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We study the three-dimensional topological insulators in the continuum by coupling spin-1=2 fermions

to the Aharonov-Casher SU(2) gauge field. They exhibit flat Landau levels in which orbital angular

momentum and spin are coupled with a fixed helicity. The three-dimensional lowest Landau level wave

functions exhibit the quaternionic analyticity as a generalization of the complex analyticity of the two-

dimensional case. Each Landau level contributes one branch of gapless helical Dirac modes to the surface

spectra, whose topological properties belong to the Z2 class. The flat Landau levels can be generalized to

an arbitrary dimension. Interaction effects and experimental realizations are also studied.
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The two-dimensional (2D) quantum Hall (QH) systems
[1,2] are among the earliest examples of quantum states
characterized by topology [3,4] rather than symmetry in
condensed matter physics. Their magnetic band structures
possess topological Chern numbers defined in time-
reversal (TR) symmetry breaking systems [3,5–8]. The
consequential quantized charge transport originates from
chiral edge modes [9,10], a result from the chirality of
Landau level wave functions. Current studies of TR invari-
ant topological insulators (TIs) have made great success in
both 2D and three-dimensional (3D). They are described
by aZ2 invariant, which is topologically stable with respect
to TR invariant perturbations [11–22]. On open bounda-
ries, they exhibit odd numbers of gapless helical edge
modes in 2D systems and surface Dirac modes in 3D
systems. TIs have been experimentally observed through
transport experiments [23–25] and spectroscopic measure-
ments [26–32].

The current research of 3D TIs has been focusing on the
Bloch-wave band structures. Nevertheless, Landau levels
(LLs) possess the advantages of the elegant analytic prop-
erties and flat spectra, both of which have played essential
roles in the study of 2D integer and fractional QH effects
[33–48]. As pioneered by Zhang and Hu [49], LLs and QH
effects have been generalized to various high dimensional
manifolds [49–54]. However, to our knowledge, TR invari-
ant isotropic LLs have not been studied in 3D flat space
before. It would be interesting to develop the LL counter-
part of 3D TIs in the continuum independent of the band
inversion mechanism. The analytic properties of 3D LL
wave functions and the flatness of their spectra provide an
opportunity for further investigation on nontrivial interac-
tion effects in 3D topological states.

In this Letter, we construct 3D isotropic flat LLs in
which spin-1=2 fermions are coupled to an SUð2Þ
Aharonov-Casher potential. When odd number LLs are
fully filled, the system is a 3D Z2 TI with TR symmetry.
Each LL state has the same helicity structure, i.e., the
relative orientation between orbital angular momentum

and spin. Just like that the 2D lowest LL (LLL) wave
functions in the symmetric gauge are complex analytic
functions, the 3D LLL ones are mapped into quaternionic
analytic functions. Different from the 2D case, there is
no magnetic translational symmetry for the 3D LL
Hamiltonian due to the non-Abelian nature of the gauge
field. Nevertheless, magnetic translations can be applied
for the Gaussian pocketlike localized eigenstates in the
LLL. The edge spectra exhibit gapless Dirac modes.
Their stability against TR invariant perturbations indicates
the Z2 nature. This scheme can be easily generalize to N
dimensions. Interaction effects and the Laughlin-like wave
functions for the four-dimensional (4D) case are con-
structed. Realizations of the 3D LL system are discussed.
We begin with the 3D LL Hamiltonian for a spin-1=2

nonrelativistic particle as

H3D;LL ¼ 1

2m

X
a

�
�i@ra � q

c
Aað ~rÞ

�
2 þ VðrÞ; (1)

where Aa
�� ¼ ð1=2ÞG�abc�b

��r
c is a 3D isotropic SUð2Þ

gauge with Latin indices run over x, y, z and Greek indices
denote spin components " , # ; G is a coupling constant and
�’s are Pauli matrices; VðrÞ ¼ �ð1=2Þm!2

0r
2 is a har-

monic potential with !0 ¼ jqGj=ð2mcÞ to maintain the

flatness of LLs. ~A can be viewed as an Aharonov-Casher
potential associated with a radial electric field linearly

increasing with r as ~EðrÞ � ~�. H3D;LL preserves the TR
symmetry in contrast to the 2D QH with TR symmetry
broken. It also gives a 3D non-Abelian generalization of
the 2D quantum spin Hall Hamiltonian based on Landau
levels studied in Ref. [11]. More explicitly, H3D;LL can be
further expanded as a harmonic oscillator with a constant
spin-orbit (SO) coupling as

H3D;LL
� ¼ p2

2m
þ 1

2
m!2

0r
2 �!0 ~� � ~L; (2)

where � apply to the cases of qG> 0 (<0),
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respectively. The spectra of Eq. (2) were studied in the
context of the supersymmetric quantum mechanics [55].
However, its connection with Landau levels was not no-
ticed. Equation (1) has also been proposed to describe the
electrodynamic properties of superconductors [56–58].

The spectra and eigenstates of Eq. (1) are explained as
follows. We introduce the helicity number for the eigenstate

of ~L � ~�, defined as the sign of its eigenvalue of the total

angular momentum ~J ¼ ~Lþ ~S, which equals �1 for the
sectorsof j� ¼ l� ð1=2Þ, respectively.AtqG> 0, theeigen-

states are denoted as c nr;j�;jz;lð ~rÞ¼Rnr;lðrÞYj�;jz;lð�̂Þ, where
the radial function is RnrlðrÞ ¼ rle�ðr2=4l2

G
ÞFð�nr; lþ

ð3=2Þ; ðr2=2l2GÞÞ; F is the confluent hypergeometric function

and lG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=qG

p
is the analogy of the magnetic length;

Yj�;jz;lð�̂Þ’s are the spin-orbit coupled spheric harmonic

with j� ¼ l� ð1=2Þ, respectively. Flat spectra appear with
infinite degeneracy in the sector of jþ, where the energy
dispersion Eþ

nr;l
¼ ð2nr þ ð3=2ÞÞ@!0 is independent of l,

and thus nr serves as the LL index. For the sector of j�, the
energy disperses with l as E�

nr;l
¼ ½2ðnr þ lÞ þ ð5=2Þ�@!0.

Similar results apply to the case of qG< 0, where the infinite
degeneracy occurs in the sector of j�. These LL wave func-
tions are the same as those of the 3D harmonic oscillator but
with different organizations. As illustrated in Fig. 1(a), these
eigenstates along each diagonal line with the positive (nega-
tive) helicity fall into the flat LL states for the case of qG> 0
(< 0), respectively. The ladder algebra generating the whole
3D LL states is explained in the Supplemental Material [63].

Compared to the 2D case, a marked difference is that the
3D LL Hamiltonian has no magnetic translational symme-
try. The non-Abelian field strength grows quadraticallywith
r as Fijð ~rÞ ¼ @iAj � @jAi � ðiq=@cÞ½Ai; Aj� ¼ g�ijkf�k þ
ð1=4l2GÞrkð ~� � ~rÞg. Nevertheless, magnetic translations still

apply to the highest weight states of the total angular

momentum ~J ¼ ~Lþ ~S in the LLL at qG> 0. For simplic-
ity, we drop the normalization factors of wave functions

below. For the positive helicity states with jz ¼ jþ, ~L and ~S
are parallel to each other. Their wave functions are denoted

by c hw
ẑ;l ð~rÞ ¼ ðxþ iyÞle�ðr2=4l2

G
Þ � ��̂¼ẑ, where ��̂ is the

spin eigenstate of �̂ � ~�with eigenvalue 1. For these states,

the magnetic translation is defined as usual Tẑð ~�Þ ¼
exp½� ~� � ~rþ ði=4l2GÞ~rxy � ðẑ� ~�Þ�, where ~� is the dis-

placement vector in the xy plane and ~rxy is the projection

of ~r in the xy plane. The resultant state, Tẑð ~�Þc hw
ẑ;l ð ~rÞ ¼

eið~rxy�ðẑ��Þ=4l2
G
Þc hw

ẑ;l ð ~r� ~�Þ, remains in the LLL. Generally

speaking, the highest weight states can be defined in a plane

spanned by two orthogonal unit vectors ê1;2 as c
hw
ê3;l

ð ~rÞ ¼
½ðê1 þ iê2Þ � ~r�le�ðr2=4l2

G
Þ � �ê3 with ê3 ¼ ê1 � ê2. The

magnetic translation for such states is defined as Tê3ð ~�Þ ¼
exp½� ~� � ~rþ ði=4l2GÞ~r12 � ðê3 � ~�Þ�, where ~� lies in the

ê1;2 plane and ~r12 ¼ ~r� ê3ð~r � ê3Þ. As an example, let us

translate the LLL state localized at the origin as illustrated
in Fig. 1(b). We set the spin direction of c LLL

ê3;l¼0 in the xy

plane parametrized by ê3ð�Þ ¼ x̂ cos�þ ŷ sin�, i.e.,

�ê3ð�Þ ¼ ð1= ffiffiffi
2

p Þðj "i þ ei�j #iÞ, and translate it along

ê1 ¼ ẑ at the distance R. The resultant states read as

c �;Rð�;�;zÞ¼eiðg=2ÞR�sinð���Þe�j~r�Rẑj2=4l2
G ��ê3ð�Þ; (3)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and� is the azimuthal angular of ~r in

the xy plane. Such a state remains in the LLL as an off-
centered Gaussian wave packet.
The highest weight states and their descendent states from

magnetic translations defined above have a clear classic
picture. The classic equations of motion are derived as

_~r ¼ 1

m
~pþ 2!0

�
~r� 1

@

~S

�
;

_~p ¼ 2!0 ~p� 1

@

~S�m!2
0 ~r;

_~S ¼ 2!0

@

~S� ~L;

(4)

where ~p is the canonical momentum, ~L ¼ ~r� ~p is the

canonical orbital angular momentum, and ~S here is
the expectation value of ð@=2Þ ~�. The first two describe the
motion in a noninertial frame subject to the angular velocity

ð2!0=@Þ ~S, and the third equation is the Larmor precession.
~L � ~S is a constant ofmotion of Eq. (4). In the case of ~S k ~L, it

is easy to prove that both ~S and ~L are conserved. Then the
cyclotron motions become coplanar within the equatorial

plane perpendicular to ~S. Centers of the circular orbitals
can be located at any points in the plane.
The above off-centered LLL states break all the

rotational symmetries. Nevertheless, we can recover
the rotational symmetry around the axis determined by
the origin and the packet center. Let us perform the
Fourier transform of c �;Rð�;�; zÞ in Eq. (3) with respect

to the azimuthal angle � of spin polarization. The resultant
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FIG. 1 (color online). (a) The eigenstates of the 3D harmonic
oscillator labeled by total angular momentum j� ¼ l� 1=2.
Following the solid diagonal (dashed) lines, these states are
reorganized into the 3D LL sates with the positive (negative)
helicity. (b) The magnetic translation for the LLL state (l ¼ 0)
localized at the origin in the case of qG > 0, whose spin is set
along an arbitrary direction in the xy plane. The displacement

vector ~� lies in the plane perpendicular to spin orientation. The
resultant state remains in the LLL as a localized Gaussian pocket.
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state, c jz¼mþð1=2Þ;Rð�;�; zÞ ¼ R
2	
0 ðd�=2	Þeim�c �;R, is a

jz eigenstate as

eð�j~r�Rẑj2Þ=4l2
Geim�fJmðxÞj "i þ Jmþ1ðxÞei�j #ig; (5)

with x ¼ R�=ð2l2GÞ. At large distance of R, the spatial

extension of c jz¼mþð1=2Þ;R in the xy plane is at the order

of ml2G=R, which is suppressed at large values of R and

scales linear with m. In particular, the narrowest states
c�ð1=2Þ;R exhibit an ellipsoid shape with an aspect ratio

decaying as lG=R when R goes large.
In analogy to the fact that the 2D LLL states are complex

analytic functions due to chirality, we have found an
impressive result that the helicity in 3D LL systems leads
to the quaternionic analyticity. Quaternion is the first
discovered noncommutative division algebra, which has
three anticommuting imaginary units i, j, and k, satisfying
i2 ¼ j2 ¼ k2 ¼ �1 and ij ¼ k. It has been applied in
quantum systems [59,60] and SO coupled Bose-Einstein
condensations [61]. Just like two real numbers forming
a complex number, a two-component complex spinor
c ¼ ðc "; c #ÞT can be viewed as a quaternion defined as

f ¼ c " þ jc #. In the quaternion representation, the TR

transformation i�2c
� becomes Tf ¼ �fj satisfying

T2 ¼ �1; multiplying a U(1) phase factor ei�c corre-

sponds to fei�; the SU(2) operations e�ið�x=2Þ�c ,

e�ið�y=2Þ�c , and e�ið�z=2Þ�c map to eðk=2Þ�f, eðj=2Þ�f,
and e�ði=2Þ�f, respectively. The quaternion version
of c LLL

j¼jþ;jz¼mþð1=2Þ is fLLLjþ;jzðx;y;zÞ¼�";jþ;jz þj�#;jþ;jz ,
where �";jþ;jz ¼hjþ;jzjl;m;1=2;1=2irlYl;m, �#;jþ;jz ¼
hjþ;jzjl;mþ1;1=2;�ð1=2ÞirlYl;mþ1. Please note that

the Gaussian factor does not appear in fLLLjþ;jz which is a

quaternionic polynomial.
As a generalization of the Cauchy-Riemann condition, a

quaternionic analytic function fðx; y; z; uÞ satisfies the
Fueter condition [62] as

@f

@x
þ i

@f

@y
þ j

@f

@z
þ k

@f

@u
¼ 0; (6)

where x, y, z and u are coordinates in the 4D space. In
Eq. (6), imaginary units are multiplied from the left; thus, it
is the left-analyticity condition that works in our conven-
tion. Below, we prove the LLL function fLLLjþ;jzðx; y; zÞ sat-
isfying Eq. (6). Since fLLLjþ;jz is defined in 3D space, it is a

constant over u, and thus only the first three terms in
Eq. (6) apply to it. Obviously the highest weight states
with spin along the z axis, fLLLjþ¼jz¼lþð1=2Þ ¼ ðxþ iyÞl, sat-
isfy Eq. (6) which is reduced to complex analyticity. By
applying an arbitrary SU(2) rotation g characterized by the
Eulerian angles (�, �, �), fLLLjþ¼jz

transforms to

f0;LLLðx;y;zÞ¼e�ið�=2Þejð�=2Þe�ið�=2ÞfLLLjþ¼jz
ðx0;y0;z0Þ; (7)

where (x0, y0, z0) are the coordinates by applying the inverse
of g on (x, y, z). We check that

�
@

@x
þ i

@

@y
þ j

@

@z

�
f0LLLðx; y; zÞ

¼ eið�=2Þe�jð�=2Þeið�=2Þ
�
@

@x0
þ i

@

@y0
þ j

@

@z0

�

� fLLLjþ;jzðx0; y0; z0Þ ¼ 0:

Essentially, we have proved that Fueter condition is rota-
tionally invariant. Since all the highest weight states are
connected through SU(2) rotations, and they form an over-
complete basis for the angular momentum representations,
we conclude that all the 3D LLL states with the positive
helicity are quaternionic analytic.
Next we prove that the set of quaternionic LLL states

fLLLjþ¼lþð1=2Þ;jz form the complete basis for quaternionic val-

ued analytic polynomials in 3D. Any linear superposition

of the LLL states with jþ can be represented as fl ¼Pjþ
jz¼�jþ f

LLL
jþ;jzcjz , where cjz is a complex coefficient.

Because of the TR relation fLLLjþ;�jz
¼ �fLLLjþ;�jz

j, fl can be

expressed in terms of lþ 1 linearly independent basis as

flðx; y; zÞ ¼
Xl
m¼0

fLLLjþ¼lþð1=2Þ;jz¼mþð1=2Þqm; (8)

where qm ¼ cmþð1=2Þ � jc�m�ð1=2Þ is a quaternion con-

stant. On the other hand, it can be calculated that the
rank of the linearly independent lth order quaternionic
polynomials satisfying Eq. (6) is just C2

lþ2�C2
lþ1¼ lþ1;

thus, fLLLjþ;jz’s with jz 	 1=2 are complete.

The topological nature of the 3D LL problem exhibits
clearly in the gapless surface states. A numeric calculation
of the gapless surface spectra is presented in the
Supplemental Material [63]. At qG> 0, inside the bulk,
LL spectra are flat with respect to jþ ¼ lþ 1=2. As l goes
large, the classical orbital radius rc approaches the open
boundary with the radius R0. For example, for a LLL state,

rc ¼
ffiffiffiffiffi
2l

p
lG. States with l > lc 
 1=2ðR0=lGÞ2 become sur-

face states. Their spectra become EðlÞ 
 lðlþ 1Þ�
ð@2=2mR2

0Þ � l@!0. When the chemical potential 
 lies

inside the gap, it cuts the surface states with the Fermi
angular momentum denoted by lf. These surface states

satisfy ~� � ~L ¼ l@; thus, their spectra can be linearized

around lf as Hbd ¼ ðvf=R0Þ ~� � ~L�
. This is the Dirac

equation defined on a sphere with the radius R0. It can be

expanded around ~r ¼ R0êr as Hbd ¼ @vfð ~k� ~�Þ � êr �

. Similar reasoning applies to other Landau levels which
also give rise to Dirac spectra. Because of the lack of Bloch
wave band structure, it remains a challenging problem to
directly calculate the bulk topological index. Nevertheless,
the Z2 structure manifests through the surface Dirac spec-
tra. Since each fully occupied LL contributes one helical
Dirac Fermi surface, the bulk is Z2 nontrivial (trivial) if
odd (even) number of LLs are occupied. In the
Z2-nontrivial case, the gapless helical surface states are
protected by TR symmetry and are robust under TR invari-
ant perturbations.
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In Eq. (2), the harmonic frequency !T is set to be equal
with the SO frequency !0 to maintain the flatness of LL
spectra. However, the Z2 topology of the 3D LLs does not
rely on this. Define�! ¼ !T �!0, and we set�! 	 0 to
maintain the spectra bounded from below. �!> 0 corre-
sponds to imposing an external potential �VðrÞ ¼
1=2mð!2

T �!2
0Þr2 to the bulk Hamiltonian of Eq. (2).

If �! � !0, �VðrÞ is soft. It results in energy dispersions
of 3D LLs but does not affect their topology. For simplicity,

let us check the case of qG> 0. The ~� � ~L term commutes
with the overall harmonic potential; thus, the LL
wave functions remain the same as those of Eq. (2) by
replacing !0 with !T . Their dispersions become Eþ

nr;jþ ¼
ð2nr þ 1Þ@!T þ ð1=2Þ@!0 þ jþ@�! which are very slow.
In other words,�VðrÞ imposes a finite sample size with the
radius of R2 < @=ðm�!Þ ¼ 2lGð!0=�!Þ even without an
explicit boundary. Inside this region,�V is smaller than the
LL gap, and the LL states are bulk states. Their energies are
within the LL gap and the angular momentum numbers
jþ < ð2!T=�!Þ. LL states outside this region can be
viewed as surface states with positive helicity. For a given
Fermi energy, it also cuts a helical Fermi surface with the
same form of effective surface Hamiltonian.

The above scheme can be easily generalized to
arbitrary dimensions [63] by combining the N-D harmonic
oscillator potential and SO coupling. For example,
in 4D, we have H4D;LL ¼ ðp2

4D=2mÞ þ ð1=2Þm!2
0r

2
4D �

!0

P
1�a<b�4�

abLab, where Lab ¼ rapb � rbpa and the
4Dspinoperators are defined as�ij ¼ �ði=2Þ½�i; �j�,�i4 ¼
��i with 1 � i < j � 3. The � signs of �i4 correspond to
two complex conjugate irreducible fundamental spinor rep-
resentations ofSOð4Þ, and theþ signwill be takenbelow.The
spectra of the positive helicity states are flat as Eþ;nr ¼ð2nr þ 2Þ@!. Following a similar method in 3D, we prove
that the quaternionic version of the 4D LLL wave functions
satisfy the full equation of Eq. (6). They form the complete
basis for quaternionic left-analytic polynomials in 4D.

We consider the interaction effects in the LLLs. For sim-
plicity, let us consider the 4D system and the short-range
interactions. Fermions can develop spontaneous spin
polarization to minimize the interaction energy in the
LLL flat band. Without loss of generality, we assume
that spin takes the eigenstate of �12 ¼ �34 ¼ �3 with the
eigenvalue 1. The LLL wave functions satisfying this spin

polarization can be expressed as �LLL;4D
m;n ¼ ðxþ iyÞmðzþ

iuÞne�ðr2
4D
=4lc

G
2Þ � j�i with j�i ¼ ð1; 0ÞT . The 4D orbital an-

gular momentum number for the orbital wave function is l ¼
mþ nwithm 	 0 andn 	 0. It is easy to check that�LLL;4D

m;n

is the eigenstate of
P

abLab�
ab with the eigenvalue ðmþ nÞ@.

If all the�LLL;4D
m;n ’s are filled with 0 � m<Nm and 0 � n <

Nn, we write down a Slater-determinant wave function as

�ðv1; w1; � � � ;vN;wNÞ ¼ det½v�
i w

�
i �; (9)

where the coordinates of the ith particle form two pairs
of complex numbers abbreviated as vi ¼ xi þ iyi and

wi ¼ zi þ iui; �, �, and i satisfy 0 � �< Nm, 0 � �<
Nn, and 1 � i � N ¼ NmNn. Such a state has a 4D uniform
density as � ¼ 1

4	4l4G
. We can write down a Laughlin-like

wave function as the kth power of Eq. (9) whose filling
relative to � should be 1=k2. For the 3D case, we also
consider the spin polarized interacting wave functions.
However, it corresponds to that fermions concentrate to the
highest weight states in the equatorial plane perpendicular to
the spin polarization, and thus reduces to the 2D Laughlin
states. In both 3D and 4D cases, fermion spin polarizations
are spontaneous; thus, low energy spin waves should appear
as low energy excitations. Because of the SO coupled nature,
spinfluctuations couple to orbitalmotions,which leads toSO
coupled excitations and will be studied in a later publication.
One possible experimental realization for the 3D

LL system is the strained semiconductors. The strain
tensor �ab ¼ 1=2ð@aub þ @buaÞ generates SO coupling
as HSO ¼ @�½ð�xyky � �xzkzÞ�x þ ð�zykz � �xykxÞ�y þ
ð�zxkx � �yzkyÞ�z� where � ¼ 8� 105 m=s for GaAs.

The 3D strain configuration with ~u ¼ f=2ðyz; zx; xyÞ com-
bined with a suitable scalar potential gives rise to Eq. (1)
with the correspondence !0 ¼ ð1=2Þ�f. A similar method
was proposed in Ref. [11] to realize 2D quantum spin Hall
LLs. A LL gap of 1 mK corresponds to a strain gradient
of the order of 1% over 60 
m, which is accessible in
experiments. Another possible system is the ultracold
atom system. For example, recently evidence of fractionally
filled 2D LLs with bosons has been reported in rotating
systems [64].
Furthermore, synthetic SO coupling generated through

atom-light interactions has become a major research direc-
tion in ultracold atom system [65,66]. The SO coupling

term in the 3D LL Hamiltonian ! ~� � ~L is equivalent to the
spin-dependent Coriolis forces from spin-dependent rota-
tions; i.e., different spin eigenstates along�x,�y, and�z
axes feel angular velocities parallel to these axes, respec-
tively. An experimental proposal to realize such an SO
coupling has been designed and will be reported in a later
publication [67].
In conclusion, we have generalized the flat LLs to 3D

and 4D flat spaces, which are high dimensional topological
insulators in the continuum without Bloch wave band
structures. The 3D and 4D LLL wave functions in the
quaternionic version form the complete bases of the qua-
ternionic analytic polynomials. Each filled LL contributes
one helical Dirac Fermi surface on the open boundary.
The spin polarized Laughlin-like wave function is con-
structed for the 4D case. Interaction effects and topological
excitations inside the LLLs in high dimensions would be
interesting for further investigation. In particular, we
expect that the quaternionic analyticity would greatly
facilitate this study.
This work grew out of collaborations with J. E. Hirsch,
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Note added.—Near the completion of this manuscript,
we learned that the 3D Landau level problem is also
studied by Zhang [68].
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