurement nostrums 
developed in the 20's and 30's in the context of experiments of the Stern- 
Gerlach type, where only microscopic objects have to be described by 
quantum mechanics, to experiments of a type only feasible in the 90's (if 
then!) where we seriously wonder about the effects of quantum mechanics 
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on macroscopic bodies. What is needed is a quantum measurement theory 
for the 90's--one in which alt the assumptions about relative energy and 
time scales, etc., which are implicit in Stern-Gerlach type analysis, are 
made explicit and if necessary revised. 

In this paper we have raised many questions and given few answers. 
To summarize, the absolute phase of a superfluid is not a necessary, or 
indeed a meaningful, concept. Howevei~, under certain conditions, the 
relative phase of two superfluids can be meaningful, even when they are 
physically separated; but these conditions are extremely stringent. The 
question whether a measurement can "create" a relative phase when none 
previously existed remains unresolved and would seem to require a more 
realistic approach than currently exists to the concept of measurement in 
the context of macroscopic quantum phenomena. We hope nevertheless 
that we have reinforced the case (cf. Ref. 7) that the study of phase 
coherence in superfluids leads to many intriguing questions about the 
meaning of the quantum formalism. It is a pleasure to dedicate this paper 
to John Bell, who has probably done more than anyone else to make us 
all think about these issues, on the occasion of his 60th birthday. 
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