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On the Dynamics of the Electron

By H. Poincaré (Paris).

Meeting of July 23, 1905.

INTRODUCTION.

It seems at first sight that the aberration of light and the related
optical and electrical phenomena will provide us a means of
determining the absolute motion of the Earth, or rather its motion,
not in relation to the other stars, but in relation to the ether. FRESNEL

had already tried it, but he recognized soon that the motion of the
earth does not alter the laws of refraction and reflection. Similar
experiments, like that of a telescope filled with water and all those
which take into consideration only terms of first order in respect to
aberration, give no other but negative results; soon an explanation
was discovered; but MICHELSON, having imagined an experiment
where the terms depending on the square of the aberration became
sensitive, failed as well.
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It seems that this impossibility of demonstrating an experimental
evidence for absolute motion of the Earth is a general law of nature;
we are naturally led to admit this law, which we will call the
Postulate of Relativity and admit it without restriction. This
postulate, which is up to now in accord with experiments, may be
either confirmed or disproved later by more precise experiments, it
is in any case interesting to see which consequences follow from it.

An explanation was proposed by LORENTZ and FITZGERALD, who
introduced the hypothesis of a contraction undergone by all bodies
into the direction of the motion of earth and proportional to the
square of aberration; this contraction, which we will call LORENTZ

contraction, would give an account of the experiment of MICHELSON

and all those which were carried out up to now. The hypothesis
would become insufficient, however, if one were to assume the
postulate of relativity in all its generality.

LORENTZ sought to supplement and modify it in order to put it in
perfect agreement with this postulate. He succeeded in doing so in
his article entitled Electromagnetic phenomena in a system moving
with any velocity smaller than that of light (Proceedings de
l’Académie d’Amsterdam, May 27, 1904).

The importance of the question determined me to take it up again;
the results which I obtained are in agreement with those of LORENTZ

on all important points; I was only led to modify and supplement
them in some points of detail; one will further see the differences
which are of secondary importance.

The idea of LORENTZ can be summarized as follows: if we can bring
the whole system to a common translation, without modification of
any of the apparent phenomena, it is because the equations of the
electromagnetic medium are not altered by certain transformations,

https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
https://en.wikisource.org/wiki/Electromagnetic_phenomena


4

which we will call LORENTZ transformation; two systems, one
motionless, the other in translation, thus become exact images of
one another.

LANGEVIN[1] had sought to modify the idea of LORENTZ; for both
authors the moving electron takes the shape of a flattened ellipsoid,
but for LORENTZ two of the axes of the ellipsoid remain constant,
while for LANGEVIN on the contrary it is the volume of the ellipsoid
which remains constant. Besides, both scientists showed hat these
two hypothesis are in agreement with the experiments of KAUFMANN,
as well as the original hypothesis of Abraham (undeformable
spherical electron).

The advantage of the theory of LANGEVIN is that it uses only
electromagnetic forces and binding forces; but it is incompatible
with the postulate of relativity; this is what LORENTZ had shown, this
is what I find again in another way by relying upon the principles of
group theory.

It is thus necessary to return from here to the theory of LORENTZ; but
if one wants to preserve it and avoid intolerable contradictions, it is
necessary to suppose a special force which explains at the same time
the contraction and the constancy of two of the axes. I sought to
determine this force, I found that it can be compared to a constant
external pressure, acting on the deformable and compressible
electron, and whose work is proportional to the variations of the
volume of the electron.

So if the inertia of matter is exclusively of electromagnetic origin, as
it is generally admitted since the experiment of KAUFMANN, and
except that constant pressure from which I come to speak, all forces
are of electromagnetic origin, the postulate of relativity can be
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established in any rigour. It is what I show by a very simple
calculation founded on the principle of least action.

But this is not all. LORENTZ, in the quoted work, considered it to be
necessary to supplement his hypothesis so that the postulate remains
when there are other forces as the electromagnetic forces. According
to him, all the forces, whatever is their origin, are affected by the
LORENTZ transformation (and consequently by a translation) in the
same way as the electromagnetic forces.

It was important to examine this assumption more closely and in
particular to seek which modifications it would oblige us to bring to
the laws of gravitation.

It is found at first sight, that we are forced to suppose that the
propagation of gravitation is not instantaneous, but happens with the
speed of light. One could believe that this is a sufficient reason to
reject the hypothesis, as LAPLACE has shown that this cannot be so.
But actually, this propagation effect is mainly compensated by a
different cause, so that there is no more contradiction between the
proposed law and the astronomical observations.

Is it possible to find a law, which satisfies the condition imposed by
LORENTZ, and which at the same time is reduced to the law of
Newton when the speeds of the stars are rather small, so that one
can neglect their squares (as well as the product of acceleration and
distance) in respect to the square speed of light?

To this question, as it further will be seen, one must answer in the
affirmative.

Is the law thus amended compatible with the astronomical
observations?
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At first sight it seems that it is the case, but this question can be
decided only by a thorough discussion.

But even accepting that the discussion turns to the advantage of a
new hypothesis, what should we conclude? If the propagation of
attraction happens with the speed of light, it cannot be by a
fortuitous coincidence, it must be due to a function of the ether; and
then it will be necessary to seek to penetrate the nature of this
function, and to relate it to the other functions of the fluid.

We cannot be satisfied with simply juxtaposed formulas which
would agree only by a lucky stroke; it is necessary that these
formulas are so to speak able to be penetrated mutually. Our mind
will not be satisfied before it believes to see the reason of this
agreement, at the point where it has the illusion that it could have
predicted it.

But the question can still be seen form another point of view, which
could be better understood by analogy. Let us suppose an
astronomer before COPERNICUS who reflects on the system of
PTOLEMY; he will notice that for all planets one of the two circles,
epicycle or deferent, is traversed in the same time. This cannot be by
chance, there is thus between all planets a mysterious binding.

But COPERNICUS, by simply changing the axes of coordinates
regarded as fixed, destroyed this appearance; each planet does not
describe any more than only one circle and the durations of the
revolutions become independent (until KEPLER restores between
them the binding which was believed to be destroyed).

Here it is possible that there is something analogue; if we admit the
postulate of relativity, we would find in the law of gravitation and
the electromagnetic laws a common number which would be the
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speed of light; and we would still find it in all the other forces of any
origin, which could be explained only in two manners:

Either there would be nothing in the world which is not of
electromagnetic origin.

Or this part which would be, so to speak, common to all the physical
phenomena, would be only apparent, something which would be due
to our methods of measurement. How do we perform our
measurements? By transportation, one on the other, of objects
regarded as invariable solids, one will answer immediately; but this
is not true any more in the current theory, if the LORENTZ contraction
is admitted. In this theory, two equal lengths are, by definition, two
lengths for which light takes the same time to traverse.

Perhaps it would be enough to give up this definition, so that the
theory of LORENTZ is as completely rejected as it was the system of
PTOLEMY by the intervention of COPERNICUS. If that happens one day,
it will not prove that the effort made by LORENTZ was useless;
because PTOLEMY, no matter what we think about him, was not
useless for COPERNICUS.

Also I did not hesitate to publish these few partial results, although
in this moment even the whole theory seems to be endangered by
the discovery of magnetocathodic rays.

§ 1. — LORENTZ transformation

LORENTZ had adopted a particular system of units, so as to eliminate
the factors 4π in the formulas. I'll do the same, plus I choose the
units of length and time so that the speed of light is equal to 1.
Under these conditions the fundamental formulas become (by
calling f, g, h the electric displacement, α, β, γ the magnetic force, F,
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G and H the vector potential, φ the scalar potential, ρ the electric
density, ξ, η, ζ the electron velocity, u, v, w the current):

(1)

A material element of volume dx dy dz suffers a mechanical force
whose components X dx dy dz, Y dz dx dy, Z dx dy dz are deduced
from the formula:

(2)

These equations are capable of a remarkable transformation
discovered by LORENTZ and which owes its interest from the fact,
that it explains why no experience is suited to show us the absolute
motion of the universe. Let:

(3)

l and ε are two arbitrary constants, and

If we now set:
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it follows:

Consider a sphere entrained with the electron in a uniform
translational motion, and

is the equation of that moving sphere whose volume is .

The transformation will change it into an ellipsoid, and it is easy to
find the equation. It is easily deduced because of equations (3):

(3bis)

The equation of the ellipsoid becomes:

This ellipsoid moves in uniform motion; for t' = 0, it reduces to

and has the volume:

If we want that the charge of an electron is not altered by the
transformation, and when we call ρ' the new electrical density, it
follows:
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(4)

Those are the new velocities ξ', η', ζ '; we must have:

where:

4bis

Here I should mention for the first time a discrepancy with LORENTZ.

LORENTZ poses (with different notations) (loco citato, page 813,
formulas 7 and 8):

We thus find the formulas:

but the value of ρ' differs.
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It is important to note that formulas (4) and (4bis) satisfy the
continuity condition

Indeed, let λ be an undetermined quantity and D the functional
determinant

(5)

with respect to t, x, y, z. We will have:

with 

Let , we see that the four functions

5bis

are related to the functions (5) by the same linear relations as the old
variables to the new variables. Then, if we denote by D' the
functional determinant of the functions (5bis) in relation to the new
variables, we have:
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where:

 C. Q. F.

D

With the hypothesis of LORENTZ, this condition is not satisfied, since
ρ' has not the same value.

We will define the new potentials, vector and scalar, in order to
satisfy the conditions

(6)

Then we obtain from this:

(7)

These formulas differ significantly from those of LORENTZ, but the
difference is ultimately due to the definitions.

We will choose the new electric and magnetic fields so as to satisfy
the equations:

(8)

It is easy to see that:
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and we conclude:

(9)

These formulas are identical to those of LORENTZ.

Our transformation does not alter the equations (I). Indeed, the
continuity condition, and the equations (6) and (8), already provided
us with some of the equations (I) (except the accentuation of letters).

Equations (6) close to the continuity condition give:

(10)

It remains to establish that:

and it is easy to see that these are necessary consequences of
equations (6), (8) and (10).

We must now compare the force before and after transformation.
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Let X, Y, Z be the force before, and X', Y', Z' the force after
transformation, both related to unit volume. In order for X' to satisfy
the same equations as before the transformation, we must have:

or, replacing all quantities by their values (4), (4bis) and (9) and
taking into account equations (2):

(11)

If we represent the components of the force X1, Y1, Z1, not per unit
volume, but per unit of electric charge of the electron, and X'1, Y'1,
Z'1 are the same quantities after the transformation, we would have:

and we would have the equations
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(11bis)

LORENTZ found [with different notation, page 813, formula (10)]:

(11ter)

Before going further, it is important to investigate the cause of this
significant discrepancy. It is obvious that the formulas for ξ', η', ζ'
are not the same, while the formulas for the electric and magnetic
fields are the same.

If the inertia of electrons is exclusively of electromagnetic origin, if
in addition they are subject only to forces of electromagnetic origin,
the equilibrium condition requires that we have inside the electrons:

But in virtue of equations (11) those relations are equivalent to

The equilibrium conditions of the electrons are not altered by the
transformation.
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Unfortunately, a hypothesis as simple as that is unacceptable. If,
indeed, we assume , the conditions 

 entrain , and consequently 
, i.e. ρ = 0. We arrive at similar results in the most

general case. We must therefore admit that there are, in addition to
electromagnetic forces, either other forces or bindings. It is
necessary to search for conditions which must satisfy these forces or
bindings, so that the equilibrium of the electron is not disturbed by
the transformation. This will be the subject of a later paragraph.

§ 2. — Principle of least action

We know how Lorentz deduced his equations from the principle of
least action. I will return to this question, even though I have
nothing substantial to add to the analysis of Lorentz, because I
prefer to present it in a slightly different form which will be useful
for my purpose. I will pose:

(1)

assuming that f, α, F, u, etc.. are subject to the following conditions
and the ones deduced by symmetry:

(2)

Regarding the integral J, it must be extended:

I° in relation to the volume element dτ = dx dy dz over the whole
space;
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2° in relation to time t, over the interval between the limits t = t0, t =
t1.

According to the principle of least action, the integral J must be a
minimum, if one sets the various quantities which appear in:

1° the conditions (2);

2° the condition that the state of the system is determined by both
limiting times t = t0, t = t1.

This last condition allows us to transform our integral by partial
integration with respect to time. If we have indeed an integral of the
form

where C is a quantity that defines the system state and its variation
δC, it will be equal to (by partial integration with respect to time):

Since the system state is determined by both limiting times, it is δC
= 0 for t = t0, t = t1, so the first integral which is related to these two
periods is zero, and the 2nd one remains.

We can also integrate by parts with respect to x, y or z, we have
indeed
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Our integrations are extended to infinity, it must be  in the
first integral on the right-hand side; so, since we always assume that
all our functions vanish at infinity, this integral will be zero and it
follows

If the system is supposed to be subject to bindings, the binding
conditions should be connected to the conditions imposed on the
various quantities appearing in the integral J.

Let us first give to F, G, H the increasements δF, δG, δH; where:

We should have

or, integrating by parts,

whence, by setting the arbitrary coefficient δF equal to zero,
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(3)

This relationship gives us (by partial integration):

or

hence finally:

(4)

Now, thanks to equation (3), δJ is independent from δF and thus δα;
let us vary now the other variables

It follows, by returning to expression (1) of J,

But f, g, h are first subject to conditions (2), so that
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(5)

and for convenience we write:

(6)

The principles of variation calculus tells us that we must do the
calculation as if ψ is an arbitrary function, as if δJ is represented by
(6), and as if the changes were no longer subject to the condition (5).

We have in addition:

whence, after partial integration,

(7)

If we assume at first that the electrons do not undergo a variation, δρ
= δρξ = 0 and the second integral is zero. Because δJ must vanish,
we should have:

(8)

It remains in the general case:
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(9)

It remains to determine the forces acting on the electrons. To do this
we must suppose that a supplementary force -Xdτ, -Ydτ, -Zdτ
applies to each element of an electron, and write that this force is in
equilibrium with the forces of electromagnetic origin. Let U, V, W
be components of the displacement of the element dτ of the electron,
where the displacement is counted from an arbitrary initial position.
Let δU, δV, δW be the variations of this displacement; the virtual
work corresponding to the supplementary force is:

so that the equilibrium condition about which we have spoken can
be written:

(10)

It's about the transformation of δJ. To begin the search for the
continuity equation, we express how the charge of an electron is
preserved by the variation.

Let x0, y0, z0 be the initial position of an electron. Its current position
is:
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We also introduce an auxiliary variable ε, which produces changes
in our various functions, so that for any function A we have:

It is indeed convenient to switch from the notation of variation
calculus to that of ordinary calculus, or vice versa.

Our functions should be regarded: 1° as dependent on five variables
x, y, z, t, ε, so that we can remain at the same place when ε and t
vary alone: we then indicate their derivatives by the ordinary d; 2°
as dependent on five variables x0, y0, z0, t, ε so that we may always
follow a single electron when t and ε vary alone, then we denote
their derivatives by ∂. We will have then:

(11)

Denote now by Δ the functional determinant of x, y, z with respect to
x0, y0, z0:

If ε, x0, y0, z0 remain constant, we give to t an increasement ∂t; to x,
y, z the increasements ∂x0, ∂y0, ∂z0 will result; and to Δ the
increasement ∂Δ, and there will be:
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hence

We deduce:

(12)

The mass of each electron is invariable, we have:

(13)

where:

These are the different forms of the continuity equation with respect
of variable t. We find similar forms with respect to the variable ε.
Either:
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it follows:

(11bis)

(12bis)

(13bis)

Note the difference between the definition of  and that

of , we note that it is this definition of δU that suits to
formula (10).

This equation will allow us to transform the first term of (9); we find
in fact:

or, by partial integration,

(14bis)

Let us propose now to determine
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.

Note that ρΔ does not depend on x0, y0, z0; indeed, if we consider an
electron whose initial position is a rectangular parallelepiped whose
edges are dx0, dy0, dz0, the charge of this element is

and this charge should remain constant, then:

(15)

We deduce:

(16)

Now we know that for any function A, we have by the continuity
equation,

and also

We thus have:



26

(17)

(17bis)

The right-hand sides of (17) and (17bis) must be equal, and if one
remembers that

we get:

(18)

Transforming now the second term of (9); we get:

The right-hand side becomes by partial integration:

Now note, that:
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If, indeed, we develop Σ on the two sides of these relations, they
become identities; and remember that

the right-hand side in question will become:

so that finally:

Equating the coefficient of δU on both sides of (10) we get:

This is equation (2) of the preceding §.

§ 3. — The LORENTZ transformation and the
principle of least action

Let us see if the principle of least action gives us the reason for the
success of the LORENTZ transformation. We must look at the
transformation of the integral:
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(formula 4 of § 2).

We first find

because x', y', z', t' are related to x, y, z, t by linear relations whose
determinant is equal to l4; then we have:

(1)

(formula 9 of § 1), hence:

so that if we set

we get:

J' = J.

However, to justify this equality, the integration limits have to be the
same; so far we have assumed that t varies from t0 to t1, and x, y, z
from ∞ to + ∞. On this account the integration limits would be
affected by the LORENTZ transformation, but nothing prevents us
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from assuming t0 =- ∞, t1 = + ∞; with those conditions the limits are
the same for J and J'.

We then compare the following two equations analogues to equation
(10) of § 2:

(2)

For this, we must first compare δU with δU.

Consider an electron whose initial coordinates are x0, y0, z0; its
coordinates at the instant t are

If one considers the electron after the corresponding LORENTZ

transformation, it will have as coordinates

where

but it will only attain these coordinates at the instant

If we subject our variables to the variations δU, δV, δW, and when
we give at the same time t an increasement δt, the coordinates x, y, z
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will experience a total increasement

We will also have:

and in virtue of the LORENTZ transformation:

hence, assuming δt = 0, the relations:

Note that

It follows, by replacing δt' by its value

If we recall the definition of k, we draw from this:
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and also

hence

(3)

Now, in virtue of equations (2) we must have:

By replacing ΣXδU by its value (3) and by identifying, it follows:
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These are the equations (11) of § 1. The principle of least action
leads us to the same result as the analysis of § 1.

If we turn to formulas (1), we see that Σf² - Σα² is not affected by the
LORENTZ transformation, except one constant factor; it is not the case
with expression Σf² + Σα² which represents the energy. If we confine
ourselves to the case where ε is sufficiently small, so that the square
can be neglected so that k = 1, and if we also assume l = 1, we find:

or by addition

§ 4. — The LORENTZ group

It is important to note that the LORENTZ transformations form a
group.

Indeed, if we set:

and in addition
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with

it follows:

with

If we take for l the value 1, and we suppose ε infinitely small,

it follows:

This is the infinitesimal generator of the transformation group,
which I call the transformation T1, and which can be written in LIE's
notation:

If we assume ε = 0 and l = 1 + δl, we find instead
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and we would have another infinitesimal transformation t0 of the
group (assuming that l and ε are regarded as independent variables)
and we would have with LIE's notation:

But we could give the y- or z-axes the special role, which we gave
the x-axis; thus we have two further infinitesimal transformations:

which also would not alter the equations of LORENTZ.

We can form combinations devised by LIE, such as

but it is easy to see that this transformation is equivalent to a
coordinate change, the axes are rotating a very small angle around
the z-axis. We should not be surprised if such a change does not alter
the form of the equations of LORENTZ, obviously independent of the
choice of axes.

We are thus led to consider a continuous group which we call the
LORENTZ group and which admit as infinitesimal transformations:
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1° the transformation T0 which is permutable with all others;

2° the three transformations T1, T2, T3;

3° the three rotations [T1, T2], [T2, T3], [T3, T1].

Any transformation of this group can always be decomposed into a
transformation of the form:

and a linear transformation which does not change the quadratic
form

We can still generate our group in another way. Any transformation
of the group may be regarded as a transformation of the form:

(1)

preceded and followed by a suitable rotation.

But for our purposes, we should consider only a part of the
transformations of this group; we must assume that l is a function of
ε, and it is a question of choosing this function in such a way that
this part of the group that I call P still forms a group.

Let's rotate the system 180° around the y-axis, we should find a
transformation that will still belong to P. But this amounts to a sign
change of x, x', z and z'; we find:

(2)
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So l does not change when we change ε into -ε.

On the other hand, if P is a group, then the inverse substitution of
(1)

(3)

must also belong to P; it will therefore be identical with (2), that is
to say that

We must therefore have l = 1.

§ 5. — LANGEVIN waves

LANGEVIN has put the formulas that define the electromagnetic field
produced by the motion of a single electron in a particularly elegant
form.

Let us remember the equations

(1)
We know we can integrate by the retarded potentials and we have:

(2)

In these formulas we have:
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whereas ρ1 and ξ1 are the values of ρ and ξ at the point x1, y1, z1 and
the instant

x0, y0, z0 being coordinates of a molecule of the electron at the
instant t;

being its coordinates at the instant t1;

U, V, W are functions of x0, y0, z0, so that we can write:

and if we assume t to be constant, as well as x, y and z:

We can therefore write:

so that the other two equations can deduced by circular permutation.

We therefore have:

(3)
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we set

Consider the determinants that appear in both sides of (3) and at the
begin of the first part; if we seek to develop, we see that the terms of
the 2d and 3rd degree from ξ1, η1, ζ1 disappear and that the
determinant is equal to

ω designates the radial component of the velocity ξ1, η1, ζ1, that is to
say, the component directed along the radius vector indicating from
point x, y, t to point x1, y1, z1.

In order to obtain the second determinant, I look at the coordinates
of different molecules of the electron at instant t', which is the same
for all molecules, but in such a way that for the molecule considered
we have . The coordinates of a molecule will then be:

U', V', W' is what become of U, V, W, when we replace t1 by t'1;
since t'1 is the same for all molecules, we have:

and therefore
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by setting

But the element of electric charge is

and moreover for the molecule considered, we have t1 = t'1, and

therefore  etc..; we can write:

so that equation (3) becomes:

and equations (2):

If we are dealing with a single electron, our integrals are reduced to
a single element, provided we consider only the points x, y, x which
are sufficiently remote so that r and ω have substantially the same
value for all points of the electron. The potentials ψ, F, G, H depend
on the position of the electron and also its velocity, because not only
ξ1, η1, ζ1 show up in the numerator of F, G, H, but the radial
component ω shows up in the denominator. It is of course its
position and its velocity at the instant t1.
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The partial derivatives of φ, F, G, H with respect to t, x, y, z (and
therefore the electric and magnetic fields) will also depend on its
acceleration. Moreover, they depend linearly, since the acceleration
in these derivatives is introduced as a result of a single
differentiation.

LANGEVIN was thus led to distinguish the electric and magnetic field
terms which do not depend on the acceleration (this is what he calls
the velocity wave) and those that are proportional to acceleration
(that is what he calls the acceleration wave).

The calculation of these two waves is facilitated by the LORENTZ

transformation. Indeed, we can apply this transformation to the
system, so that the velocity of the single electron under
consideration becomes zero. We will use for the x-axis the direction
of the velocity before the transformation, so that, at the instant t1,

and we will take ε = -ξ, so that

We can therefore reduce the computation of the two waves to the
case where the electron velocity is zero. Let's start with the velocity
wave, we first note that this wave is the same as if the electron
motion was uniform.

If the electron velocity is zero, then:
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μ1 is the electrical charge of the electron. The speed was reduced to
zero by the LORENTZ transformation, we have now:

r' is the distance from point x', y', z' at point x'1, y'1, z'1, and
therefore:

Now let us carry out the reverse LORENTZ transformation to find the
true field corresponding to the velocity ε, 0, 0. We find, with
reference to equations (9) and (3) of § 1:

(4)

We see that the magnetic field is perpendicular to the x-axis
(direction of velocity) and the electric field, and the electric field is
directed to the point:

(5)

If the electron continues to move in a rectilinear and uniform way
with the velocity it had at the instant t1, that is to say, with the
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velocity -ε, 0, 0, the point (5) would be the one occupied at the
instant t.

Taking the acceleration wave, we can, through the LORENTZ

transformation, reduce its determination to the case of zero velocity.
This is the case if we imagine an electron whose oscillation
amplitude is very small, but very fast, so that the displacements and
velocities are much smaller, but the accelerations are finished. We
thus come back to the field that has been studied in the famous work
by HERTZ entitled Die Kräfte elektrischer Schwingungen nach der
Maxwell'schen Theorie, and that for a point at great distance. In
these conditions:

I° Both electric and magnetic fields are equal.

2° They are perpendicular to each other.

3° They are perpendicular to the normal of the spherical wave, that
is to say to the sphere whose center is the point x1, y1, z1.

I say that these three properties will remain, even when the velocity
is not zero, and for this it is enough to show that they are not altered
by the LORENTZ transformation.

Indeed, let A be the intensity common to both fields, let

These properties expressed through the equalities
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which means again that

are the direction cosines of three rectangular directions, and we
deduce the relations:

or

(6)

with the equations that we can deduce by symmetry.

If we take the equations (3) of § 1, we find:
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(7)

We found above in § 3:

So

 entrain 

On the other hand, from equations (9) of § 1, we get:

This shows that

 entrain 

I say now that
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(8)

Indeed, by virtue of equations (7) (and equations 9, § 1) the first
parts of equations (8) are written respectively:

They then vanish in virtue of equations 
 and in virtue of equations

(6). Yet this is precisely what was demonstrated.

We can also achieve the same result by considerations of
homogeneity.

Indeed, ψ, F, G, H are functions of 

 being

homogeneous of degree -1 with respect to x, y, z, t, x1, y1, z1, t1 and
their differentials.

So the derivatives of ψ, F, G, H with respect to x, y, z, t (and hence
also the two fields f, g, h; α, β, γ) will be homogeneous of degree -2
with respect to the same quantities, if we remember also that the
relation
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is homogeneous with respect to these quantities.

But these derivatives depend on these fields of x - x1, the velocities 

, and the accelerations ; they consist of a term

independent of accelerations (velocity wave) and a term linear in

respect to accelerations (acceleration waves). But  is

homogeneous of degree 0 and  is homogeneous of degree -1;

hence it follows that the velocity wave is homogeneous of degree -2
with respect to x - x1, y - y1, z - z1, and the acceleration wave is
homogeneous of degree -1. So in a very distant point an acceleration
wave is predominant and can therefore be regarded as being
assimilated to the total wave. In addition, the law of homogeneity
shows that the acceleration wave is similar to itself at a distance and
at any point. It is therefore, at any point, similar to the total wave at
a remote point. But in a distant point the disturbance can propagate
as plane waves, so that the two fields should be equal, mutually
perpendicular and perpendicular to the direction of propagation.

I shall refer for more details to a work by LANGEVIN in the Journal
de Physique (Year 1905).

§ 6. — Contraction of electrons

Suppose a single electron in rectilinear and uniform motion. From
what we have seen, we can, through the LORENTZ transformation,
reduce the study of the field determined by the electron to the case
where the electron is motionless; the LORENTZ transformation
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replaces the real electron in motion by an ideal electron without
motion.

Let α, β, γ, f, g, h be the real field; let α', β', γ', f', g', h' be the field
after the LORENTZ transformation, so the ideal field α', f' corresponds
to the case where the electron is motionless; we have:

and the actual field (in virtue of the formulas 9 of § 1):

(1)

We now determine the total energy due to the motion of the electron,
the corresponding action, and the electromagnetic momentum, in
order to calculate the electromagnetic mass of the electron. For a
distant point, it suffices to consider the electron as reduced to a
single point; we are thus brought back to the formulas (4) of the
preceding § which generally can be appropriate. But here they do
not suffice, because the energy is mainly located in the ether parts
nearest to the electron.

On this subject we can make several hypotheses.

According to that of ABRAHAM, the electrons are spherical and not
deformable.
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So when we apply the LORENTZ transformation when the real
electron is spherical, the electron becomes a perfect ellipsoid. The
equation of this ellipsoid is based on § 1:

But here we have:

so that the equation of the ellipsoid becomes:

If the radius of the real electron is r, the axes of the ideal electron
would therefore be:

In LORENTZ's hypothesis, however, the moving electrons are
deformed, so that the real electron would become a ellipsoid, while
the ideal electron is still always a perfect sphere of radius r; the axes
of the real electron will then be:
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We denote by

the longitudinal electric energy; by

the transverse electric energy; by

the transverse magnetic energy. There is no longitudinal magnetic
energy, since α = α' = 0. We denote by A', B', C' the corresponding
quantities in the ideal system. We first find:

In addition, we can observe that the actual field depends only on x =
εt, y, and x, and write:
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hence

In LORENTZ's hypothesis we have B' = 2A', and A ' (being inversely
proportional to the radius of the electron) is a constant independent
of the velocity of the real electron; we get for the total energy:

and for the action (per unit time):

Now calculate the electromagnetic momentum; we find:

But there must be some relation between the energy E = A + B + C,
the action per unit time H = A + B - C, and the momentum D. The
first of these relations is:

the second is
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hence

(2)

The second of equations (2) is always satisfied; but the first is so
only if

that is to say if the volume of the ideal electron is equal to that of the
real electron; or if the volume of the electron is constant; that's the
hypothesis of LANGEVIN.

This is in contradiction with the results of § 4 and with the result
obtained by LORENTZ by another way. That is the contradiction
which is to be explained.

Before addressing this explanation, I note that whatever is the
hypotheses we have adopted

or, because of C' = 0,

(3)

We can compare the result of the equation J = J' obtained in § 3.

We have indeed:
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We observe that the state of the system depends only on x + εt, y
and z, that is to say on x', y', z', and we have:

(4)

By comparing equations (3) and (4) we find J = J'.

Let us consider any hypothesis, which may be either that of
LORENTZ, or that of ABRAHAM, or that of LANGEVIN, or an
intermediate hypothesis.

Let

the three axes of the real electron; that of the ideal electron will be:

Then A' + B' is the electrostatic energy of an ellipsoid with axes klr,
θlr, θlr.

Let us suppose that the electricity is spread on the surface of the
electron as it is known from an inductor, or uniformly distributed
within the electron; than this energy will be of the form:
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where φ is a known function.

The hypothesis of ABRAHAM is to assume:

That of LORENTZ:

That of LANGEVIN:

We then find:

ABRAHAM found, in different notation (Göttinger Nachrichten, 1902,
p. 37)

a is a constant. However, in the hypothesis of ABRAHAM, we have θ
= 1; then:

(5)
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which defines the function φ.

This granted, imagine that the electron is subject to a binding, so
there is a relation between r and φ; in the hypothesis of LORENTZ this
relation would be φr = const., in that of LANGEVIN φ²r² = const. We
assume in a more general way

b is a constant; hence:

What is the shape of the electron when the velocity become -εt, if we
do not suppose the involvement of forces other than the binding
forces? Its form will be defined by the equality:

(6)

or

or

If we want equilibrium to occur so that θ = k, it is necessary that 
, the logarithmic derivative of φ is equal to m.
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If we develop  and the right-hand side of (5) in powers of ε,

equation (5) becomes:

neglecting higher powers of ε. By differentiating, we get:

For ε = 0, that is to say when the argument of φ is equal to 1, these
equations become:

(7)

We must therefore have  in conformity with the hypothesis
of LANGEVIN.

This result should come nearer to that which is connected to the first
equation (a), and from which actually it does not differ. Indeed,
suppose that every element dτ of the electron is subjected to a force
Xdτ parallel to the x-axis, X is the same for all elements; we will
then have, in conformity with the definition of momentum:

In addition, the principle of least action gives us:
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δU is the displacement of the center of gravity of the electron; H
depends on θ and on ε if we assume that r is related to θ by the
equation of binding; we have thus:

In addition ; where, by integrating by parts:

or

hence

But the derivative , contained in the right-hand side of equation
(2), is the derivative taken by supposing θ as a function of ε, so that

Equation (2) is therefore equivalent to equation (6).
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The conclusion is that if the electron is subject to a binding between
its three axes, and if no other force intervenes except the binding
forces, the shape of that electron, when it is given a uniform
velocity, may be such that the ideal electron corresponds to a sphere,
except the case where the binding is such that the volume is
constant, in conformity with the hypothesis of LANGEVIN.

We are led in this way to pose the following problem: what
additional forces, other than the binding forces, are necessary to
intervene to account for the law of LORENTZ or, more generally, any
law other than that of LANGEVIN?

The simplest hypothesis, and the first that we should consider, is
that these additional forces are derived from a special potential
depending on the three axes of the ellipsoid, and therefore on θ and
on r; let F(θ, r) be the potential; in which case the action will be
expressed:

and the equilibrium conditions are written:

(8)

If we assume r and θ are connected by r = bθm, we can look at r as a
function of θ, consider F as depending only on θ, and retain only the
first equation (8) with:
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For k = θ we need equation (8) to be satisfied; which gives, taking
into account equations (7):

where:

and in the hypothesis of LORENTZ, where m = -1:

Now suppose that there is no connection and, considering r and θ as
independent variables, retain the two equations (H); it follows:

Equations (8) must be satisfied for k = θ, r = bθm; which gives:

(9)

One way to satisfy these requirements is to pose:
(10)

A, α, β are constants, the equations (9) must be satisfied for k = θ, r
= bθm, which gives:
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By identifying we find

(11)

But the volume of the ellipsoid is proportional to r³θ², so that the
additional potential is proportional to the power γ of the volume of
the electron.

In the hypothesis of LORENTZ, we have m = 1, γ = 1.

We thus come back to the hypothesis of LORENTZ, under the condition
of adding an additional potential proportional to the volume of the
electron.

The hypothesis of LANGEVIN corresponds to γ = ∞.

§ 7. — Quasi-stationary motion

It remains to see if this hypothesis of the contraction of electrons
reflects the inability to demonstrate absolute motion, and I will
begin by studying the quasi-stationary motion of an isolated
electron, or which is subject only to the action of other distant
electrons.

It is known that what is called quasi-stationary motion is the motion
where the velocity changes are slow enough so that the electric and
magnetic energy due to motion of the electron differ little from what
they would be in uniform motion; we know also that ABRAHAM
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derived the transverse and longitudinal electromagnetic masses from
the notion of quasi-stationary motion.

I think I should clarify. Let H be our action per unit time:

where we consider for the moment only the electric and magnetic
fields due to the motion of an electron. In the preceding §, by
considering the motion as uniform, we regarded H as dependent
from the velocity ξ, η, ζ of the electrons' center of gravity (the three
components in the preceding §, had as values -ε, 0, 0) and the
parameters r and θ that define the shape of the electron.

But if the motion is more uniform, H depend not only on the values
of ξ, η, ζ, r, θ at the instant in question, but on values of these
quantities at other instants which may differ in quantities of the
same order as the time by light to travel from one point to another of
the electron; in other words, H depend not only on ξ, η, ζ, r, θ, but
on their derivatives of all orders with respect to time.

Well, the motion is said to be quasi-stationary when the partial
derivatives of H with respect to the successive derivatives of ξ, η, ζ,
r, θ are negligible compared to the partial derivatives of H with
respect to the quantities ξ, η, ζ, r, θ themselves.

The equations of such a motion can be written:

(1)
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In these equations, F has the same meaning as in the preceding §, X,
Y, Z are the components of the force acting on the electron: this
force is solely due to electric and magnetic fields produced by other
electrons.

Note that H is independent of ξ η ζ through the combination

that is to say, the magnitude of the velocity; therefore we still call D
the momentum:

where:

(2)

(2bis)

with

(3)

If we take the current direction of the velocity as the x-axis, we get:
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equations (2) and (2bis) become:

and the last three equations (1):

(4)

This is why ABRAHAM gave  the name longitudinal mass and 

the name transverse mass; recall that 

In the hypothesis of LORENTZ, we have:

 represent the derivative with respect to V, after r and θ were
replaced by their values as functions of V from the first two
equations (1); we will also have, after the substitution,
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We choose units so that the constant factor A is equal to 1, and I
pose , hence:

We will pose again:

and we find the equation for quasi-stationary motion:

(5)

Let's see what happens to these equations by the LORENTZ

transformation. We will pose: , and we have first:

from which we derive easily
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We also have

where:

where again:

and

(6)

(7)

Let us return now to equations (11bis) of § 1; we can regard X1, Y1,
Z1 as having the same meaning as in equations (5). On the other

hand, we have l = 1 and ; these equations then become:
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(8)

We calculate ΣX1ξ using equation (5), we find:

where:

(9)

Comparing equations (5) (6), (7) and (9), we finally find:

(10)

This shows that the equations of quasi-stationary motion are not
altered by the LORENTZ transformation, but it still does not prove that
the hypothesis of LORENTZ is the only one that leads to this result.

To establish this point, we will restrict ourselves, as LORENTZ did, to
certain particular cases; it will be obviously sufficient for us to show
a negative proposal.

How do we first extend the hypotheses underlying the above
calculation?
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1° Instead of assuming l = 1 in the LORENTZ transformation, we
assume any l.

2° Instead of assuming that F is proportional to the volume, and
hence that H is proportional to h, we assume that F is any function
of θ and r, so that [after replacing θ and r with their values as
functions of V, from the first two equations (1)] H is any function of
V.

I note first that, assuming H = h, we must have l = 1; and in fact the
equations (6) and (7) remain, except that the right-hand sides will be
multiplied by ; so do equations (9), except that the right-hand sides

will be multiplied by ; and finally the equations (10), except that

the right-hand sides will be multiplied by . If we want that the
equations of motion are not altered by the LORENTZ transformation
that is to say that the equations (10) only differ from equations (5)
by the accentuation of the letters, it must be assumed:

l = 1.

Suppose now that we have η = ζ = 0, where ξ = V, ; the

equations (5) take the form:

(5bis)

We can also pose:
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If the equations of motion are not altered by the LORENTZ

transformation, we must have:

and therefore:

(11)

But we have:

where:
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whence, by eliminating l², we find the functional equation:

or by posing

that is:

an equation that must be satisfied for all values of ξ and ε. For ζ = 0
we find:
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where:

A is a constant, and I set .

We then find:

Now ; so we have:

As l should depend only on ε (since, if there are more electrons, l
must be the same for all electrons whose velocities ξ may be
different), this identity can take place only if we have:
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Thus LORENTZ's hypothesis is the only one consistent with the
inability to demonstrate absolute motion; if we accept this
impossibility, we must admit that the moving electrons contract and
become ellipsoids of revolution where two axes remain constant; it
must be admitted, as we have shown in the previous §, the existence
of an additional potential which is proportional to the volume of the
electron.

The analysis of LORENTZ is therefore fully confirmed, but we can
better give us an account of the true reason of the fact which
occupies us; and this reason must be sought in the considerations of
§ 4. The transformations that do not alter the equations of motion
must form a group, and this can take place only if l = 1. As we do
not recognize if an electron is at rest or in absolute motion, it is
necessary that, when in motion, it undergoes a distortion that must
be precisely that which imposes the corresponding transformation of
the group.

§ 8. — Arbitrary motion

The above results apply only to quasi-stationary motion, but it is
easy to extend them to the general case; it suffices to apply the
principles of § 3, that is to say, the principle of least action.

For the expression of the action

it is convenient to add a term representing the additional potential F
of § 6; this term will obviously have the form:
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where Σ(F) represents the sum of the additional potential due to the
different electrons, each of which is proportional to the volume of
the corresponding electron.

I write (F) in brackets to avoid confusion with the vector F, G, H.

The total action is then J + J1. We saw in § 3 that J is not altered by
the LORENTZ transformation, we must show now that it is the same
for J1.

We have for one electron,

ω0 being a special coefficient of the electron and τ its volume; so I
can write:

the integral has to be extended to the entire space, but so that the
coefficient ω0 is zero outside the electrons, and that within each
electron it is equal to the special coefficient of that electron. Then
we have:

and after the LORENTZ transformation:
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Now we have ω0 = ω'0; for if a point belong to an electron, the
corresponding point after the LORENTZ transformation still belongs to
the same electron. On the other hand, we found in § 3;

and since we now assume l = 1

We have therefore
.  C.Q.F.D.

The theorem is thus general, it gives us at the same time a solution
of the question we posed at the end of § 1: finding the
complementary forces which are unaltered by the LORENTZ

transformation. The additional potential (F) satisfies this condition.

So we can generalize the result announced at the end of § 1 and
write:

If the inertia of electrons is exclusively of electromagnetic origin, if
they are only subject to forces of electromagnetic origin, or to forces
generated by the additional potential (F), no experiment can
demonstrate absolute motion.

So what are these forces that create the potential (F)? They can
obviously be compared to a pressure which would reign inside the
electron; all occurs as if each electron were a hollow capacity
subjected to a constant internal pressure (volume independent); the
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work of this pressure would be obviously proportional to the volume
changes.

In any case, I must observe that this pressure is negative. Remember
the equation (10) of § 6, according to LORENTZ's hypothesis we
write:

;

equations (11) of § 6 give us:

Our pressure is equal to A, with a constant coefficient, which is
indeed negative.

Now assessing the mass of the electron – I mean the "experimental
mass", that is to say the mass for low velocities – we have (cf. § 6):

hence

I can write for very small V
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so that the mass, both longitudinal and transverse, will be .

Now a is a numerical constant which shows that: the pressure that
creates our additional potential is proportional to the 4th power of
the experimental mass of the electron.

As NEWTON's law is proportional to the experimental mass, we are
tempted to conclude that there is some relation between the cause
that generates gravitation and the one that generates the additional
potential.

§ 9. — Hypotheses on gravitation

Thus LORENTZ's theory would completely explain the impossibility
to demonstrate absolute motion, if all forces are of electromagnetic
origin.

But there are forces which we can not assign an electromagnetic
origin, as for example gravitation. It could happen, indeed, that two
systems of bodies produce equivalent electromagnetic fields, that is
to say, exerting the same action on the electrified bodies and on the
currents, and yet these two systems do not exercise the same
gravitational action on the NEWTONian mass. The gravitational field
is thus distinct from the electromagnetic field. LORENTZ was thus
forced to complete his hypothesis by assuming that forces of any
origin, and in particular gravitation, are affected by translation (or,
if preferred, by the LORENTZ transformation) the same way as
electromagnetic forces.

It is now convenient to enter into details and look more closely at
this hypothesis. If we want that the NEWTONian force is affected in
this way by the LORENTZ transformation, we can not accept that the
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force depends only on the relative position of the attracting body
and of the body attracted at the instant considered. It will also
depend on the velocities of the two bodies. And that's not all: it is
natural to assume that the force acting at time t on the attracted
body, depends on the position and velocity of this body at the same
time t; but it will depend, in addition, on the position and velocity of
the attracting body, not at time t, but a moment earlier, as if
gravitation needs a certain time to propagate.

Consider therefore the position of the attracted body at the instant t0
and, at this point, x0, y0, z0 are the coordinates, ξ, η, ζ the
components of its velocity; consider the other attracting body at the
corresponding time t0 + t and, at this point, x0 + x, y0 + y, z0 + z are
the coordinates, ξ1, η1, ζ1 the components of its velocity.

We must first have a relationship

(1)

to define the time t. This relation will define the law of propagation
of the gravitational action (I do not impose on me the condition that
the propagation takes place with the same speed in all directions).

Now let X1, Y1, Z1 the 3 components of the action exerted at time t0
on the body; we have to express X1, Y1, Z1 as functions of

(2)

What are the conditions to fulfill?

1° The condition (1) shall not be altered by transformations of the
LORENTZ group.
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2° The components X1, Y1, Z1 will be affected by the LORENTZ

transformations the same way as electromagnetic forces designated
by the same letters, that is to say, according to equations (11bis) of §
1.

3° When two bodies are at rest, we will fall back to the ordinary law
of attraction.

It is important to note that in the latter case, the relation (1)
disappears, because time does not play any role if the two bodies are
at rest.

The problem thus posed is obviously undetermined. We will thus
seek to satisfy as many as possible other additional conditions:

4° Astronomical observations do not appear to show significant
derogation to NEWTON's law, we will choose the solution that
deviates the least of this law, for low velocities of two bodies.

5° We will endeavor to arrange that T is always negative; if indeed it
is conceived that the effect of gravitation takes a certain time to be
propagated, it would be more difficult to understand how this effect
could depend on the position not yet attained by the attracting body.

There is one case where the indeterminacy of the problem
disappears; it is where the two bodies are at rest relative to each
other, that is to say that:

;

this is the case we will consider first, assuming that these velocities
are constant, so that the two bodies are drawn into a common
translational motion, rectilinear and uniform.
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We can assume that the axis of x has been taken parallel to the
translation, so that η = ζ = 0, and we take ε = -ξ.

If in these circumstances we apply the LORENTZ transformation, after
the transformation the two bodies are at rest and we have:

Then the components x'0, Y'0, Z'0 must conform to NEWTON's law
and we will have a constant factor:

(3)

But we have, according to § 1:

We have also:

and
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(4)

which can be written:

(4bis)

It seems at first sight that the indetermination remains, since we
have made no hypothesis about the value of t, that is to say about the
speed of transmission; and that also x is a function of t, but it is easy
to see that x - ξt, y, z (which appear in our formulas) do not depend
on t.

We see that if two bodies are simply in motion by a common
translation, the force acting on the body is drawn normal to an
ellipsoid with its center at the attracting body.

To go further we must look for the invariants of the LORENTZ group.

We know that the substitutions of this group (assuming l = 1) are
linear substitutions which do not affect the quadratic form

Let on the other hand:
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we see that the LORENTZ transformation will cause to make δx, δy, δz
and δ1x, δ1y, δ1z, δ1t undergo the same linear substitutions as with x,
y, z, t.

We regard

as the coordinates of three points P, P', P" in a 4-dimensional space.
We see that the LORENTZ transformation is a rotation of that space
around the origin, regarded as fixed. We shall therefore have no
other distinct invariants than 6 distances of the 3 points P, P', P"
between them and the origin, or, if you like it better, than the 2
expressions:

or the 4 expressions of the same form, deduced from permuting (in
an arbitrary way) the three points P, P', P".

But what we look for are the functions of 10 variables (2) that are
invariants; so we must, among the combinations of our 6 invariants,
seek those which depend only on these 10 variables, that is to say
those that are homogeneous of degree 0 as compared to δx, δy, δz,
δt, as compared to δ1x, δ1y, δ1z, δ1t. We will thus have 4 distinct
invariants, which are:
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(5)

Let us now consider the transformations undergone by the
components of the force; resume the equations (11) of § 1, which
relate not to the force X1, Y1, Z1, which we consider here, but to the
force X, Y, Z referred to unit volume. We pose also:

we see that these equations (11) can be written as (l = 1):

(6)

so that X, Y, Z, T undergo the same transformation as x, y, z, t. The
invariants of the group are therefore

But this is not X, Y, Z which we need, it is X1, Y1, Z1 with

We see that
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So the LORENTZ transformations act on X1, Y1, Z1, T1 in the same
manner as X, Y, Z, T, with the difference that these expressions are
also multiplied by

Similarly it would act on ξ, η, ζ, 1, in the same manner as δx, δy, δz,
δt, with the difference that these expressions are also multiplied by
the same factor:

Consider then  as the coordinates of a fourth
point Q, then the invariants are functions of mutual distances of five
points

and among these functions we must retain only those that are
homogeneous of degree 0, on the one hand in relation to

(variables that can then be replaced by X1, Y1, Z1, T1, ξ, η, ζ, 1), on
the other hand in relation to
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(variables that can be replaced later by ξ1, η1, ζ1, 1).

Thus we find in addition to the four invariants (5), four new distinct
invariants, which are:

(7)

The last invariant is always zero, according to the definition of T1.

This granted, what are the requirements?

1° The left-hand side of relation (1), which defines the velocity of
propagation must be a function of the four invariants (5)

One can obviously make a lot of hypotheses, we only look at two:

A) It may be

where t = ±r, and since t must be negative, t = -r. This means that
the propagation velocity is equal to that of light. At first it seems
that this hypothesis should be rejected without consideration.
LAPLACE has indeed shown that this propagation is either
instantaneous, or much faster than light. But LAPLACE had
considered the hypothesis of finite speed of propagation, ceteris non
mutatis; here, however, this hypothesis is complicated by many
others, and it may happen that there is a more or less perfect
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compensation, as the applications of the LORENTZ transformation
gave us already so many examples.

B) It may be

The propagation velocity is much faster than that of light, but in
some cases t may be negative, which, as we have said, seems hardly
acceptable. We will add this to hypothesis (A).

2° The four invariants (7) must be functions of the invariants (5).

3° When the two bodies are in absolute rest, X1, Y1, Z1 must have
the value deduced from the law of NEWTON, and when they are in
relative rest, the value deduced from the equations (4).

Under the hypothesis of absolute rest, the first two invariants (7)
must be reduced to

or by NEWTON's law at

secondly, in hypothesis (A), the 2nd and 3rd of the invariants (5)
become:
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that is to say, for absolute rest, to

.

We may therefore assume for example that the first two invariants
(4) are reduced to

but other combinations are possible.

We must choose between these combinations, and secondly, in order
to define X1, Y1, Z1 we need a third equation. For such a choice, we
must endeavor to bring us closer as much as possible to the law to
NEWTON. Let's see what happens when (always making t = -r ) we
neglect the squares of the velocities ξ η etc.. The 4 invariants (5)
then become:

and the 4 invariant (7):

But to be able to compare it with the law of NEWTON, another
transformation is needed; here x0 + x, y0 + y, z0 + z are the



85

coordinates of the attracting body at the instant t0 + x, and 

; in the law of NEWTON it is necessary to consider the

coordinates x0 + x1, y0 + y1, z0 + z1 of the attracting body at the

instant t0, and the distance .

We can neglect the square of time t required for the propagation and
therefore proceed as if the movement was uniform, then we have:

or, since t = -r,

so that our 4 invariants (5) become:

and our 4 invariants (7):

In the second of these expressions I wrote r1 instead of r, because r
is multiplied by ξ - ξ1 and I neglect the square of ξ.

On the other hand, NEWTON's law would us give for these 4
invariants (7)



86

So if we denote the 2nd and 3rd invariants (7) by A and B, and the 3
first invariants (7) by M, N, P, we will satisfy NEWTON's law up to
terms of order of the square velocities, by:

(8)

This solution is not unique. Indeed, let C be the fourth invariant (5),
C - 1 is of the order of the square of ξ, and it is equal to (A - B)².

So we could add to the 2ds members of each of equations (8) a term
consisting of C - 1 multiplied by an arbitrary function of A, B, C,
and a term of the form of (A - B)² also multiplied by a function of
A, B, C.

At first sight, the solution (8) seems the most straightforward, it may
nevertheless be adopted and in effect – since M, N, P are functions
of X1, Y1, Z1 and  – we can draw from these three
equations (8) the values of X1, Y1, Z1, but in some cases these
values become imaginary.

To avoid this, we will operate in another way. Let:
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This is justified by the analogy with the notation

which appears in the substitution of LORENTZ.

In this case, and because of the condition, -r = t, the invariants (5)
become:

On the other hand, we see that the following systems of quantities:

undergo the same linear substitutions when we apply the
transformations of the LORENTZ group. We are thus led to pose:
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(9)

It is clear that if α, β, γ are invariants, X1, Y1, Z1, T1 satisfy the basic
condition, that is to say, it will undergo, by the effect of the LORENTZ

transformations, a suitable linear substitution.

But for the equations (9) to be consistent, we must have:

which, by replacing X1, Y1, Z1, T1 by their values (9) and
multiplying by k0², becomes:

(10)

What we want is, if we neglect the square of speed of light, the
squares of the velocities ξ, etc., as well as the product of
accelerations by the distances as we did above, so that the values of
X1, Y1, Z1 remain in conformity with the law of NEWTON.

We can take:
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With the order of approximation adopted, we have:

The first equation (9) becomes:

But if we neglect the square of ξ, we can replace Aξ1 by -r1ξ1, or by
-rξ1, which gives:

NEWTON's law would give:

We must therefore choose, for the invariant α, one that reduces to 
 to the order of approximation adopted, that is to say . The

equations (9) become:
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(11)

We first see that the corrected attraction is composed of two
components, one parallel to the vector joining the positions of the
two bodies, the other parallel to the velocity of the attracting body.

Recall that when we talk about the position or velocity of the
attracting body, it is its position or its velocity when the
gravitational wave leaves; for the body attracted, on the contrary, it
is its position or its velocity when the gravitational wave reaches it,
the wave is assumed to propagate with the speed of light.

I think it would be premature to push further discussion of these
formulas, I will confine myself to a few remarks.

1° The solutions (11) are not unique; we can indeed replace 

which enters in the factor everywhere, by

,

f1 and f2 are arbitrary functions of A, B, C; or we are taking β no
longer as zero but adding arbitrary complementary terms to α β γ,
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provided they satisfy the condition (10) and are of the 2nd order with
regard to ξ as far as α is concerned, and of the 1st order as far as β
and γ are concerned.

2° The first equation (11) can be written:

(11bis)

and the quantity in brackets can, itself, written as:

(12)
so that the total force can be divided into three components
corresponding to the three brackets of expression (12); the first
component has a vague analogy with the mechanical force due to
the electric field, the other two with mechanical forces due to a
magnetic field; to complete the analogy I can, under the first point,
replace  by  in equations (11), so that X1, Y1, Z1 only depend

linearly on the velocity ξ, η, ζ of the attracted body, since C has
disappeared from the denominator of (11bis).

We pose then:

(13)

it follows that C had disappeared from the denominator of (11a):
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(14)

and there will also:

(15)

Then λ, μ, ν or  is a kind of electric field, while λ', μ',

ν' or rather  is a kind of magnetic field.

3° The postulate of relativity would require us to adopt solution (11)
or solution (14) or any solution that would inferred by using the first
remark; but the first question that arises is whether they are
compatible with astronomical observations; the discrepancy with
NEWTON's law is of the order ξ², that is to say, 10000 times smaller
when it were of order ξ, that is to say, if the propagation happens
with the speed of light, ceteris non mutatis; it is permissible to hope
that it will not be too great. But only a thorough discussion will be
able to teach it to us.

Paris, July 1905.

H. POINCARÉ

1. ↑ LANGEVIN was preceded by M. BUCHERER from Bonn, who
had put forward the same theory before. (See: BUCHERER,
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Mathematische Einführung in die Elektronentheorie; August
1904. Teubner, Leipzig).

 This work is a translation and has a separate copyright
status to the applicable copyright protections of the original
content.
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