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More than a century after Einstein proposed the general 
theory of relativity, it remains a mystery how to describe 
gravity in a theory that is compatible with quantum 

mechanics. Why is it so difficult to ‘quantize’ the theory of gravity? 
There is evidence that the problem is not merely due to technical 
difficulties, but instead has a deep physical origin. As Bekenstein 
and Hawking1–4 pointed out, to preserve the second law of thermal 
dynamics in a gravitational system with black holes, a black hole 
should have an entropy =S A

G4 , where A is its horizon area and G is 
Newton’s gravitational constant. The second law of thermodynam-
ics implies that the area law of the black hole entropy is an upper 
bound to that of all possible states of matter in a region of the same 
size5,6. On the other hand, entropy is a measure of the number of 
independent degrees of freedom. Therefore, any theory with local 
degrees of freedom—such as quantum field theory—implies that 
the maximal entropy should follow a volume law. Clearly, there is a 
sharp contradiction here.

The holographic principle
Motivated by this problem, ’t Hooft7 and Susskind5 formulated the 
holographic principle, which suggests that the seemingly three-
dimensional space is actually two-dimensional. In other words, the 
three-dimensional world is like the virtual reality we see from virtual 
reality (VR) glasses. In effect, it is as if the VR glasses coupled with 
our vision system reconstruct the (3+ 1)-dimensional reality from 
a (2+ 1)-dimensional video played on the screen—which means 
the information one can obtain from the virtual reality is upper-
bounded by an area law—that is, the number of pixels on the screen. 
From this point of view, our three-dimensional space is like the 
shadow in Plato’s cave, while the video is the ‘reality’. Interestingly, 
the shadow is in higher dimension than the reality that creates it.

It is difficult to build a theory of quantum gravity that satisfies 
the holographic principle. A breakthrough occurred in 1997, fol-
lowing Maldacena’s discovery of AdS (anti-de Sitter)/CFT (con-
formal field theory) correspondence8. AdS/CFT is a conjectured 
duality between gravity in asymptotically AdS space and a quantum 
field theory living at the spatial infinity of AdS space8–10. In physics, 
duality refers to the situation when two theories appear to be very 
different, but there is a hidden one-to-one correspondence between 
their properties once we know how to compare them. This is simi-
lar to two languages that sound totally different but can be trans-
lated between each other once we have a dictionary in our hands. 
Roughly speaking, one can start from the boundary and think of 
the extra dimension in the bulk representing the length scale in 
the boundary. Dynamics with lower energy and longer wavelength 
live deeper in the bulk, as illustrated in Fig. 1a. Assuming that the 
duality is exact, all properties of the boundary should have a bulk 
explanation. In particular, Ryu and Takayanagi (RT)11 proposed that 
the entanglement entropy of a boundary region A is determined by 

= γ∣ ∣
S

G4
A , the same formula as the black hole entropy, but with the 

black hole horizon area replaced by an extremal surface area |γA| 
bounding region A (Fig. 1b).

In this boundary theory, states with different entanglement 
structures correspond to different bulk geometries. For example, 
the ground state of a conformal field theory corresponds to an AdS 
space, for which the RT surface area grows more slowly than the 
volume of the boundary region. In comparison, when the boundary 
is in thermal equilibrium at finite temperature, the dual geometry 
gives rise to a black hole with the horizon parallel to the boundary. 
The RT surface is restricted between the boundary and the black 
hole horizon (Fig. 1c), so that its area is also proportional to the 
volume of the boundary region. Increasing the temperature there-
fore corresponds to increasing the size of the black hole in the bulk, 
which pushes the RT formula further towards the boundary, leading 
to a larger entropy.

The RT formula and its generalizations12,13 suggest that the space-
time geometry is constructed from quantum entanglement14,15. To 
build a holographic quantum gravity theory, the first step is to look 
for quantum states satisfying the RT formula (for some geometry). 
However, this is a non-trivial task. For example, the RT formula 
requires that the correlation between a region A with two regions  
B and C together, measured by mutual information, is always bigger 
than the sum of that with each region separately16, a condition that 
is not true in general.

Locality from quantum error correction
If we believe that the holographic duality holds exactly, each state in 
the bulk gravity theory corresponds to a unique state of the bound-
ary theory. In particular, we can consider an electron wavepacket 
localized around a bulk position x, far from the boundary (Fig. 2a). 
The electron can have its spin along a generic direction, carrying 
one qubit of information. The duality tells us that one should be 
able to access the spin qubit of this electron from the boundary. 
For example, the spin z component should correspond to an opera-
tor on the boundary that, in principle at least, could be measured. 
However, this seems to be inconsistent with locality. Since the bulk 
theory is relativistic, no signal can travel faster than speed of light. 
So how can someone standing at the boundary measure or rotate 
the spin in the centre instantaneously?

A resolution of this apparent contradiction was proposed in a 
beautiful paper of Almheiri, Dong and Harlow17. Based on previ-
ous works on how to reconstruct bulk operators from a subset of 
the boundary18,19—known as local reconstruction—they pointed 
out that the bulk spin is only accessible by boundary operators sup-
ported by a sufficiently big boundary region, such as B in Fig. 2a, 
while it is not accessible from any smaller boundary regions, such as 
A in the same figure. As a consequence, although there exists a way 
to control the bulk spin instantaneously from the boundary, this 
action would require simultaneous access to a large portion of the 
boundary. In other words, a local observer living in a small region 
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of the boundary has no way to access the bulk spin, so that the bulk 
spin looks far away for her. Locality and upper limit of speed—the 
speed of light—are therefore not exactly true in such a world, but it 
effectively holds for all local observers that do not have the ability of 
simultaneously measure a big part of the Universe. Intriguingly, this 
mechanism is the same as quantum error correction code (QECC) 
in quantum information theory. The idea of error correction is to 
store the information redundantly, so that if part of the storage 
device is corrupted, the information can still be restored from the 
remaining part (Fig. 2b).

With this analogy, two boundary states corresponding to the two 
bulk spin states, ∣↑  and ∣↓ , can be regarded as an encoding of these 
bulk qubits into the boundary system. The fact that the qubit cannot 
be accessed from a small region of the boundary guarantees that the 
stored information is robust against errors in the boundary system, 
as long as the corrupted region is not too big. What looks like local-
ity in the bulk actually follows from the quantum error correction 
property of the duality as an encoding map. The QECC properties 
are also closely related to the RT formula20: roughly speaking, the RT 
entropy is a ‘resource of entanglement’ that allows QECC to occur.

Tensor networks
How do we make further progress based on this new understanding 
of locality? Are properties like the RT formula and QECC suggest-
ing that we are looking for some very special theory, or are they 
generic properties satisfied by a large class of models? What are the 
key ingredients for achieving such properties? To gain more under-
standing, it is helpful to construct toy models with similar properties. 
Starting from Swingle’s work21, a family of such toy models known 
as tensor networks have been devised. Historically, tensor networks 
have been examined in the context of condensed matter physics 
as variational wavefunctions for strongly correlated systems22–24.  

The network that is particularly relevant to Swingle’s work is known 
as the multiscale entanglement renormalization ansatz (MERA) 
proposed by Vidal24.

A tensor network is a many-body wavefunction obtained by 
‘gluing’ few-body quantum states, which are the tensors. Building a 
tensor network is similar to connecting computers to the Internet. 
When we communicate by e-mail or instant messenger, our com-
puters are not directly sending signals to each other. Instead, we 
send signals to some e-mail servers, which mediate the communi-
cation. Similarly, a tensor network state was built by first preparing 
some Einstein–Podolsky–Rosen (EPR) entangled pairs of qubits, 
and then measuring some qubits in an entangled basis (Fig. 3a). The 
measured qubits are now in some entangled pure state, and they 
‘glue’ the remaining qubits into a more complicated entangled state, 
just like how e-mail servers connect us to a communication net-
work. In such a way, one can build complicated quantum entangle-
ment even if each node only entangles a few qubits25.

It is natural to relate tensor networks to holographic duality 
because the entanglement entropy of a tensor network is controlled 
by its graph geometry. For example, Fig. 3b shows a tensor net-
work in which region A and B have the same size, but A can have a 
higher entanglement entropy than B since there are more EPR pairs 
mediating the entanglement of A with its complement. In general, 
if each EPR pair maximally entangles D states of the two qubits, the 
entanglement entropy of a region A is bounded from above by the 
minimal number of cuts that separate A and its complement, times 
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Fig. 1 | schematic illustration of holographic duality and rT formula. a, The bulk theory is a hologram that emerges from the boundary theory. The 
total number of degrees of freedom is determined by the number of ‘pixels’ in the boundary theory. The emergent direction corresponds to length scale, 
such that an object deeper in the bulk corresponds to a boundary feature with larger size and lower energy. b, The entanglement entropy of region A is 
determined by the area of the extremal surface γA, which is obtained by deforming A into the bulk and searching for the saddle point of area. c, For a black 
hole geometry, the RT surface is restricted between the boundary (lower plane) and the horizon (upper plane), and thus has an area that is proportional to 
the volume of region A.
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Fig. 2 | analogy between accessing bulk qubit from the boundary 
and quantum error correction. a, A qubit in the bulk position x is not 
immediately accessible from any small region on the boundary, such as 
A, since the signal takes finite time to propagate. This translates to the 
quantum error correction state that the bulk qubit is protected against local 
errors around the boundary. However, the information is accessible for a 
big region like B. b, An example of a quantum error correction code that 
encodes one qubit into five qubits. If an error occurs in a subsystem A with 
two qubits, the encoded information can still be recovered.
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Fig. 3 | Tensor network state and the encoded bulk qubit. a, Tensor 
network state, built by preparing EPR pairs (coloured balls connected by a 
line), and then carrying an entangled measurement on intermediate server 
nodes S1 and S2. b, The two regions A (red dots) and B (blue dots) have 
the same size but different maximal entropy. A can have more entropy 
than B because its entanglement with the complement is mediated by two 
qubits rather than one. c, A bulk qubit (orange cube) is encoded by a tensor 
network with a bulk leg (red vertical link) into boundary quantum states.
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log D. If the actual entropy is proportional to this upper bound, the 
RT formula applies, which is not true for all tensor networks.

Special tensor networks with RT entanglement entropy and quan-
tum error correction properties have been constructed using stabi-
lizer codes26,27 and random tensors with large bond dimension28. 
Roughly speaking, a tensor network with a random tensor on each 
node can be thought as a random state with the restriction given by 
the network geometry. For the same reason that a random state in 
the Hilbert state is almost maximally entangled29, the entanglement 
entropy of a random tensor network is closed to the maximal allowed 
value, which is given by the RT formula. A bulk qubit can then be 
introduced by a small perturbation in the bulk, such as changing one 
of the tensors (Fig. 3c). Again the randomness helps in making sure 
that the qubit is encoded in a highly entangled way so that no infor-
mation can be revealed within small regions of the boundary.

The random tensor networks provide a large family of states that are 
interesting toy models for exploring holographic duality. One interest-
ing feature is that the RT formula holds for random tensor networks 
with large bond dimension, even if the geometry is not hyperbolic. 
This provides some hope that even when we go beyond AdS space 
and think about quantum gravity in more general geometries30–32, the 
random tensor networks may still be useful. However, there are many 
aspects of quantum gravity that tensor networks have not captured so 
far. A major open question is how to describe the gravitational dynam-
ics. Ideally, one would like to introduce a Hamiltonian to describe the 
dynamics of tensor network states, and map that to some dynamics 
of the bulk geometry. However, the randomness in choice of tensors 
makes that difficult. In three dimensions, random tensor networks 
have been related to gravitational action through Regge calculus33.

Dynamics and chaos
Since geometry is a characterization of the entanglement structure, 
it is natural to expect that the dynamics of geometry, described by 
Einstein’s equation, should be related to the dynamics of entangle-
ment. Indeed, in the special case of small perturbations around the 
ground state of conformal field theory, Van Raamsdonk and col-
laborators34,35 have derived the linearized Einstein’s equation from 
the RT formula. The idea of this proof is summarized in the triangle 
in Fig. 4. The RT formula relates the entropy of states to the area of 
an extremal surface. On the other hand, the conformal symmetry 
allows one to relate the energy momentum and the entanglement 
entropy for small perturbations around the vacuum. Therefore, the 
area of the extremal surface is related to the energy–momentum 
distribution at the boundary, which turns out to be equivalent to 
the linearized Einstein equation. One expects the derivation of the 
Einstein equation to hold for other background geometries, which 
corresponds to states far from the CFT vacuum, but the proof has 
not been generalized to that extent.

On general geometry, we do not understand the dynamics  
from the boundary point of view, but certain aspects of the bulk 

gravitational dynamics have an interesting interpretation on the 
boundary. Consider a black hole geometry in the bulk, which cor-
responds to a thermal state on the boundary. Consider two par-
ticles a and b, which scatter near the black hole, with particle b 
moving towards the boundary (Fig. 5). To escape to the boundary 
with a definite energy, b has to have a much higher energy near the 
horizon. The closer the scattering is to the horizon, the higher is 
b’s energy as it approaches the horizon, and the later will b reach 
the boundary. From the boundary point of view, if we write down 
the annihilation operators of these two particles, â(0)  and ̂b (0) , 
the near-horizon scattering effect translates to a commutator that 
grows in time t. In fact, ̂ ̂ ∝† πb t a e[ ( ) , (0)] Tt2  grows exponentially 
with a universal exponent 2π T (where T is the temperature). This 
is a signature that the boundary dynamics are chaotic, such that a 
single particle operator ‘scrambles’36 and evolves into a complicated 
multi-particle operator, which thus can have a non-trivial commu-
tator with more and more single particle operators. This commu-
tator growth is characterized by out-of-time-ordered correlation 
(OTOC) functions36–38. The exponential growth with exponent 2π 
T is actually maximal among all quantum systems39, so that holo-
graphic theories not only have to be chaotic, but maximally cha-
otic. An explicit model with maximal chaos has been recently put 
forward and studied, known as the Sachdev–Ye–Kitaev model40–42.

The operator scrambling is also related to the QECC property 
discussed above. When a qubit is thrown towards the black hole 
horizon, it becomes more and more difficult to access, because the 
corresponding boundary perturbation becomes more and more 
non-local. In this sense, one can say that the chaotic dynamics of 
the boundary provides the QECC that protects quantum informa-
tion in the bulk, and the information hiding behind the horizon is 
protected best. This naturally leads to many further questions: what 
happens when the qubit hits the singularity? Is information behind 
the horizon accessible from the boundary, if we can carry non-local 
measurement on the boundary? If yes, how do we make this point of 
view consistent with the causal structure of the bulk and a smooth 
geometry across the horizon? There are a lot of open questions 
related to various forms of black hole information paradox, such as 
the firewall paradox43.

Towards quantum gravity
It is clear that there is a long way to go before we have a complete 
theory of quantum gravity. However, it is fair to say that the recent 
developments have already significantly changed our view of gravity 
and spacetime. Concepts developed in quantum information theory,  
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Fig. 4 | The relation between entanglement, bulk geometry and energy–
momentum of the boundary. The entropy of states is related to the 
area of an extremal surface through the RT formula, while the linearized 
Einstein equation relates the extremal surface to the energy–momentum 
distribution at the boundary. On the other hand, the conformal symmetry 
allows one to relate the energy–momentum and the entanglement entropy 
for small perturbations around the vacuum.
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Fig. 5 | The scattering between two particles, a and b, near the black hole 
horizon. The scattering amplitude grows exponentially with the arrival time 
of the particle b.
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such as entanglement entropy and quantum error correction, enter 
the description of spacetime in a fundamental way. Other funda-
mental aspects of quantum mechanics, such as the complexity of 
quantum circuits, have also been proposed to have gravity counter-
parts in the dynamics of black holes44,45. The goal is to describe pre-
cisely how spacetime geometry and gravity emerge from quantum 
information characteristics of many-body states. If we speculate 
how the quantum gravity theory will look, there remain two differ-
ent possibilities: gravity may be entirely an emergent phenomenon 
in quantum mechanics, which means quantum mechanics is the 
most fundamental theory of our world46; or perhaps we find that to 
describe gravity beyond the AdS background we have to go beyond 
quantum mechanics, such that gravity and quantum mechanics are 
different approximations of a more fundamental theory.
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