Life’s Universal Scaling Laws

Geoffrey B. West and James H. Brown

Citation: Physics Today 57, 9, 36 (2004); doi: 10.1063/1.1809090
View online: https://doi.org/10.1063/1.1809090

View Table of Contents: https://physicstoday.scitation.org/toc/pto/57/9
Published by the American Institute of Physics

ARTICLES YOU MAY BE INTERESTED IN

The laws of life
Physics Today 70, 42 (2017); https://doi.org/10.1063/PT.3.3493

Constructing a Theory for Scaling and More
Physics Today 58, 20 (2005); https://doi.org/10.1063/1.2012444

The stormy fluid dynamics of the living cell
Physics Today 72, 32 (2019); https://doi.org/10.1063/PT.3.4292

Constructing a Theory for Scaling and More
Physics Today 58, 20 (2005); https://doi.org/10.1063/1.4797140

The emergent physics of animal locomotion
Physics Today 70, 34 (2017); https://doi.org/10.1063/PT.3.3691

Does new physics lurk inside living matter?
Physics Today 73, 34 (2020); https://doi.org/10.1063/PT.3.4546

WITH THE MOST ADVANCED

QUANTUM CONTROL STACK

QUANTUM
> MACHINES



https://physicstoday.scitation.org/action/clickThrough?utm_medium=Article Download&utm_campaign=QM_PT_JAD_0322&loc=pt/pdf&pubId=40000052&placeholderId=101032&productId=101078&id=101837&url=https%3A%2F%2Fwww.quantum-machines.co
https://physicstoday.scitation.org/author/West%2C+Geoffrey+B
https://physicstoday.scitation.org/author/Brown%2C+James+H
/loi/pto
https://doi.org/10.1063/1.1809090
https://physicstoday.scitation.org/toc/pto/57/9
https://physicstoday.scitation.org/publisher/
https://physicstoday.scitation.org/doi/10.1063/PT.3.3493
https://doi.org/10.1063/PT.3.3493
https://physicstoday.scitation.org/doi/10.1063/1.2012444
https://doi.org/10.1063/1.2012444
https://physicstoday.scitation.org/doi/10.1063/PT.3.4292
https://doi.org/10.1063/PT.3.4292
https://physicstoday.scitation.org/doi/10.1063/1.4797140
https://doi.org/10.1063/1.4797140
https://physicstoday.scitation.org/doi/10.1063/PT.3.3691
https://doi.org/10.1063/PT.3.3691
https://physicstoday.scitation.org/doi/10.1063/PT.3.4546
https://doi.org/10.1063/PT.3.4546

Life’s Universal Scaling Laws

Biological systems have evolved branching networks that
transport a variety of resources. We argue that common
properties of those networks allow for a quantitative theory of
the structure, organization, and dynamics of living systems.

Geoffrey B. West and James H. Brown

early 100 years ago, the eminent biologist D’Arcy

Thompson began his wonderful book On Growth and
Form (Cambridge U. Press, 1917) by quoting Immanuel
Kant. The philosopher had observed that “chemistry . . . was
a science but not Science . . . for that the criterion of true
Science lay in its relation to mathematics.” Thompson then
declared that, since a “mathematical chemistry” now ex-
isted, chemistry was thereby elevated to Science; whereas
biology had remained qualitative, without mathematical
foundations or principles, and so it was not yet Science.

Although few today would articulate Thompson’s po-
sition so provocatively, the spirit of his characterization re-
mains to a large extent valid, despite the extraordinary
progress during the intervening century. The basic ques-
tion implicit in his discussion remains unanswered: Do bi-
ological phenomena obey underlying universal laws of life
that can be mathematized so that biology can be formu-
lated as a predictive, quantitative science? Most would re-
gard it as unlikely that scientists will ever discover “New-
ton’s laws of biology” that could lead to precise calculations
of detailed biological phenomena. Indeed, one could con-
vincingly argue that the extraordinary complexity of most
biological systems precludes such a possibility.

Nevertheless, it is reasonable to conjecture that the
coarse-grained behavior of living systems might obey
quantifiable universal laws that capture the systems’ es-
sential features. This more modest view presumes that, at
every organizational level, one can construct idealized bi-
ological systems whose average properties are calculable.
Such ideal constructs would provide a zeroth-order point
of departure for quantitatively understanding real biolog-
ical systems, which can be viewed as manifesting “higher-
order corrections” due to local environmental conditions or
historical evolutionary divergence.

The search for universal quantitative laws of biology
that supplement or complement the Mendelian laws of in-
heritance and the principle of natural selection might
seem to be a daunting task. After all, life is the most com-
plex and diverse physical system in the universe, and a
systematic science of complexity has yet to be developed.

Geoffrey West is a senior fellow at the Los Alamos National
Laboratory and a distinguished research professor at the Santa
Fe Institute, both in New Mexico. Jim Brown is a distinguished
professor of biology at the University of New Mexico in
Albuquerque.
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The life process covers more than 27
orders of magnitude in mass—from
molecules of the genetic code and
metabolic machinery to whales and se-
quoias—and the metabolic power re-
quired to support life across that range
spans over 21 orders of magnitude.
Throughout those immense
ranges, life uses basically the same
chemical constituents and reactions to create an amazing
variety of forms, processes, and dynamical behaviors. All
life functions by transforming energy from physical or
chemical sources into organic molecules that are metabo-
lized to build, maintain, and reproduce complex, highly or-
ganized systems. Understanding the origins, structures,
and dynamics of living systems from molecules to the bios-
phere is one of the grand challenges of modern science.
Finding the universal principles that govern life’s enor-
mous diversity is central to understanding the nature of
life and to managing biological systems in such diverse
contexts as medicine, agriculture, and the environment.

Allometric scaling laws

In marked contrast to the amazing diversity and com-
plexity of living organisms is the remarkable simplicity of
the scaling behavior of key biological processes over a
broad spectrum of phenomena and an immense range of
energy and mass. Scaling as a manifestation of underly-
ing dynamics and geometry is familiar throughout physics.
It has been instrumental in helping scientists gain deeper
insights into problems ranging across the entire spectrum
of science and technology, because scaling laws typically
reflect underlying generic features and physical principles
that are independent of detailed dynamics or specific char-
acteristics of particular models. Phase transitions, chaos,
the unification of the fundamental forces of nature, and
the discovery of quarks are a few of the more significant
examples in which scaling has illuminated important uni-
versal principles or structure.

In biology, the observed scaling is typically a simple
power law: Y = Y M?®, where Y is some observable, Y, a con-
stant, and M the mass of the organism.!~® Perhaps of even
greater significance, the exponent b almost invariably ap-
proximates a simple multiple of %4. Among the many fun-
damental variables that obey such scaling laws—termed
“allometric” by Julian Huxley‘*—are metabolic rate, life
span, growth rate, heart rate, DNA nucleotide substitution
rate, lengths of aortas and genomes, tree height, mass of
cerebral grey matter, density of mitochondria, and con-
centration of RNA.

The most studied of those variables is basal metabolic
rate, first shown by Max Kleiber to scale as M** for mam-
mals and birds.? Figure 1 illustrates Kleiber’s now 70-year-
old data, which extend over about four orders of magni-
tude in mass. Kleiber’s work was generalized by
subsequent researchers to ectotherms (organisms whose
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Figure 1. The basal metabolic rate of mam-

LOG METABOLIC RATE (kcal/day)

3 mals and birds was originally plotted by Max
Kleiber in 1932. In this reconstruction, the
slope of the best straight-line fit is 0.74, illus-
trating the scaling of metabolic rate with the
3/» power of mass. The diameters of the
circles represent estimated data errors of
+10%. Present-day plots based on many
hundreds of data points support the 34
exponent, although evidence exists of a
deviation to a smaller value for the smallest
mammals. (Adapted from ref. 5.)

dependent of size. Hearts are not funda-
mental, but the molecular machinery of aer-
obic metabolism is, and it has an analogous
invariant: the number of ATP (adenosine

Steer

LOG MASS (kg)

body temperature is determined by their surroundings),
unicellular organisms, and even plants. It was then fur-
ther extended to intracellular levels, terminating at the
mitochondrial oxidase molecules (the respiratory machin-
ery of aerobic metabolism). The metabolic exponent b =~ 31
is found over 27 orders of magnitude;® figure 2 shows data
spanning most of that range. Other examples of allomet-
ric scaling include heart rate (b =~ —Va, figure 3a), life span
(b = Y1), the radii of aortas and tree trunks (b = 3s), uni-
cellular genome lengths (b = 4, figure 3b), and RNA con-
centration (b = —14).

An intriguing consequence of these “quarter-power”
scaling laws is the emergence of invariant quantities,’
which physicists recognize as usually reflecting funda-
mental underlying constraints. For example, mammalian
life span increases as approximately M4, whereas heart
rate decreases as M %, so the number of heartbeats per
lifetime is approximately invariant (about 1.5 X 109), in-

5

s of
g
<
~ 5}
@]
—
=
2

10 |
=
€3]
= Average mammalian
) cell, in culture
o-15+
—

Mitochondrion
. (mammalian
Respiratory myocyte)
—20 [ complex
—20 -15 -10 -5 0 5 10
LOG MASS (g)

http://www.physicstoday.org

3 triphosphate) molecules synthesized in a
lifetime (of order 10%). Another example
arises in forest communities where popula-
tion density decreases with individual body
size as M~%*, whereas individual power use

increases as M**; thus the power used by all individuals in

any size class is invariant.®

The enormous amount of allometric scaling data ac-
cumulated by the early 1980s was synthesized in four
books that convincingly showed the predominance of quar-
ter powers across all scales and life forms.>? Although sev-
eral mechanistic models were proposed, they focused
mostly on very specific features of a particular taxonomic
group. For example, in his explanation of mammalian
metabolic rates, Thomas McMahon assumed the elastic
similarity of limbs and the invariance of muscle speed,!
whereas Mark Patterson addressed aquatic organisms
based on the diffusion of respiratory gases.’ The broader
challenge is to understand the ubiquity of quarter powers
and to explain them in terms of unifying principles that
determine how life is organized and the constraints under
which it has evolved.

Origins of scaling

A general theory should provide a scheme for making quan-
titative dynamical calculations in addition to explaining
the predominance of quarter powers. The kinds of prob-
lems that a theory might address include, How many oxi-
dase molecules and mitochondria are there in a cell? Why
do we live approximately 100 years, not a million years or
a few weeks, and how is life span related to molecular
scales? What are the flow rate, pulse rate, pressure, and

Figure 2. The 3/s-power law for the metabolic rate as a
function of mass is observed over 27 orders of magnitude.
The masses covered in this plot range from those of indi-
vidual mammals (blue), to unicellular organisms (green), to
uncoupled mammalian cells, mitochondria, and terminal
oxidase molecules of the respiratory complex (red). The
blue and red lines indicate 34-power scaling. The dashed
line is a linear extrapolation that extends to masses below
that of the shrew, the lightest mammal. In reference 6, it
was predicted that the extrapolation would intersect the
datum for an isolated cell in vitro, where the 3/4-power
reemerges and extends to the cellular and intracellular
levels. (Adapted from ref. 6.)
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dimensions in any vessel of any circulatory system? How
many trees of a given size are in a forest, how far apart
are they, and how much energy flows in each branch? Why
does an elephant sleep only 3 hours and a mouse 18?
Beginning in the late 1990s, we attempted to address
such questions, first with Brian Enquist and later with
others.%!% The starting point was to recognize that highly
complex, self-sustaining, reproducing, living structures re-
quire close integration of enormous numbers of localized
microscopic units that need to be serviced in an approxi-
mately “democratic” and efficient fashion. To solve that
challenge, natural selection evolved hierarchical fractal-
like branching networks that distribute energy, metabo-
lites, and information from macroscopic reservoirs to
microscopic sites. Examples include animal circulatory
systems, plant vascular systems, and ecosystem and in-
tracellular networks. We proposed that scaling laws and
the generic coarse-grained dynamical behavior of biologi-
cal systems reflect the constraints inherent in universal
properties of such networks. These constraints were pos-
tulated as follows:
» Networks service all local biologically active regions in
both mature and growing biological systems. Such net-
works are called space-filling.
» The networks’ terminal units are invariant within a
class or taxon.
» Organisms evolve toward an optimal state in which the
energy required for resource distribution is minimized.
These properties, which characterize an idealized bio-
logical organism, are presumed to be consequences of nat-
ural selection. Thus, terminal units—the basic building
blocks of the network in which energy and resources are
exchanged—are not reconfigured as individuals grow from
newborn to adult nor reinvented as new species evolve. Ex-
amples of such units include capillaries, mitochondria,
leaves, and chloroplasts. Analogous architectural terminal
units, such as electrical outlets or water faucets, are also
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Figure 3. Simple scaling laws are not limited to meta-
bolic rates. (a) A log—log plot of heart rate as a function
of body mass for a variety of mammals. The best straight-
line fit has a slope very close to —'/4. (Adapted from

ref. 14.) (b) A log-log plot of genome length (number of
base pairs) as a function of cell mass for a variety of
unicellular organisms. The best straight-line fit has a
slope very close to '/a.

approximate invariants, independent of building size or
location. The third postulate assumes that the continuous
feedback and fine-tuning implicit in natural selection lead
to near-optimized systems. For example, of the infinitude
of space-filling circulatory systems with invariant terminal
units that could have evolved, the ones that did evolve min-
imize cardiac output. Minimization principles are poten-
tially very powerful because they can be expressed mathe-
matically as equations that describe network dynamics.
Guided by the three postulates, we and our colleagues
built on earlier work to derive analytic models of the mam-
malian circulatory and respiratory systems and of plant
vascular systems. The theory enables one to address the
types of questions we raised at the beginning of this sec-
tion and predicts quarter-power scaling of diverse biologi-
cal phenomena even though the networks and associated
pumps are very different. It allowed us to derive many
scaling laws not only between organisms of varying size
but also within an individual organism—for example, laws
that relate the aorta to capillaries and growth laws that
connect, say, a seedling to a giant sequoia. Where data
exist, one generally finds excellent agreement, and where
they do not, the theory provides testable predictions.

Metabolic rate

Aerobic metabolism is fueled by oxygen, whose concentra-
tion in hemoglobin is fixed. Consequently, the rate at
which blood flows through the cardiovascular system is a
proxy for metabolic rate so that the properties of the cir-
culatory network partially control metabolism. The re-
quirement that the network be space-filling constrains the
branch lengths /, to scale as /,, ./, = n™"? within networks,
where n is the branching ratio, k£ is the branching level,
and the lowest-level branch is the aorta. The 3 in the
branching-ratio exponent reflects the dimensionality of
space.

In 1997, we and Enquist derived an analytic solution
for the entire network from the hydrodynamic and elas-
ticity equations for blood flow and vessel dynamics.!® We
assumed, for simplicity, that the network was symmetric
and composed of cylindrical vessels and that the blood flow
was not turbulent. We also imposed the requirements that
the network be space-filling and that dissipated energy be
minimized.

Two factors independently contribute to energy loss:
viscous energy dissipation, which is only important in
smaller vessels, and energy reflected at branch points,
which is eliminated by impedance matching. In large ves-
sels such as arteries, viscous forces are negligible and the
resulting pulsatile flow suffers little attenuation or dissi-
pation. In that case, impedance matching leads to area-
preserving branching. That is, the cross-sectional area of
the daughter branches equals that of the parent, so radii
scale as r,,,/r, = n~"? and blood velocity remains constant.
In small vessels such as capillaries and arterioles, the
pulse is strongly damped by viscous forces, so-called
Poiseuille flow dominates, and significant energy is dissi-
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Figure 4. Cells in living organisms and cells cultured in
vitro have different metabolic rates. The plot shows the
metabolic rates of mammalian cells in vivo (blue) and in
vitro (red) as a function of organism mass M. While still
in the body and constrained by vascular supply net-
works, cellular metabolic rates scale as M~ (blue line).
Cells removed from the body and cultured in vitro gener-
ally take on a constant metabolic rate (red line) predicted
by theory. Consistent with theory, the in vivo and in vitro
lines meet at the mass M, ,, of a theoretical smallest
mammal, which is close to that of a shrew.

(Adapted from ref. 6.)

pated. For such flow, minimization of dissipated energy
leads to area-increasing branching with r, /r, = n7%3, so
blood slows down and almost ceases to flow in the capil-
laries. Because r,,,/r, changes continuously from n~'? to
n~Y® as branching increases, the network is not strictly
self-similar. Nevertheless, the length ratio /,.,/l, does re-
main constant throughout the network and the network
has some fractal-like properties.

Allometric relations follow from the invariance of cap-
illaries and the prediction from energy optimization that
the total blood volume is proportional to the body mass, as
observations confirm. We derived the scaling of radii,
lengths, and many other physiological characteristics and
showed them to have quarter-power exponents. Quantita-
tive predictions for those and other characteristics of the
cardiovascular system, such as the flow, pulse, and di-
mensions in any branch of a mammal, are in good agree-
ment with data.

The dominance of pulsatile flow, and consequently of
area-preserving branching, is crucial for deriving quarter
powers and, in particular, the % power describing meta-
bolic rate B. However, as body size decreases, tubes nar-
row and viscosity plays an increasing role. Eventually,
even major arteries become too constricted to support wave
propagation, and steady Poiseuille flow dominates. As a re-
sult, branching becomes predominantly area increasing
and metabolic rate becomes proportional to M, rather than
M?*. Networks with constricted arteries are highly ineffi-
cient because energy is dissipated in all branches; a limit-
ing-case animal whose network supported only steady flow
would have a beating heart but no pulse and would not
have evolved. The limiting-case idea allows one to esti-
mate, in terms of fundamental parameters, the size of the
smallest animal. For mammals, theory predicts M, of
about 1 g. That’s close to the mass of a shrew, which is in-
deed the smallest mammal. Although no mammals exist
with masses smaller than the shrew, a linear extrapola-
tion of B to lower masses is meaningful: As figure 2 shows,
the extrapolation intersects metabolic-power data at the
location of an isolated mammalian cell, a tiny “mammal
without a network.”

Because of the changing roles of pulsatile and
Poiseuille flow with body size, as mass decreases, the ex-
ponent for B should depend weakly on M, exhibiting cal-
culable deviations from 3/4 as observed.

From molecules to forests

Metabolism is organized at a number of levels, and at each
level new structures emerge. The result is a hierarchy of
networks, each with different physical characteristics and
effective degrees of freedom. Yet metabolic rate continues
to obey %4-power scaling. That invariance is in contrast to
the analogous situation in physics. Scaling, as manifested

http://www.physicstoday.org
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in structure functions or phase transitions, for example,
persists from quarks through hadrons, atoms, and ulti-
mately to matter. Yet no continuous universal behavior
emerges: Each level manifests different scaling laws.

Metabolic energy is conserved as it flows through the
hierarchy of sequential networks, each presumed to satisfy
the same general principles and, therefore, the same quar-
ter-power scaling. The continuity of flow imposes boundary
conditions between adjacent levels. Those conditions, in
turn, lead to constraints on densities of the invariant ter-
minal units, such as mitochondria and respiratory mole-
cules, that interact between levels. So, for example, the
total mitochondrial mass relative to body mass is correctly
predicted to be (M, m /m M) = 0.06 M~V*, where m_, is
the mitochondrial mass, m, is the average cell mass, and M
is in grams.

The control exercised by networks is further exempli-
fied by culturing cells in vitro and so liberating them from
network hegemony. Cells in vivo adjust their number of
mitochondria appropriately to the size of the host mammal
as dictated by the resource supply networks. In vivo cellu-
lar metabolic rate thereby scales as M~"4, as seen in figure
4. In vitro cultured cells from different mammals, however,
are predicted to develop the same metabolic rate, about
3 X 10~ watts. The figure shows that the in vivo and in
vitro values coincide at M, , so cells in shrews work at al-
most maximal output. No wonder shrews live short lives!

The calculations that yield quarter-power scaling de-
pend only on generic network properties. The observation
of such scaling at intracellular levels therefore suggests
that subcellular structure and dynamics are constrained
by optimized space-filling, hierarchical networks. A major
challenge, both theoretically and experimentally, is to un-
derstand quantitatively the nature and structure of intra-
cellular pathways, about which surprisingly little is
known.

Energy transported through the network fuels the
metabolic machinery that maintains biological systems.
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In addition, that energy is used to grow new cells for
added tissue. Thus metabolic rate has two components,
maintenance and growth, and can be expressed as
B = N_,B,+ EdN,/dt, where N, is the number of cells, B,
is the metabolic rate per cell in mature individuals, E is
the energy required to grow a cell, and ¢ is time. The equa-
tion gives a natural explanation for why we all stop grow-
ing: The number of cells to be supported (V, « M) in-
creases faster than the rate at which they are supplied
with energy (B o« M3* o« N ), which allows a determina-
tion of the mass at maturity. Moreover, the parameters in
the growth equation are determined by fundamental
properties of cells. As a consequence, one can derive a uni-
versal scaling curve valid for the growth of any organism.
As figure 5 shows, the curve fits the data well for a vari-
ety of organisms, including mammals, birds, fish, and
crustacea. The idea behind the universal growth curve
has recently been extended by Caterina Guiot and col-
leagues to parameterize tumor growth.'? Thus, growth
and life-history events are, in general, universal phe-
nomena governed primarily by basic cellular properties
and quarter-power scaling.

Temperature has a powerful effect on those basic prop-
erties—indeed, on all of life—because of its exponential ef-
fect on biochemical reaction rates. The Boltzmann factor
e E*T where E is an activation energy, £ is Boltzmann’s
constant, and 7' is the temperature, describes the effect
quantitatively. Combined with network constraints, the
Boltzmann factor predicts a joint universal mass and tem-
perature scaling law for times and rates connected with
metabolism, including longevity and rates of growth, em-
bryonic development, and DNA nucleotide substitution in
genomes. All times associated with metabolism should
scale as MV eP*T and all rates as M~V* e P*T with approx-
imately the same value for E. Data covering fish, amphib-
ians, aquatic insects, and zooplankton confirm the predic-
tion. The best-fit value for E, about 0.65 eV, may be
interpreted as an average activation energy for the rate-
limiting biochemical reactions.

Size and temperature considerations suggest a gen-
eral definition of biological time determined by just two
universal numbers, the scaling exponent %4 and the energy
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Figure 5. The universality of growth is illustrated by
plotting a dimensionless mass variable against a dimen-
sionless time variable. Data for mammals, birds, fish,
and crustacea all lie on a single universal curve. The
quantity M is the mass of the organism at age t, m, its
birth mass, m its mature mass, and a is a parameter
determined by theory in terms of basic cellular proper-
ties that can be measured independently of growth data.
(Adapted from ref. 11.)

E. When adjusted for size and temperature, all organisms,
to a good approximation, run by the same universal clock
with similar metabolic, growth, and even evolutionary
rates.

The basic principles that yield allometric scaling in
animals may also be applied to plants, whose vascular sys-
tems are effectively bundles of long microcapillary tubes
driven by a nonpulsatile pump. One can derive many scal-
ing relationships within and between plants, including
those for conductivity, fluid velocity, and, as first observed
by Leonardo da Vinci, area-preserving branching. Meta-
bolic rate scales as M** and trunk diameter (like aorta di-
ameter) scales as M?%. Thus B scales as the square of trunk
diameter.

Steady-state forest ecosystems, too, can be treated as
integrated networks satisfying appropriate constraints.
The network elements are not connected physically, but
rather by the resources they use. Scaling in the forest as
a whole mimics that in individual trees. So, for example,
the number of trees as a function of trunk diameter scales
just like the number of branches in an individual tree as
a function of branch diameter. As figure 6 shows, both scal-
ings are described by predicted inverse-square laws.

Criticisms and controversies

The theoretical framework reviewed here has now been
published for long enough to have attracted a number of crit-
ical responses. Broadly speaking, they fall into three cate-
gories: data, technical issues, and conceptual questions.

In 1982, Alfred Heusner analyzed data on mammalian
metabolic rates and concluded that the power-law expo-
nent was %3 rather than 34, indicative of a simple surface-
to-volume rule. His suggestion met with strong opposition,
and after the statistical debate subsided, the ubiquity of
quarter powers was widely accepted.? Recently, however,
the controversy was resurrected by Peter Dodds and
coworkers and by Craig White and Roger Seymour, all of
whom concluded that a reanalysis of data indeed supports
the %3 exponent, especially for the smaller mammals with
masses less than 10 kg that dominate the dataset.'* More
recently we, Van Savage, and others, assembled and ana-
lyzed the largest compilation of such data to date.'* We
gave equal weight to all sizes and found a best single-
power fit of 0.74 (+0.02, —0.03), although we did confirm
for small mammals a trend towards smaller exponents
that is in qualitative agreement with earlier theoretical
predictions.®

Although we authors disagree with critiques of the
3s-scaling exponents, we recognize that such criticisms
have raised important empirical and statistical issues
about data interpretation.

Dodds and colleagues also criticized our derivation of
the 34 exponent for mammals. In their reanalysis, they
minimized the total impedance of the pulsatile circulatory
network rather than the total energy loss, which is the sum
of viscous energy dissipated (related to the real part of the

http://www.physicstoday.org
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Figure 6. Trees and forests exhibit similar scaling behavior. (a) A typical tree exhibits multiple branching levels. (b) A page
from Leonardo da Vinci’s notebooks illustrates his discovery of area-preserving branching. (c¢) The number of branches
(closed circles) and roots (open circles) in a tree varies roughly as the predicted inverse square of the diameter, indicated by
the straight lines. The data are from a Japanese forest. (Adapted from ref. 17.) (d) The number of trees of a given size as a
function of trunk diameter also follows a predicted inverse-square law (to within the error of the best-fit lines). The data,
from a forest in Malaysia, were collected in 1947 (open circles) and 1981 (filled circles) and illustrate the robustness of the
result—the composition of the forest changed over the 34 years separating the data, but the inverse-square behavior

persisted. (Adapted from ref. 18.)

impedance) and the loss due to reflections at branch points
(related to the imaginary part). They did not, however, im-
pose impedance matching, so their analysis allowed re-
flections at branch points and therefore did not minimize
total energy loss. Consequently, they failed to obtain a 3
exponent.

Space filling, invariant terminal units, area-preserv-
ing branching, and the linearity of network volume with
M are sufficient to derive quarter powers. The last two
properties follow from network dynamics by way of mini-
mizing energy loss. Is there a more general argument, in-
dependent of dynamics and hierarchical branching, that
determines the special number 4? Jayanth Banavar and
coworkers assumed, like us, that allometric relations re-
flect network constraints.!® But they proposed that quar-
ter powers arise from a more general class of directed net-
works that need not have fractal-like hierarchical
branching. They showed that if the flow is sequential be-
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tween the invariant units being supplied—cells or leaves,
for example—rather than hierarchically terminating on
such units, then a scaling exponent of 34 is obtained. Their
result follows from minimizing flow rate rather than min-
imizing energy loss and assumes, in agreement with ob-
servation, that network volume scales linearly with body
mass. A further consequence of their model (and also ours)
is that in d dimensions, the metabolic exponent is d/(d+1):
The special number 4 thus reflects the three-dimensional-
ity of space.

The cascade model of Charles-Antoine Darveau and
colleagues provides another alternative.'® In that model,
the total metabolic rate is expressed as the sum of fun-
damental, mostly intracellular contributions, such as ATP
synthesis. Darveau and coworkers assume each contribu-
tion B, obeys a power law; conservation of energy requires
the metabolic rate to be B = X B, with each B, equal to a
coefficient ¢; multiplying the mass raised to a power «;.
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Using data for the ¢; and «;, they obtained a good fit for
B, consistent with the %s-power law, but rejected the idea
that transport networks constrain cellular behavior.
However, they did not offer any first-principles explana-
tion for why the B, scale or why most of the exponents «;
cluster around %s.

The alternate models summarized in this article do
not provide a general dynamical scheme or set of princi-
ples for calculating detailed properties of specific systems
or phenomena, even at a coarse-grained level. They were
designed almost exclusively to understand only the scal-
ing of mammalian metabolic rates and do not address the
extraordinarily diverse, interconnected, integrated body of
scaling phenomena across different species and within in-
dividuals. They do, however, raise significant conceptual
questions about universality classes of biological networks
and the minimal set of assumptions needed to construct a
general quantitative theory of biological phenomena.

Scaling is a potent tool for revealing universal behav-
ior and its corresponding underlying principles in any
physical system. Ubiquitous quarter-power scaling is
surely telling us something fundamental about biological
systems. Major technical and conceptual challenges re-
main, including extensions to neural systems, intracellu-
lar transport, evolutionary dynamics, and genomics. One
of the big questions is, Why does the theory work so well?
Does some fixed point or deep basin of attraction in the dy-
namics of natural selection ensure that all life is organized
by a few fundamental principles and that energy is a prime
determinant of biological structure and dynamics among
all possible variables?

References

1. T. A. McMahon, J. T. Bonner, On Size and Life, Scientific
American Library, New York (1983).

2. K. Schmidt-Nielsen, Scaling: Why Is Animal Size So Impor-
tant?, Cambridge U. Press, New York (1984); R. H. Peters,
The Ecological Implications of Body Size, Cambridge U.
Press, New York (1983); W. A. Calder III, Size, Function and
Life History, Harvard U. Press, Cambridge, MA (1984).

3. K. J. Niklas, Plant Allometry: The Scaling of Form and
Process, U. of Chicago Press, Chicago (1994); J. H. Brown,
G. B. West, eds., Scaling in Biology, Oxford U. Press, New
York (2000).

4. J. S. Huxley, Problems of Relative Growth, Dial Press, New
York (1932).

5. M. Kleiber, The Fire of Life: An Introduction to Animal Ener-
getics, Robert E. Krieger, Huntington, NY (1975).

6. G. B. West, W. H. Woodruff, J. H. Brown, Proc. Natl. Acad.
Sci. USA 99, 2473 (2002).

7. E. L. Charnov, Life History Invariants: Some Explorations of
Symmetry in Evolutionary Ecology, Oxford U. Press, New
York (1993); M. Ya. Azbel, Proc. Natl. Acad. Sci. USA 91,
12453 (1994).

8. B. J. Enquist, K. J. Niklas, Nature 410, 655 (2001).

9. M. R. Patterson, Science 255, 1421 (1992).

10. G. B. West, J. H. Brown, B. J. Enquist, Science 276, 122
(1997); J. F. Gillooly et al., Nature 417, 70 (2002). See also R.
Lewin, New Sci. 162, 34 (1999).

11. G. B. West, J. H. Brown, B. J. Enquist, Nature 413, 628 (2001).

12. C. Guiot et al., J. Theor. Biol. 225, 147 (2003).

13. P. S. Dodds, D. H. Rothman, J. S. Weitz, J. Theor. Bio. 209, 9
(2001); C. R. White, R. S. Seymour, Proc. Natl. Acad. Sci.
USA 100, 4046 (2003).

14. V. M. Savage et al., Funct. Ecol. 18, 257 (2004).

15. J. R. Banavar, A. Maritan, A. Rinaldo, Nature 399, 130
(1999); J. R. Banavar et al., Proc. Natl. Acad. Sci. USA 99,
10506 (2002).

16. C.-A. Darveau et al., Nature 417, 166 (2002).

17. K. Shinozaki et al., Jpn. J. Ecol. 14, 97 (1964).

18. N. Manokaran, K. M. Kochummen, J. Trop. Ecol. 3, 315
(1987). |

42 September 2004 Physics Today





