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In this supplementary material, we present several
points including the ladder algebra to explain the de-
generacy of the 3D Landau level (LL) wavefunctions, the
quaternionic version of the 3D lowest Landau level (LLL)
states with the negative helicity, the numerical calcula-
tion on the 3D LL spectra with the open boundary, and
the generalization of LLs to an arbitrary dimension.

Ladder algebra The spectra flatness of the 3D LL can
be explained by constructing the ladder algebra. For ex-
ample, we take the case of qG > 0 and consider the
positive helicity Landau level states of H+. The vari-
able transformation for the radial eigenstates is applied as
χnr,l(r) = rRnr,l(r), and the corresponding radial Hamil-
tonians become
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where the dimensionless radius is r∗ = r
lG
. The ladder

operators are defined as
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They satisfy the relations

Hl±1A±(l) = A±(l)Hl. (3)

Consequentially, χnr,l±1 = A±(l)χnr ,l with the same en-
ergy independent of l. All the states in the same LL can
be reached by successively applying A± operators.
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FIG. 1: The algebra structure of the 3D Landau levels in the
positive helicity sector. Operators A±(l) connect states with
different l in the same Landau level, while B−(l) and C+(l)
connect those between neighboring Landau levels.

FIG. 2: The energy dispersion of the first four Landau levels
v.s. l = j− 1

2
. Open boundary condition is used for a ball with

the radius R0/lG = 8. The edge states correspond to those
with large values of l and develop linear dispersions with l.
The most probable radius of the LLL state with l is r = lG

√

l.

To connect different LLs, other two ladder operators
are defined as
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which satisfy

Hl−1B−(l) = B−(l)(Hl + 2~ω0),

Hl+1C+(l) = C+(l)(Hl − 2~ω0), (5)

respectively. By applying B−(l) (C+(l)) to χnr,l(r), we
arrive at

χnr+1,l−1 = B−(l)χnr,l,

χnr−1,l+1 = C+(l)χnr ,l, (6)

where the energy shifts±2~ω0, respectively, as illustrated
in Fig. 1. Similar algebra can also be constructed for the
case of qG < 0.
Gapless surface Dirac modes We have numerically

calculated the spectra of the 3D LL Hamiltonian with the
open boundary condition for the positive helicity states
with j+ = l + 1

2 for Eq. 2 in the main text. The re-
sults for the first four LLs are plotted in Fig. 2. The
radius of the boundary is R0/lG = 8. For the lowest LL
(LLL) states, when the orbital angular momentum l ex-
ceeds a characteristic value lc ≈ 30, the spectra become
dispersive indicating the onset of surface states.
Quaternionic wavefunction for the j− sector In the

main text, we have showed that the 3D LLL states
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with the positive helicity in the quaternion representa-
tion form a set of complete basis for the quaternionic
left-analytic polynomials. For the case of the LLL with
negative helicity, their quaternionic version gLLL

j
−
,jz

(x, y, z)
are not analytic any more. Nevertheless, they are related
to the analytic one through gLLL
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Generalization to N-dimensions The study in 3D and
4D LL systems can be generalized to N -D by replacing
the vector and scalar potentials in Eq. 1 in the main text
with the SO(N) gauge field Aa(~r) = grbSab and V (r) =
−N−2

2 mω0r
2, respectively, where Sab are the SO(N) spin

operators constructed based on the Clifford algebra. The
rank-k Clifford algebra contains 2k+1 matrices with the
dimension 2k × 2k which anti-commute with each other
denoted as Γa (1 ≤ a ≤ 2k + 1). Their commutators
generate

Γab = −
i

2
[Γa,Γb], (7)

for 1 ≤ a < b ≤ 2k+ 1. For odd dimensions N = 2k + 1,
the SO(N) spin operators in the fundamental spinor rep-
resentation can be constructed by using the rank-k ma-
trices as Sab = 1

2Γ
ab. For even dimensions N = 2k + 2,

we can select 2k + 2 ones among the 2k + 3 Γ-matrices
of rank-(k + 1) to form Sab = 1

2
Γab, then all of Sab

commute with Γ2k+3. This 2k+1-D spinor representa-
tion of Sab is thus reducible into the fundamental and
anti-fundamental representations. Both of them are 2k-
D, which can be constructed from the rank-k Γ-matrices
as Sa,2k+2 = ±1

2
Γa(1 ≤ a ≤ 2k+1) and Sab = 1

2
Γab(1 ≤

a < b < 2k + 1), respectively.
As for TR properties, Γa’s are TR even and odd at

even and odd values of k, respectively. We conclude that
at N = 2k+1, the N -D version of the LL Hamiltonian is
TR invariant in the fundamental spinor representation.
At N = 4k, it is also TR invariant in both the funda-
mental and anti-fundamental representations. However
N = 4k + 2, each one of the fundamental and anti-
fundamental representations is not TR invariant, but

transforms into each other under TR operation.
Similarly, the N -D LL Hamiltonian can be reorganized

as the harmonic oscillator with SO coupling. For the case
of qG > 0, it becomes

HN,+ =
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mω2

0r
2 − ~ω0ΓabLab, (8)

where Lab = rapb − rbpa with 1 ≤ a < b ≤ N . The l-th
order N -D spherical harmonic functions are eigenstates
of L2 = LabLab with the eigenvalue of ~2l(l + D − 2).
The N -D harmonic oscillator has the energy spectra of
Enr,l = (2nr+ l+N/2)~ω. When coupling to the funda-
mental spinors, the l-th spherical harmonics split into the
positive helicity (j+) and negative helicity (j−) sectors,
whose eigenvalues of the ΓabLab are ~l and −~(l+N−2),
respectively. For the positive helicity sector, its spectra
become independent of l as E+ = (2nr + N/2)~ω, with
the radial wave functions are

Rnrl(r) = rle−r2/4l2
GF (−nr, l+N/2, r2/2l2G). (9)

The highest weight states in the LLL can be written as

ψhw
ab,±l(~r) = [(êa ± iêb) · ~r]

le−r2/4l2
G ⊗ α±,ab, (10)

where α±,ab is the eigenstate of Γab with eigenvalue ±1,
respectively. The magnetic translation in the ab-plane by
the displacement vector ~δ takes the form

Tab(~δ) = exp
[

− ~δ · ~∇+
i

2l2G
Γab(raδb − rbδa)

]

. (11)

Similarly to the 3D case, staring from the LLL state lo-
calized around the origin with l = 0, we can perform the
magnetic translation and Fourier transformation with re-
spect to the transverse spin polarization. The resultant
localized Gaussian pockets are LLL states of the eigen-
states of the SO(N − 1) symmetry with respect to the

translation direction ~δ. Again each LL contributes to
one channel of surface Dirac modes on SN−1 described
by Hbd = (vf/R0)ΓabLab − µ.


