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Interacting topological mirror excitonic insulator in one dimension
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We introduce the topological mirror excitonic insulator as a new type of interacting topological crystalline
phase in one dimension. Its mirror-symmetry-protected topological properties are driven by exciton physics, and
it manifests in the quantized bulk polarization and half-charge modes on the boundary. And the bosonization
analysis is performed to demonstrate its robustness against strong correlation effects in one dimension. Besides,
we also show that Rashba nanowires and Dirac semimetal nanowires could provide ideal experimental platforms
to realize this new topological mirror excitonic insulating state. Its experimental consequences, such as quantized
tunneling conductance in the tunneling measurement, are also discussed.

DOI: 10.1103/PhysRevB.102.235115

I. INTRODUCTION

The conceptual revolution of topological physics [1–14] in
solids has changed our way of classifying phases of matters,
which has had a great impact on experimental discover-
ies of topological insulators (TIs) [15–18]. By definition,
a time-reversal-invariant TI is characterized by the nontriv-
ial Z2 band topology and the resulting gapless boundary
modes, both of which are protected by time-reversal sym-
metry [19–21]. This symmetry protection [13], upon which
only the Z2 topological invariant is well defined, distinguishes
TIs from earlier examples such as integer/fractional quantum
Hall systems. And it leads to the concept of the symmetry-
protected topological (SPT) state [22]. The framework of
symmetry-protected band topology has been successfully
extended from time-reversal symmetry to crystalline topolog-
ical systems protected by space-group symmetries [23–28],
magnetic-group symmetries [29–31], and space-time symme-
tries [32,33]. Remarkable progress has been made along this
direction, which has led to the theoretical predictions and
experimental discoveries of the crystalline topological phase
in SnTe [34], Pb1−xSnxSe [35], KHgSb [36,37], and, recently,
MnBi2nTe3n+1 [38–45].

Meanwhile, there has been great interest in exploring
the fate of SPT phases under strong electron correlations
[46–48]. For example, interaction effects could (i) fun-
damentally change the topology by breaking symmetries
spontaneously [49–52] or alter the topological classification
of SPT states [53–57] and (ii) enable new topological phases
which do not exist in the free fermion limit [51,58–69].
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However, little is known about how to realize interacting
SPT states in experiments [69–76] as well as how to de-
tect them, especially in systems with crystalline-symmetry
protection.

In this work, we introduce the topological mirror excitonic
insulator (TMEI) as a new type of interacting crystalline topo-
logical state in one dimension and propose to experimentally
realize this novel topological state in two physical systems,
namely, Rashba nanowires [77–79] and Dirac semimetal
nanowires [80–82]. The TMEI is characterized by a quantized
bulk charge polarization and a mirror-protected boundary
half-charge mode when interaction-induced excitonic order is
formed. To fully incorporate the interaction effects in one di-
mension, we construct an effective field theory description of
the TMEI in the Rashba nanowire system by applying Abelian
bosonization technique, which shows the robustness of the
TMEI beyond the mean-field level. This allows us to map
out the topological phase diagram and clarify the necessary
conditions for realizing the TMEI phase. Experimentally, we
propose quantized tunneling conductance as the smoking-gun
signal for the TMEI, which clearly distinguishes the TMEI
phase from other states.

II. MODEL HAMILTONIAN

The minimal system for one-dimensional (1D) exciton
physics consists of one electron band and one hole band [83].
Such two-channel systems can be realized in (i) a double-wire
setup with one n-type nanowire (electron doping) and a p-type
nanowire (hole doping) and (ii) a single quantum wire with
two conducting channels that have opposite effective masses.
In this paper, we focus on the TMEI physics in the double-
nanowire setup and briefly discuss its realization in a single
Dirac semimetal nanowire.
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FIG. 1. Schematics of two coupled nanowires for the topological
mirror excitonic insulator. The left, red wire is n-type and the right,
blue wire is p-type. An in-plane magnetic field �B is applied along
the x̂ direction. The top panel shows electron or hole dispersions for
n-type (left) and p-type (right) wires in Eq. (1), respectively, with
only one left (L)-moving and one right (R)-moving electron or hole
at a chemical potential μ illustrated by the dashed horizontal line.
A topological mirror excitonic insulator may be realized when the
interaction between two nanowires is introduced, and half-charge
modes are localized at the ends.

The double-nanowire system on an insulating substrate is
illustrated in Fig. 1. We consider a k · p Hamiltonian [84] to
describe the low-energy band structure of the double Rashba
nanowires under a magnetic field along the wire direction x,

H0 = ε(kx ) + (
m0k2

x − μ
)
σ0τz + vkxσyτ0 + hσxτ0, (1)

in which Pauli matrices τi and σi denote the wire and spin
degrees of freedom, respectively, ε(kx ) = δμ + δmk2

x m0 is the
inverse of the effective mass, μ is the chemical potential, v

characterizes the Rashba spin-orbit coupling, and h represents
the Zeeman splitting energy induced by an applied magnetic
field B. In the strained nanowires, δm → 0 can be achieved
[85]. Here we assume that m0, v, and h are all positive,
and there is a high tunneling barrier between the wires that
suppresses the single-electron tunneling between the wires.
Nevertheless, pair hopping processes still exist as a result of
interwire interactions. When B is aligned along the wires (x̂
direction), and the Hamiltonian, Eq. (1), has mirror symmetry,
Mx = iσx · P, where P maps x to −x [86]. In fact, Mx is the
lattice symmetry of the Rashba wires, which holds for both
the lattice and the continuum limits.

III. EXCITONS AND TOPOLOGY

To examine the band topology stemming from the exciton
physics, we consider an interwire interaction,

Hint =
∫

dx n̂e(x)n̂h(x), (2)

where n̂i(x) = ∑
α=↑,↓ c†

iα (x)ciα (x) is the density operator
with i = {e, h}. The excitonic orders [87–91] may introduce
an energy gap in the double-wire system, in favor of the
excitonic state energetically. Based on the representations of

Mx, there are two classes:

mirror-even orders, �even = σ0(x)τx(y);
mirror-odd orders, �odd = σy(z)τx(y).

(3)

As a result, the mean-field Hamiltonian is given by

HMF = H0 + Hec, (4)

where H0 is the noninteracting Hamiltonian in Eq. (1) and Hec

is for the excitonic orders in Eq. (3). To show the gap opening
by Hec, we take it as a perturbation. In the absence of Hec, the
eigenstates at kx = 0 are

|h + μ〉 = [1, 1, 0, 0]T/
√

2 and mx = +i,

|h − μ〉 = [0, 0, 1, 1]T/
√

2 and mx = +i,

|−h + μ〉 = [1,−1, 0, 0]T/
√

2 and mx = −i,

|−h − μ〉 = [0, 0, 1,−1]T/
√

2 and mx = −i,

(5)

where we assume that −h < μ < h, and mx is the eigenvalue
of the mirror symmetry Mx. By perturbation theory, we find
that mirror-even order parameters tend to lower the eigenen-
ergy of the state |h − μ〉, while they increase the eigenenergy
of the state |−h + μ〉. The closing and reopening of the bulk
gap indicate that there is a topological phase transition. More
explicitly, the bulk dispersion is

E± = δμ ± ∣∣h ±
√

μ2 + �2
0

∣∣, (6)

and it shows gap closing when h =
√

μ2 + �2
0, indicating

that a topological phase transition can be tuned by the ex-
ternal magnetic field. Moreover, the condition for the TMEI
phase is

h >

√
μ2 + �2

0 with �0 �= 0, (7)

where �0 denotes the amplitude of the mirror-even excitonic
orders. Given the TMEI condition, we note that the electron
and hole bands are “inverted” near the Fermi level to trigger
the nontrivial band topology. This is shown in Fig. 1, where
we plot both bands for electron and hole nanowires in the
�0 → 0 limit. As for the mirror-odd orders, they are trivial
since they always increase the bulk gap. Namely, they gen-
erally spoil Mx and do not lead to nontrivial topology in one
dimension.

With mirror-even orders, we can define a quantized bulk
electric polarization P [92–94] to characterize the bulk topol-
ogy,

P = i

2π

∑
n

∮
dkx〈un(kx )|∂kx |un(kx )〉, (8)

where |un(kx )〉 is the Bloch wave function with an occupied-
band index n. Crucially, Mx enforces that P is quantized
to an integer multiple of 1/2 (i.e., 0 or 1

2 since P is well
defined modulo 1). P can be numerically calculated within
mean-field theory, and the results are shown in Fig. 2, from
which we find that only the system with mirror symmetry can
be topological. Also, P = 1

2 for the TMEI phase, and P = 0
for the topological trivial phase.

To drive the TMEI phase with P = 1
2 into a trivial phase (or

a vacuum state) with P = 0, the system must undergo a bulk
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FIG. 2. The Zak phase in different states. (a) Both mirror and
chiral symmetries are preserved. (b) Mirror symmetry is broken but
chiral symmetry is preserved. (c) Mirror symmetry is preserved but
chiral symmetry is broken. (d) Both mirror and chiral symmetries are
broken.

gap closing process, which manifests itself as a topological
phase transition. With an open boundary condition, one can
easily check that the system hosts one localized half-charge
mode at each end, similar to the case of the Su-Shrieffer-
Heeger model. However, the chiral symmetry C is not often
exact in our system; we emphasize that the mirror-enforced
boundary half-charge is more fundamental and robust than the
C-protected boundary zero mode in our TMEI phase.

IV. BOSONIZATION AND PHASE DIAGRAM

Next, we establish a Luttinger liquid theory to show that
the TMEI physics remains robust when interaction effects
are considered, which is beyond the mean-field theory. Since
there is a pair of counter-propagating modes in each wire (see
Fig. 1), we follow the standard mapping from the fermion
fields 
i,s to the chiral boson fields χi,s by


i,s = ηi,s√
4πa

eis
√

4πχi,s , (9)

where a is the lattice constant and ηi,s are Klein factors
[95,96]. Here the wire index i = {e, h} labels the n-/p-type
nanowire and s = ± denotes the right-/left-moving fermion
modes.

It is convenient to define the dual boson fields as φi =
χi,R + χi,L and θi = χi,R − χi,L. Then the fermionic density
operators are given by ρi,s = 1√

π
∂xχi,s. We first consider

the intrawire density-density interaction g1ρi,Lρi,R and the
interwire density-density interaction g2(ρe,Rρh,L + ρe,Lρh,R),
which are known to renormalize the Fermi velocities and
Luttinger parameters. For simplicity, we assume that the bare
Fermi velocities in these two nanowires are equal. We de-
note φ± = (φe ± φh)/

√
2 and θ± = (θe ± θh)/

√
2 and obtain

a renormalized free boson model [97–99], which captures the

FIG. 3. Phase diagrams. (a) Three phases: the exciton condensa-
tion (EC) insulating phase when K− > 1 and K+ < 1; the topological
superconducting phase (TSC) phase for K± > 1; and the gapless
Luttinger liquid (LLa,b) phase when K− < 1. (b) Given by K− > 1
and K+ < 1, the phase diagrams for EC as functions of α1 and α2.
When α1 < 0, the EC insulating phase breaks mirror symmetry Mx;
otherwise, it is mirror symmetric. The expectation values of order
parameters [�(1)

ex , �(2)
ex ] are shown in each quarter.

low-energy physics,

H0 = v±
2

∫
dx

[
1

K±
(∂xφ±)2 + K±(∂xθ±)2

]
, (10)

where v± = √
(vF + (g1 ± g2)/2π )(vF − (g1 ± g2)/2π ) and

K± = √
(vF − (g1 ± g2)/2π )/(vF + (g1 ± g2)/2π ). Then

we include symmetry-allowed and momentum-conserved
scattering processes that arise from two-body anharmonic
interactions [100], which lead to the Hamiltonian
H = H0 + Hint, where

Hint =
∫

dx[α1 cos(2
√

2πφ+) + α2 cos(2
√

2πθ−)]. (11)

Here the first φ+-mass term is valid when a pair of “inverted
bands” is formed and the chemical potential is around the en-
ergy of the band crossings; the second θ−-mass term describes
the interwire pair hopping process. Notably, the φ+-mass term
is absent in usual general nanowires with only electronlike (or
holelike) bands. In particular, the relevance of the cosine terms
can be evaluated by the renormalization-group (RG) equation
dαi/d ln λ = [1 − �sd(αi )]αi, where the scaling dimensions
(sd) of the coupling constants are

�sd(α1) = K+, �sd(α2) = 1

K−
. (12)

Thus, under the RG, we find that α1 is relevant when K+ < 1,
while α2 is relevant for K− > 1. For the whole Hamiltonian
H = H0 + Hint, the phase diagram is determined by the Lut-
tinger parameters K± (or equivalently g1,2).

We first note that the system remains gapless when K+ > 1.
In particular, as for K− > 1, interwire pairhopping processes
are greatly promoted. This gaps out the antibonding sector and
further leads to number-conserving Majorana physics, which
has been intensively discussed in the literature [82,101,102].
This phase is denoted TSC in the phase diagram in Fig. 3(a).
On the contrary, when K− < 1, both antibonding and bonding
sectors remain gapless. This represents a gapless Luttinger
liquid state [LLb in Fig. 3(a)]. Similarly, a Luttinger liquid
state, LLa, arises for K± < 1 since only the bonding sector
is trivially gapped. In this case, the antibonding sector could
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also be trivially gapped due to the pining of the φ−-mass term,
which is induced by the Umklapp scattering when kF → π/2.
We discuss this later.

More importantly, we show that the TMEI is achieved
when K− > 1 and K+ < 1. Because �sd(α1) < 1 and
�sd(α2) < 1, those cosine terms with α1,2 will flow to the
strong-coupling limit under the RG. As a result, both θ−
and φ+ will be pinned to the semiclassical values. When the
system becomes gapped, we find a set of nonvanishing order
parameters,

�(1)
ex ∼ 〈
†

e,R
h,L〉 ∼ 〈e−i
√

2πφ+e−i
√

2πθ−〉 �= 0,

�(2)
ex ∼ 〈
†

e,L
h,R〉 ∼ 〈ei
√

2πφ+e−i
√

2πθ−〉 �= 0,
(13)

which imply an excitonic insulating phase. Now, let us ana-
lyze the condition for mirror-even excitonic orders. Under Mx,
the boson fields are transformed as

√
4πφe → −√

4πφe +
2β,

√
4πθe → √

4πθe + π ,
√

4πφh → −√
4πφh − 2β, and√

4πθh → √
4πθh − π , where β is an unimportant phase fac-

tor. Consequently, the mirror symmetry sends φ+ → −φ+
and θ− → θ− + √

π/2. For the excitonic order parameters,
we immediately find that �(1)

ex = −�(2)
ex respects Mx, while

�(1)
ex = �(2)

ex does not. The relative phase difference between
�(1)

ex and �(2)
ex is determined by the sign of the coupling

coefficients α1 and α2. For example, when α1,2 > 0, the semi-
classical limit is given by θ− = (nθ + 1

2 )
√

π
2 and φ+ = (nφ +

1
2 )

√
π
2 . This leads to �(1)

ex = −�(1)
ex = i and thus respects Mx

symmetry. In Fig. 3(b), we map out the phase diagram with
respect to α1 and α2. Therefore, the system preserves the
mirror symmetry Mx when α1 > 0.

To clarify the topological nature of the above mirror-even
excitonic insulating physics, it is instructive to map the ex-
citonic orders in the low-energy basis back to the original
fermion basis for Eq. (1). We find that the mirror-even case
with �(1)

ex = −�(2)
ex = 1 and �(1)

ex = −�(2)
ex = i are, respec-

tively, equivalent to the mean-field excitonic orders σxτy and
σxτx in the original basis [see Eq. (3)], which are already
known to lead to the TMEI phase.

Furthermore, the topological properties of the TMEI phase
can also be understood via the boson theory. Consider an open
boundary condition of the system x < 0 in Eq. (10) with the
end point x = 0, so that x > 0 is a vacuum with φ± = 0 and
x < 0 is the TMEI phase with φ+ = (nφ + 1

2 )π/
√

2π . The
fractional charge bound to the system end is calculated to be

q = e

√
2

π

∫
dx∂xφ+ =

(
nφ + 1

2

)
e. (14)

This half-quantized end charge thus confirms the bosonized
theory with mirror-even excitonic orders as the TMEI phase.

On the other hand, we can also explore the Luther-Emery
physics with K+ = 1

2 , where the boson system can be refor-
mulated into a noninteracting fermion theory. We focus on
the bonding sector and rescale the bonding bosonic fields as
φ+/

√
K+ = φ̃+ and

√
K+θ+ = θ̃+. This allows us to introduce

a set of new chiral fermion operators as ψ̃R = ηR√
4πa

ei
√

π (φ̃++θ̃+ )

and ψ̃L = ηL√
4πa

e−i
√

π (φ̃+−θ̃+ ), which leads to the refermionized

Hamiltonian

H+ =
∫

dx ψ̃†(−iv+γz∂x + α1γx )ψ̃, (15)

where ψ̃ = (ψ̃R, ψ̃L )T is a spinor and γx,y,z are Pauli matrices
in the new chiral fermion basis. Crucially, Eq. (15) describes
the low-energy theory of a massive Dirac fermion in one
dimension. Since the vacuum condition pins φ± = 0 and is
equivalent to α1 < 0, the interface between the vacuum and
the double-wire forms a mass domain wall for the 1D Dirac
fermion, which thus hosts a half-charge bound state. There-
fore, Eq. (15) is exactly a fermionic model of the TMEI phase
in the strongly interacting limit, which is consistent with the
above bosonic analysis.

V. EXPERIMENTAL SIGNATURE

We now propose quantized transport signals in a four-
terminal device to distinguish a trivial phase from the TMEI
phase. As shown in Fig. 1, the four metallic electrodes (la-
beled i = 1, 2, 3, 4) are attached to the two-nanowire system.
By applying a voltage drop and measuring the correspond-
ing electric current, the conductance Gi j between lead i and
lead j can feasibly be identified. The intrawire two-terminal
conductance G1,3 (or equivalently G2,4) measures the electron
tunneling probability across the system. Thus, G1,3 is expected
to show a U-shape dip as a function of the voltage bias because
of the energy gap.

The nonlocal interwire conductance G1,2 (or G3,4) is the
key to characterize TMEI physics. First, a nonzero G1,2 has
already implied strong interwire correlation effects, which
could further clarify the excitonic nature of the energy gap
measured in G1,3. For a trivial system, we thus expect a similar
conductance dip for G1,2 due to the exciton gap. For the
TMEI phase, however, its half-charge end mode will provide
an additional resonant interwire conductance contribution
to G1,2:

�G1,2 = e2

h

�2

�2 + (ω − E0)2
. (16)

Here, E0 is the energy of the half-charge mode and � ∼
m2

0/vF is the transport broadening. Thus, when the half-charge
mode is in-gap, G1,2 will show a quantized conductance peak
of e2/h as ω → E0.

Numerical verifications of the above conductance pat-
terns are performed using the Kwant PYTHON package [103].
Figures 4(a) and 4(c) and Figs. 4(b) and 4(d) show the con-
ductance distributions as a function of the voltage bias for the
topological trivial and nontrivial phases, respectively. In par-
ticular, Figs. 4(a) and 4(b) show an accidental chiral symmetry
in their models, while Figs. 4(c) and 4(d) do not. Clearly, the
conductance patterns behave exactly the same as predicted
above. While every conductance displays a finite gap for the
trivial system in Figs. 4(a) and 4(c), G1,2 and G3,4 for the
TMEI phase show a quantized conductance peak when
the energy of the lead electrons matches that of the localized
end states, as shown in Figs. 4(b) and 4(d). Specifically, en-
forcing chiral symmetry in the system will lead to a zero-bias
peak in Fig. 4(b). However, a general TMEI system that lacks
chiral symmetry would display a peak at a finite voltage bias,
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FIG. 4. Transport conductance Gi, j in units of e2/h between
leads. In (a, c) trivial and (b, d) topological phases, the bulk is fully
gapped, whereas the quantized G1,2 and G3,4 identify the half-charge
end modes in the topological mirror excitonic phase. Resonant quan-
tization occurs when the energy goes to 0 in (b) but at a finite energy
in (d), due to the breaking of chiral symmetry. Parameters used are
m0 = 1, v = 1, δμ = 0, μ = 0, and �0 = 0.2 in (a)–(d); δm = 0
in (a) and (b) and δm = 0.1 in (c) and (d); and h = 0.1 in (a) and
(c) and h = 0.4 in (b) and (d). The barrier potential between leads
and nanowires is V0 = 1.5m0.

as shown in Fig. 4(d). Through the slight evolution from the
free fermion limit with K± = 1 to the interacting case with
K± �= 1, the bulk energy gap of the system does not close.
Therefore, we expect that our transport results in the mean-
field limit will hold for an interacting TMEI phase.

VI. DISCUSSION AND CONCLUSIONS

Next, let us discuss the half-filling case, where one needs
to consider the Umklapp scattering:

HUm ∼ α3

∫
dx cos(2

√
2πφ−). (17)

Therefore, the full boson Hamiltonian is

H = v±
2

∫
dx

{
1

K±
(∂xφ±)2 + K±(∂xθ±)2

}

+ [α1 cos(2
√

2πφ+) + α2 cos(2
√

2πθ−)

+α3 cos(2
√

2πφ−)]. (18)

The scaling dimensions of the coupling constants α1, α2, and
α3 are

�sd(α1) = K+, �sd(α2) = 1

K−
, �sd(α3) = K−. (19)

When K± < 1, we find �sd(α1) < 1, �sd(α2) > 1, and
�sd(α3) < 1. Namely, α1 and α3 are relevant under the RG
and tend to flow to the strong-coupling limit. Consider the
“semiclassical” limit with α1,3 → +∞; φ± are pinned to clas-
sical values with φ± = (n± + 1/2)

√
π/2. Here n± ∈ Z are

integer-valued operators. As a result, the system develops an
energy gap to all of its fermionic excitations. To understand
the nature of this gapped phase, we define the following

density-wave (dw) order parameters [95]:

�
(1)
dw ∼ 〈
†

e,R
e,L〉 ∼ 〈e−2i
√

πφe〉 �= 0,

�
(2)
dw ∼ 〈
†

h,R
h,L〉 ∼ 〈e−2i
√

πφh〉 �= 0.
(20)

Therefore, we note that density-wave orders �
(1,2)
dw develop

nonzero expectation values directly, which implies the spon-
taneous breaking of the translational symmetry. Clearly, the
mirror symmetry is spontaneously broken when the φ− field is
pinned. In this case, the density-wave phase is trivial in terms
of the mirror-protected topology, simply because it is defined
by a pinned φ−.

Furthermore, let us briefly discuss how to realize the
TMEI phase in a single nanowire of rotation-protected Dirac
semimetal (e.g., a Cd3As2 nanowire with fourfold rotational
symmetry C4). As pointed out in Ref. [82], applying a mag-
netic field along the wire will naturally drive a 1D band
inversion between an electronlike band with angular momen-
tum J = − 1

2 and a holelike band with J = 3
2 . As a result, any

single-particle tunneling from the electron band to the hole
band is naturally forbidden by the C4 symmetry. In particular,
with both C4 and spatial inversion I symmetry, the Dirac
semimetal nanowire also possesses an out-of-plane mirror
Mz = C2I that can protect the exciton-induced band topol-
ogy in a corresponding nanowire geometry. Thus, without
the complexity of aligning two quantum wires and careful
band engineering in our double-wire setup, a single Dirac
semimetal nanowire naturally fulfills all the symmetry and
topological requisites for TMEI physics.

To summarize, we propose a new type of interacting crys-
talline topological state, the TMEI phase, that can be realized
in Rashba nanowires and Dirac semimetal nanowires. In par-
ticular, we have established a bosonized theory to show the
robustness of the TMEI phase beyond the mean-field approx-
imation. This idea of exciton-induced crystalline topological
states also has interesting higher-dimensional generalizations.
For example, let us consider a bilayer 2D system with the
top (bottom) layer contributing an electron (a hole) band
near the Fermi level. An out-of-plane mirror symmetry Mz

in this system can protect a TMEI phase with |nM | pairs of
counter-propagating 1D edge modes, where nM ∈ Z is the
mirror Chern number for the system. On the other hand,
when the bilayer system possesses in-plane mirror symmetry
Mx and My, it is also possible to realize a higher-order TI
with a quantized bulk quadruple moment and corner-localized
charges. This is exactly an interacting and excitonic ver-
sion of the electronic quadruple insulator in Refs. [104] and
[105]. Detailed discussions of these 2D interacting crystalline
topological systems are left for future work. We note that
long-range excitonic orders may be realized in a 1D solid-
state electron system [106]. It will be interesting to find
the TMEI by numerical simulation, which is left for future
work.
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