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We shall present here the motivation and a general descrip- 
tion of a method dealing with a class of problems in mathe- 
matical physics. The method is, essentially, a statistical 
approach t o  the study of differential equations, or more 
generally, of integro-differential equations that  occur in 
various branches of the natural sciences. 

LREADY in the nineteenth century a sharp distinction began to ap- A pear between two different mathematical methods of treating 
physical phenomena. Problems involving only a few particles were 
studied in classical mechanics, through the study of systems of ordinary 
differential equations. For the description of systems with very many 
particles, an entirely different technique was used, namely, the method 
of statistical mechanics. In  this latter approach, one does not concen- 
trate on the individual particles but studies the properties of sek of 
particles. In  pure mathematics an intensive study of the properties of 
sets of points was the subject of a newT field. This is the so-called theory 
of sets, the basic theory of integration, and the twentieth century de- 
velopment of the theory of probabilities prepared the formal apparatus 
for the use of such models in theoretical physics, i.e., description of 
properties of aggregates of points rather than of individual points and 
their coordinates. 

Soon after khe development of the calculus, the mathematical ap- 
paratus of partial differential equations was used for dealing with the 
problems of the physics of the continuum. Hydrodynamics is the most 
widely known field formulated in this fashion. A little later came the 
treatment of the problems of heat conduction and still later the field 
theories, like the electromagnetic theory of Maxwell. All this is very 
well known. I t  is of course important to remember that the study of the 
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physics of the continuum was paralleled through "kinetic theories." 
These consist in approximating the continuum by very large, but finite, 
numbers of interacting particles. 

I 

When a physical problem involves an intermediate situation, i.e., a 
system with a moderate number of parts, neither of the two approaches 
is very practical. The methods of analytical mechanics do not even give 
a qualitative survey of the behavior of a system of three mutually at- 
tractive bodies. Obviously the statistical-mechanical approach would 
also be unrealistic. 

An analogous situation exists in problems of combinatorial analysis 
and of the theory of probabilities. To calculate the probability of a 
successful outcome of a game of solitaire (we understand here only such 
games where skill plays no role) is a completely intractable task. On the 
other hand, the laws of large numbers and the asymptotic theorems of 
the theory of probabilities will not throw much light even on qualitative 
questions concerning such probabilities. Obviously the practical pro- 
cedure is to produce a large number of exan~ples of any given game and 
then to examine the relative proportion of successes. The "solitaire" is 
meant here merely as an illustration for the whole class of combina- 
torial problems occurring in both pure mathematics and the applied 
sciences. We can see a t  once that the estimate will never be confined 
within given limits with certainty, but only-if the number of trials is 
great-with great probability. Even to establish this much we must 
have recourse to the laws of large numbers and other results of the 
theory of probabilities. 

Another case illustrating this situation is as follows: Consider the 
problem of evaluating the volume of a region in, say, a twenty-dimen- 
sional space. The region is defined by a set of inequalities 

This means that v e  consider all points(xl, x2, x3, - . . 220) satisfying 
the given inequalities. Suppose further that we know that the region is 
located in the unit cube and we know that its volume is not vanishingly 
small in general. The multiple integrals will be hardly evaluable. The 
procedure based on the definition of a volume or the definition of an 
integral, i.e., the subdivision of the whole unit cube, forexample, each 
coordinate XI into ten parts, leads to an examination of 1020 lattice 
points in the unit cube. I t  is obviously impossible to count all of them. 
Here again the more sensible approach would be to take, say lo4points 
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at  random from this ensemble and examine those only; i.e., we should 
count how many of the selected points satisfy all the given inequalities. 
I t  follows from simple application of ergodic theorems that the estimate 
should be, with great probability, valid within a few per cent. 

As another illustration, certain problems in the study of cosmic rays 
are of the following form. An incoming particle with great energy 
entering the atmosphere starts a whole chain of nuclear events. New 
particles are produced from the target nuclei, these in turn produce new 
reactions. This cascade process continues mith more and more particles 
created until the available individual energies become too small to 
produce further nuclear events. The particles in question are protons, 
neutrons, electrons, gamma rays and mesons. The probability of pro- 
ducing a given particle with a given energy in any given collision is 
dependent on the energy of the incoming particle. A further complica- 
tion is that there is a probability distribution for the direction of mo- 
tions. Mathematically, this complicated process is an illustration of a 
so-called AIarkoff chain. The mathematical tool for the study of such 
chains is matrix theory. It is obvious that in order to obtain a mathe- 
matical analysis, one would have to multiply a large number of (nXn)  
matrices, where n is quite great. 

Here again one might t ry to perform a finite number of "experimentsn 
and obtain a class or sample of possible genealogies. These experiments 
will of course be performed not with any physical apparatus, but theo- 
retically. If we assume that the probability of each possible event is 
given, we can then play a great number of games of chance, with 
chances corresponding to the assumed probability distributions. In this 
fashion one can study empirically the asymptotic properties of powers 
of matrices with positive coefficients, interpreted as transition proba- 
bilities. 

Finally let us consider more generally the group of problems which 
gave rise to the development of the method to which this article is de- 
voted. Imagine that we have a medium in which a nuclear particle is 
introduced, capable of producing other nuclear particles mith a distri- 
bution of energy and direction of motion. Assume for simplicity that all 
particles are of the same nature. Their procreative powers depend, how- 
ever, on their position in the medium and on their energy. The problem 
of the behavior of such a system is formulated by a set of integro- 
differential equations. Such equations are known in the kinetic theory 
of gases as the Boltzmann equations. In the theory of probabilities one 
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has somewhat similar situations described by the Fokker-Planck equa- 
tions. A very simplified version of such a problem would lead to the 
equation : 

where u(x, y, z )  represents the density of the particles a t  the point 
(x, y, z ) .  The Laplacian term, aAu on the right hand side corresponds 
to the diffusion of the particles, and bu to the particle procreation, or 
multiplication. [In reality, the equation describing the physical situa- 
tion stated above is much more complicated. I t  involves more inde- 
pendent variables, inasmuch as one is interested in the density w(x, y, z ;  
v,, v,, v,) of particles in phase space, v being the velocity vector.] The 
classical methods for dealing with these equations are extremely labori- 
ous and incomplete in the sense that solutions in '(closed form" are un- 
obtainable. The idea of using a statistical approach a t  which we hinted 
in the preceding examples is sometimes referred to as the RSonte Carlo 
method. 

The mathematical description is the study of a flow which consists of 
a mixture of deterministic and stochastic processes.' I t  requires its own 
laws of large numbers and asymptotic theorems, the study of which has 
only begun. The computational procedure looks in practice as follows: 
we imagine. that we have an ensemble of particles each represented by 
a set of numbers. These numbers specify the time, components of 
position and velocity vectors, also an index identifying the nature of 
the particle. With each of these sets of numbers, random processes are 
initiated which lead to the determination of a new set of values. There 
exists indeed a set of probability distributions for the new values of the 
parameters after a specified time interval At. Imagine that we draw a t  
random and independently, values from a prepared collection possessing 
such distributions. FIcre a distinction must be made between those 
parameters which we believe vary independently of each other, and 
those values which are strictly determined by the values of other 
parameters. To illustrate this point: assume for instance that in the 
fission process the direction of the emitted neutron is independent of 
its velocity. Or again, the direction of a neutron in a homogeneous 
medium does not influence the distance between its origin and the site 
of its first collision. On the other hand, having "drawn" from appropri- 

1 von Neumann, J., and Ulam, S.,Bulletin B.M.S.,Abstract 61-0-165 (1946). 
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ate distributions the velocity of a new-born particle and the distance to 
its first collision, the time elapsed in travel is completely determined 
and has to be calculated accordingly. By considering a large number 
of particles with their corresponding sets of parameters me obtain in 
this fashion another collection of particles and a new class of sets of 
values of their parameters. The hope is, of course, that in this manner 
we obtain a good sample of the distributions a t  the time t+At .  This 
procedure is repeated as many times as required for the duration of the 
real process or else, in problems where we believe a stationary distribu- 
tion exists, until our "esperimental" distributions do not show signifi- 
cant changes from one step to the next. 

The essential feature of the process is that we avoid dealing with 
multiple integrations or multiplications of the probability matrices, 
but instead sample single chains of events. We obtain a sample of the 
set of all such possible chains, and on it we can make a statistical study 
of both the genealogical properties and v a r i ~ u s  distributions a t  a given 
time. 

We want now to point out that modern computing machines are 
extremely well suited to perform the procedures described. In practice, 
the set of values of parameters characterizing a particle is represented, 
for example, by a set of numbers punched on a card. We have a t  the 
outset a large number of particles (or cards) with parameters reflecting 
given initial distributions. The step in time consists in the production 
of a new such set of csrds. The original set is processed one by one by a 
computing machine somewhat as fo l lo~~s :  The machine has been set up 
in advance with a particular sequence of prescribed operations. These 
divide roughly into two classes: (I) production of "random" values 
with their frequency distribution equal to those which govern the 
change of each parameter, (2) calculation of the values of those pa- 
rameters which are deterministic, i.e., obtained algebraically from the 
others. I t  may seem strange that the machine can simulate the produc- 
tion of a series of random numbers, but this is indeed possible. In  fact, 
it suffices to produce a sequence of numbers between 0 and 1 which 
have a uniform distribution in this interval but otherwise are uncorre- 
lated, i.e., pairs will have uniform distribution in the unit square, 
triplets uniformly distributed in the unit cube, etc., as far as practically 
feasible. This can be achieved with errors as small as desired or practi- 
cal. What is more, it is not necessary to store a collection of surh num- 
bers in the machine itself, but paradoxically enough the machine can 
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be made to produce numbers simulating the above properties by iterat- 
ing a well-defined arithmetical operation. 

Once a uniformly distributed random set is available, sets with a 
prescribed probability distribution f(x) can be obtained from it by first 
drawing from a uniform uncorrelated distribution, and then using, in- 
stead of the number x which was drawn, another value y =g(x) where 
g(x) mas computed in advance so that the values y possess the distribu- 
tion f (y). 

Regarding the sequence of operations on a machine, more can be and 
has been done. The choice of the kind of step to be performed by the 
machine can be made to depend on the values of certain parameters just 
obtained. In this fashion even dependent probabilistic processes can be 
performed. Quite apart from mechanized computations, let us point 
out one feature of the method mhich makes it advantageous with, say, 
stepwise integration of differential equations. In  order to find a par- 
ticular solution, the usual method consists in iterating an algebraical 
step, which involves in the nth stage values obtained from the (n -1)th 
step. The procedure is thus serial, and in general one does not 
shorten the time required for a solution of the problem by the use of 
more than one computer. On the other hand, the statistical methods 
can be applied by many computers working in parallel and independ- 
ently. Several such calculations have already been performed for prob- 
lems of types discussed above.2 

IV 

Let us indicate now how other equations could be dealt with in a 
similar manner. The first, purely mathematical, step is to transform the 
given equation into an equivalent one, possessing the form of a diffusion 
equation with possible multiplication of the particles involved. For 
example as suggested by Fermi, the time-independent Schrodinger 
equation 

A+(x, Y, 2) = ( E - V)+(x, Y, 2) 

could be studied as follows. Re-introduce time dependence by consider- 
ing 

74x1 Y, 2, t) = $(x, Y, z W E t  

u will obey the equaticn 
du--- Au - Vu. 
dt 

Among others, problems of diffusion of neutrons, gamma r a p ,  etc. To cite an example involving 
the study of matrices, there ie a recent paper by Goldberger, Phys. Reu. 74, 1269 (1948), on the inter- 
action of high energy neutrons with heavy nuclei. 
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This last equation can be interpreted however as describing the be- 
havior of a system of particles each of which performs a random walk, 
i.e., diffuses isotropically and a t  the same time is subject to multiplica- 
tion, which is determined by the value of the point function V . If the 
solution of the latter equation corresponds to a spatial mode multiply- 
ing exponentially in time, the examination of the spatial part will give 
the desired #(x, y, 2)-corresponding to the lowest "eigenvalue" E. 

The mathematical theory behind our computational method may be 
briefly sketched as follows: As mentioned above and indicated by the 
examples, the process is a combination of stochastic and deterministic 
flows.' In more technical terms, it consists of repeated applications of 
matrices-like in Markoff chains-and completely specified trans-
formations, e.g., the transformation of phase space as given by the 
Hamilton differential equations. 

One interesting feature of the method is that it allows one to obtain 
the values of certain given operators on functions obeying a differential 
equation, without the point-by-point knowledge of the functions which 
are solutions of the equation. Thus we can get directly the values of the 
first few moments of a distribution, or the first few coefficients in the 
expansion of a solution into, for example, a Fourier series without the 
necessity of first "obtaining" the function itself. "Symbolically" if one 
is interested in the value of U(j) where U is a functional like the above, 
and j satisfies a certain operator equation $(j) = O ,  we can in many 
cases obtain an idea of the value of U ( j )directly, without "knowingn j 
a t  each point. 

The asymptotic theorems so far established provide the analogues of 
the lams of large numbers, such as the generalizations of the weak and 
strong theorems of Bernoulli, Cantelli-BoreL3 The more precise in- 
formation corresponding to that given in the Laplace-Liapounoff 
theory of additive processes has not yet been obtained for our more 
general case. In particular it seems very difficult to  estimate in a precise 
fashion the probability of the error due to the finiteness of the sample. 
This estimate would be of great practical importance, since it alone 
~vould allow us to suit the size of the sample to the desired accuracy. 

The "space" in which our process takes place is the collection of all 
possible chains of events, or infinite branching graph^.^ The general 
properties of such a phase space have been considered but much 
work remains to be done on the specific properties of such spaces, each 
corresponding to a given physical problem. 

1 Everett, C. J. and Ulam, S., U.S.A.E.C.,Los Alamos reports LADC-633 and LADC-534. De-
classified, 1948. 

'Everett, C. J. and Ulam, S., Proc. Nat.  Acad. Sciencee, 34,403 (1948). 


