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Power laws arise in many fields of knowledge — from 
word usage in linguistics, to income distributions in 
economics. There is an enormous literature observing 
and calculating power laws in nature. Publication of new, 
interesting results may involve data spanning one to two 
decades1: we need good tools to show that the power 
laws are real and accurate. In short, power laws are easy 
to fit, but challenging to measure and interpret well2. 
What are the particular challenges in studying power 
laws stemming from emergent scale invariance, a focus 
of much of statistical physics? And what opportunities 
exist to extract more science from the data?

Universal scaling functions
Many systems show fractal structure and scale-invariant 
fluctuations as they get large — the rules describing 
their behaviour look the same up to rescaling as one 
observes larger and larger systems. Continuous phase 
transitions (like the Curie point in ferromagnets), 
dynamical behaviour of disordered systems (depinning 
transitions, crackling noise and avalanches), the onset 
of chaos, earthquakes, fully developed turbulence, and 
the behaviour of the stock market all show clear symp-
toms of emergent scale invariance, and all exhibit power 
laws in various measures of their behaviour. In many 
of these systems, these power laws are convincingly 
explained using the renormalization group (RG)3, which 
coarse-grains a system and then rescales (renorms) the 
parameters and observables to reach a fixed point. In 
some systems (turbulence, earthquakes) there is almost 
a consensus. In other systems (glasses4, random matrix 
theory5) there are universal critical exponents and 
universal scaling functions, with no known RG expla-
nation. The renormalization group predicts power 
laws relating various quantities, which are universal — 
shared between theory and experiment, and also shared 
between strikingly different experimental systems in the 
same ‘universality class’. If Z depends on X, then Z ~ Xβ 
for some usually non-trivial, probably transcendental, 
universal critical exponent β.

The RG also predicts universal scaling functions 
for relations involving more than two parameters or 
observables. If Z depends on X and Y, then

~ ZZ X X Y( / ) (1)β α

where α is also a universal number and Z  is a universal 
function. The challenges and most fruitful opportunities 
for experimentalists and simulators in measuring these 
power laws almost invariably involve corrections and 
modifications of the power laws due to these powerful 
universal scaling functions.

Finite-size scaling and scaling collapses
We start with finite-size scaling, describing the behav-
iour in a system confined to a cubic box of size L (or in 
a material with grains of size L). Suppose our system 
exhibits avalanches with sizes S spanning a large range. 
Then the fraction of the motion lying in avalanches with 
size between S and S + dS is

~A S L S S L( , ) ( / ) (2)τ d1− fA

where df is the fractal dimension of the avalanche, so 
an avalanche spanning the system will have a typical 
size S Ldf~ .

It is natural that avalanches larger than the box 
will be strongly suppressed! So A decreases quickly as 
its argument grows past one. Conversely, if A goes to 
a positive constant as its argument goes to zero, then 
small enough avalanches will have the predicted univer-
sal power law volume fraction S1–τ. But an experiment 
or simulation that measures avalanches in a size region 
where A is varying will often find a rather good — but 
incorrect — power-law fit (Fig. 1a).

A much better practice is to vary the system size  
(or the grain size) and do a scaling collapse to find A: 
plot S A S L( , )τ1−  against S L/ df, and vary τ and df until all 
the curves lie atop one another (Fig. 1b).

Subdominant corrections and fitting 
functional forms
Finite-size scaling produces corrections important when 
the behaviour reaches the system size. But what about 
corrections important for small scales? Or when one is 
farther from the critical point? There are two types of 
‘subdominant’ corrections, namely singular corrections to 
scaling and analytic corrections to scaling. For example, 
the liquid–gas critical point has a free energy of the form

~ ˜ ˜ ˜∼ ∼FF T P u t h t u t( , , ) ( / , / ) (3)β βδ βδ Δ+ −
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The variable u is an irrelevant control varia-
ble: it is multiplied by zero at t = 0, becoming less 
and less important as one approaches the crit-
ical temperature Tc and pressure Pc. The func-
tions ˜ ⋯t T P u a T T b P P c T T( , , ) = ( − ) + ( − ) + ( − ) +c cc

2 , 
h P T u( , , )
∼  and ∼u u T P( , , ) are analytic power series that 
embody how temperature and pressure map onto 
the ‘natural’ RG parameters t, h and u in the Ising 
universality class.

By doing a Taylor expansion in u, T – Tc and P – Pc, 
one gets corrections that go as higher powers of T – Tc. 
In particular, the irrelevant variable u causes a singular 
correction to scaling that is t̃ Δ times smaller than the 
dominant singularity.

When we have scaling functions with more than one 
variable as in Eq. 3, scaling collapses are no longer use-
ful. A powerful, satisfying and numerically convenient 
approach is to do a multiparameter fit to the data6–8, var-
ying not only parameters like β, δ, u, Tc, Pc, a, b, c, and 
so on, but also a parameterized functional form for the 
scaling function F .

Fitting functional forms have three additional bene-
fits. First, they provide estimates not only of the univer-
sal critical exponents, but also of the equally universal 
scaling functions. Second, they allow for estimates of 
both statistical and systematic6 errors in the exponents 
(which are often much larger than those of a straight 
power-law fit). Finally, these corrections, which are tiny 
near the critical point, become of increasing importance 
for describing precursor fluctuations in the surround-
ing phases. Indeed, here one imagines describing the  
(challenging) properties of liquids far into the phase 
diagram using analytic and singular corrections to the 
Ising critical point.

Singular scaling functions and dangerous 
irrelevant variables
Being careful to measure properties at intermediate sizes 
large compared to microscopic and small compared to 
the system, will one find the correct power laws? Not if 

our scaling function is itself singular — going to zero 
or infinity as its argument goes to zero. In a study9 by 
our group of the random-field Ising model in 3D, this 
almost happened (Fig. 1). We were measuring the frac-
tional coverage of avalanches A∼A S R S S r( , ) ( )τ σ1− , 
where r = (R – Rc) is the distance to a critical disorder. 
We found excellent scaling collapses, but A seemed to go 
linearly to zero as Sσr went to zero (Fig. 1b) — leaving us 
with an effective power law A S R S( , ) τ σ1− +∼  (Fig. 1a) that 
disagreed with the ‘RG’ exponent τ1 −  extracted from 
the scaling collapse. In the end, we used (at the time) 
heroic billion-site simulations to discover that A only 
nearly vanishes — it rises by a factor of ten from its small 
initial value.

Singular scaling functions also arise in the important 
case of dangerous irrelevant variables — quantities like 
u in Eq. 3 that vanish under rescaling (are irrelevant), 
but for which the scaling function for a physical prop-
erty diverges as it vanishes. This happens in some glassy 
systems, in which the freezing on long length scales is 
not the usual competition between temperature and 
coupling between particles, but instead a competition 
between random disorder and coupling. Temperature 
allows hopping over barriers, allowing the system to 
relax. Because temperature is an irrelevant variable at 
the glass transition, the relaxation time (and its scaling 
function) diverges as the system is cooled through the 
transition.

Crossover scaling, nonlinear RG flows, 
and all that
There are many more fascinating implications and uses 
for universal scaling functions, and associated warnings 
that fitting power laws can lead you astray. Many systems 
exhibit crossovers, going smoothly from one power law 
to another as the scales become large — commonly aris-
ing for quantum critical points observed at finite tem-
peratures, but also observed, for example, in magnetic 
avalanches10 and fracture and depinning transitions7. 
Other systems exhibit more complex scaling behaviour, 
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Fig. 1 | Power laws and avalanche sizes in a random-field Ising model under an increasing field. a | Avalanche 
probability distribution A(S, R) that a site is in an avalanche of size S, for disorder R. Data are plotted at different values 
of r = (R – Rc)/R, where Rc is the critical disorder. The true power-law exponent is 1 τ− ; the apparent (wrong) power-law 
exponent is 1 σ τ+ − . Note that one needs over four decades of scaling to discover the correct power law. b | Scaling 
collapse of the same data, together with a fit to the scaling function S rA( )σ . Corrections to scaling are responsible for the 
deviations far from r = 0. Note that one needs simulations of a billion spins to discover that the asymptote of A is non-zero: 
smaller simulations give the wrong power law (dashed line). Data reproduced from ReF.9.
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because their RG flows are intrinsically nonlinear8. 
This is remarkably common, for example, at critical 
points in phase transitions, where all systems in 2D 
and 4D have logarithms, exponentials, or essential 
singularities.

Thus the pitfalls of trusting a power-law fit should 
be viewed not as an obstacle, but an opportunity. It is 
challenging, but intellectually and scientifically fruitful, 
to use universal scaling functions to extract the most 
from your data.
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