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In this work, we investigate chiral topological superconductors on a two-dimensional honeycomb lattice with
coexisting dx2−y2 , dxy, and s-wave pairing symmetries. Using a Ginzburg-Landau free energy analysis, the pairing
gap function is shown to exhibit a tri-component form s + dx2−y2 eiφ1 + dxyeiφ2 , where φ1 and φ2 are phase
differences between the d- and s-wave pairing components, which spontaneously breaks both time reversal and
C6 rotational symmetries. Chern numbers of the energy bands are calculated to be nonzero, demonstrating the
topologically nontrivial nature of the system. The anomalous AC Hall conductivity is computed, which is not
invariant under C6 rotations, reflecting the anisotropic nature of the pairing gap function. Fractional magnetic
vortices are also discussed, arising from the multicomponent nature of the pairing gap function.

DOI: 10.1103/954n-3cch

I. INTRODUCTION

Chiral superconductors [1] have attracted intense research
interests because of their potentials in realizing topological
quantum computations [2–18]. Typical chiral pairing states
include chiral p-wave [19–27], d-wave [28–32], and f -wave
pairings [33–37], corresponding to orbital angular momentum
of a Cooper pair equal to one, two, and three, respec-
tively. Possible chiral d-wave superconductors include certain
copper-oxide high-temperature superconductors [38–42] and
honeycomb correlated systems [43–45]. Based on the doped
Hubbard model on the honeycomb lattice, it is theoretically
proposed that superconductivity arising from correlated elec-
trons may take the form of a chiral d ± id singlet pairing or
a p ± ip triplet pairing, depending on the doping level and
interaction strength [46–49]. At doping levels near the van
Hove singularity (VHS), the d ± id singlet pairing dominates
at weak coupling, while the p ± ip triplet pairing becomes
more prominent when the interaction strength increases [50].
Recently, there has been evidence that the surface of YPtBi
material may host chiral d + id superconducting pairing
[51,52].

Exotic chiral superconductivities can also emerge from
multilayer systems. For example, recent studies have revealed
the possible presence of chiral d-wave superconducting pair-
ing in twisted bilayer graphene [53–62]. Interestingly, it has
been proposed in Ref. [32] that the method of twisting bilayer
materials provides a strategy to stack two layers of Bi2212
thin films together and rotate them at a certain angle. When the
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twist angle increases from 0◦ to 45◦ in the twisted cuprate sys-
tem, the pairing symmetry transitions from s ± id to dx2−y2 ±
idxy [32,63,64]. In addition, the study of a superconducting
heterojunction with one side characterized by the px ± ipy gap
function and the other side the conventional s-wave one found
the pairing pattern to be s + iη1[eiη2φ/2 px + η3e−iη2φ/2 py] with
η j = ±1( j = 1, 2, 3), where φ is the phase difference be-
tween the px- and py-wave pairing components [65].

One significant feature of chiral superconductivity is the
spontaneous breaking of time reversal symmetry, as signified
by the non-collinear phase difference between different com-
ponents of pairing order parameters. Time-reversal symmetry
breaking can be detected through various methods, such as
muon spin relaxation experiments [66,67], Josephson inter-
ference measurements [68–73], the magneto-optical Faraday
effect [74], and Kerr rotation experiments [75–79]. In Kerr
rotation experiments, the system breaking time-reversal sym-
metry typically exhibits a nonzero Kerr rotation angle of light,
meaning that the polarization direction of reflected light ro-
tates. This effect can be measured using ultrahigh sensitivity
zero-field Kerr effect measurements. Since the Kerr angle is
related to the AC Hall conductivity σH under zero external
magnetic field, a nonvanishing AC Hall conductivity is an
evidence for the existence of time reversal symmetry breaking
in the system [80,81].

In this paper, we investigate chiral superconductors on a
honeycomb lattice in the case where nearest-neighbor pairing
dominates, with coexisting dx2−y2 , dxy, and s-wave pairing
symmetries. The coexistence of these three pairing symme-
tries can be either intrinsic or extrinsic, where “intrinsic”
refers to simultaneous instabilities in the three superconduct-
ing channels in the material, and “extrinsic” refers to the
situation where the coexistence is induced via the proximity
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FIG. 1. One of the twelve degenerate configurations of the tri-
component-pairing gap function on a honeycomb lattice, in which
ψs, ψ1, and ψ2 represent the s-, dx2−y2 -, and dxy-pairing compo-
nents, respectively. The phase of s-wave order parameter is fixed
to zero, i.e., |ψs| + |ψ1|eiφ1 + |ψ2|eiφ2 . The choices of the values of
parameters in the free energy are included in the text. It is worth
emphasizing that the two components ψ1 and ψ2 in the figure have a
phase difference of 0.452π , not perpendicular with each other.

effect by superimposing a conventional s-wave superconduc-
tor on top of a chiral d ± id one. The experimentally observed
nematic superconductivity in twisted bilayer graphene [61]
has been proposed to be possibly arising from the intrin-
sic coexistence of these pairing components as discussed in
Ref. [62]; while the extrinsic scenario is applicable to any
d + id pairing material in proximity with an s-wave one. As
to be discussed shortly, the C6 rotational symmetry is spon-
taneously broken for the tri-component-pairing, whereas the
d ± id pairing preserves this symmetry. Hence, the resulting
anisotropic Hall response signals can serve as signatures for
nematic superconductivity in the “intrinsic” case, and chiral
d ± id pairing in the “extrinsic” case in the materials.

From a free energy perspective, there are complex frustra-
tions and intertwinings among the dx2−y2 -, dxy-, and s-wave
pairing components. On the one hand, the quadratic Josephson
couplings favor a relative ±π/2 phase difference between
any two of the three pairing symmetries; and on the other
hand, the existence of an exotic quartic term in the free
energy which is first order in ψs and cubic in d-wave com-
ponents favors a phase difference of nπ (or mπ/2) between
the dx2−y2 - (or dxy-) wave and s-wave pairings, where both
m and n are integers. However, the phase differences among
the three pairing components cannot simultaneously satisfy
all these conditions. Based on a Ginzburg-Landau (GL) free
energy analysis, we find that the pairing gap function is of
the form s + dx2−y2 eiφ1 + dxyeiφ2 , where φ1 (and φ2) represents
the phase difference between the dx2−y2 - (and dxy-) wave and
the s-wave pairing order parameters as shown in Fig. 1.

The obtained pattern of tri-component-pairing
s + dx2−y2 eiφ1 + dxyeiφ2 not only spontaneously breaks the
time-reversal symmetry, but also breaks the spatial C6v

symmetry of the honeycomb lattice down to C2. The breaking
of time reversal symmetry manifests itself in the nonvanishing
Hall conductivity, whereas the absence of C6 rotational
symmetry in the pairing gap function can be detected
through the spatial anisotropy in Hall conductivity and Kerr
effect. Furthermore, we have confirmed that the pairing is
topologically nontrivial by showing the nonvanishing of the
Chern number and the emergence of a Majorana edge mode
on the boundaries.

FIG. 2. Schematic plot of a two-dimensional honeycomb lattice,
where A and B denote sites in the two inequivalent sublattices. The
three nearest-neighbor vectors for the sublattice site A are shown
as the black arrows as a1 = (a, 0), a2 = (−a/2,

√
3a/2), and a3 =

(−a/2, −√
3a/2), in which the lattice constant of the honeycomb

lattice is a. The x direction is taken as the direction pointing from
sublattice site A to B, and the y direction is in the perpendicular
direction.

Because of the multicomponent structure of the pair-
ing gap function, the system can host exotic topological
excitations, not possible in superconductors with a single
pairing component. In particular, we show in detail that the
tri-component-pairing superconductivity can host magnetic
vortices carrying arbitrary fractions of the magnetic flux quan-
tum [82]. Other exotic topological excitations such as chiral
skyrmions can also exist in the tri-component-pairing system
[83]. Three-component superconductors have been studied to
some extent, revealing spontaneous time-reversal symmetry
breaking [84], and novel topological solitons [85].

The rest of the paper is organized as follows. In Sec. II,
we begin with a GL free energy analysis, from which the
form of the pairing gap function and the symmetry break-
ing pattern are derived. In Sec. III, by using a microscopic
Bogoliubov-de Gennes (BdG) Hamiltonian of a pairing gap
function s + dx2−y2 eiφ1 + dxyeiφ2 on the honeycomb lattice, we
show the opening of the topological mass gap and the nonzero
Chern number. The anisotropic anomalous AC Hall conduc-
tivity is studied in Sec. IV. In Sec. V, fractional magnetic
vortices are discussed. Conclusions are presented in Sec. VI.

II. GINZBURG-LANDAU FREE ENERGY ANALYSIS

A. Uniform Ginzburg-Landau free energy

We consider a superconducting system on the honeycomb
lattice as shown in Fig. 2. The superconducting pairing gap
function will be shown to exhibit a tri-component form with
competing dx2−y2 -, dxy-, and s-wave pairing symmetries, based
on a combination of symmetry and GL free energy analysis.

The point group symmetry of a monolayer of honeycomb
lattice is C6v , which contains six rotations and six reflections,
as shown in Fig. 3. The most general GL free energy respect-
ing the U(1) gauge, the time reversal, and the C6v point group
symmetries up to the quartic order is given by:

F = F (0)
s + F (0)

d + F (4), (1)

in which

F (0)
s = αs|ψs|2 + βs|ψs|4,

F (0)
d = αd (|ψ1|2 + |ψ2|2) + βd (|ψ1|2 + |ψ2|2)2, (2)
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FIG. 3. Schematic plot of the twelve symmetry elements of the
C6v group consisting of six rotation and six reflection operations.
The rotation operations are represented as C6, C3, C2, C2

3 and C5
6

in the text, corresponding to rotations around z axis by angles π/3,
2π/3, π , 4π/3, and 5π/3. The six reflection planes of the reflection
operations are determined by the planes spanned by z axis and the
dashed lines l1, l2, l3, l4, l5, l6.

and

F (4) = γ |ψs|2(|ψ1|2 + |ψ2|2) + gdd (ψ∗
1 ψ2 − ψ1ψ

∗
2 )2

+ gsd
[
ψ∗2

s

(
ψ2

1 + ψ2
2

) + ψ2
s

(
ψ∗2

1 + ψ∗2
2

)]
+ g′

sd [(ψ∗
s ψ1 + ψsψ

∗
1 )(|ψ1|2 − |ψ2|2)

− (ψ∗
s ψ2 + ψsψ

∗
2 )(ψ∗

1 ψ2 + ψ1ψ
∗
2 )], (3)

where ψs, ψ1 and ψ2 represent the complex order parameters
for the s-wave, dx2−y2 -wave, and dxy-wave, respectively; αs <

0, αd < 0, βs > 0, βd > 0 in the superconducting phase when
three pairing symmetries coexist; γ represents the phase-
independent coupling term between the s-wave and d-wave
pairing components; gdd > 0 is the coefficient of the term
which contains the quadratic Josephson coupling ψ2

1 ψ∗2
2 +

h.c. between dx2−y2 - and dxy-wave components; gsd > 0 is the
coefficients of the quadratic Josephson coupling ψ∗2

s (ψ2
1 +

ψ2
2 ) + H.c. between s- and d-wave components; g′

sd repre-
sents the quartic coupling term which is first order in ψs

and cubic in d-wave components. We note that both gsd > 0
and gdd > 0 are taken to be positive so that relative ±π/2
phase differences are energetically favored between any two
of the three pairing components ψs, ψ1, ψ2. In what follows,
by setting the phase of ψs to zero, we write

ψs = |ψs|, ψ1 = |ψ1|eiφ1 , ψ2 = |ψ2|eiφ2 , (4)

in which |ψs|, |ψ1| and |ψ2| are magnitudes of the s-wave,
dx2−y2 -wave, and dxy-wave order parameters, and φ1 and φ2

are the phase differences of ψ1 and ψ2 relative to ψs. Notice
that it is the term with coefficient g′

sd , which breaks the U(1)
rotational symmetry down to C6v . A more detailed derivation
of Eq. (1) based on symmetry analysis is provided in Ap-
pendix A. The origin of the tricomponent form of the pairing
gap function can be most evidently seen by retaining only the
phase-sensitive terms in Eq. (1). Plugging the expressions of
ψs, ψ1 and ψ2 in Eq. (4) into Eq. (1), we obtain

F = f1(|ψs|, |ψ1|) cos 2φ1

+ f2(|ψs|, |ψ2|) cos 2φ2

+ f0(|ψ1|, |ψ2|) cos (2φ2 − 2φ1)

+ f ′
1(|ψs|, |ψ1|, |ψ2|) cos φ1

+ f ′
2(|ψs|, |ψ1|, |ψ2|) cos (2φ2 − φ1), (5)

where

f1(|ψs|, |ψ1|) = 2gsd |ψs|2|ψ1|2,
f2(|ψs|, |ψ2|) = 2gsd |ψs|2|ψ2|2,
f0(|ψ1|, |ψ2|) = 2gdd |ψ1|2|ψ2|2,

f ′
1(|ψs|, |ψ1|, |ψ2|) = 2g′

sd |ψs||ψ1|(|ψ1|2 − 2|ψ2|2),

f ′
2(|ψs|, |ψ1|, |ψ2|) = − 2g′

sd |ψs||ψ1||ψ2|2. (6)

Since f1, f2, and f0 are all positive, φ1, φ2 and φ2 − φ1 all tend
to take values of ±π/2, meaning that at least one of φ1, φ2, or
φ2 − φ1 will deviate from ±π/2.

Next we focus on the f ′
1 and f ′

2 terms in Eq. (5). Since g′
sd

can be either positive or negative, the sign of f ′
1 is determined

by the product of g′
sd and (|ψ1|2 − 2|ψ2|2), while the sign

of f ′
2 is determined by g′

sd . When g′
sd > 0, we have f ′

2 < 0,
then 2φ2 − φ1 tends to take values of 2nπ . In this case, if
|ψ1|2 − 2|ψ2|2 > 0, then φ1 tends to be (2m + 1)π , resulting
in φ2 = (2m + 2n + 1)π/2; whereas if |ψ1|2 − 2|ψ2|2 < 0,
φ1 tends to take the value of 2mπ , resulting in φ2 = (m + n)π ,
where both m and n are integers. A similar analysis can be per-
formed for a negative g′

sd . The inclusion of the g′
sd term makes

the competition between φ1, φ2 and φ2 − φ1 more complex,
depending on the specific parameters taken in Eq. (1). Notice
that it is impossible for φ1 and φ2 to satisfy all the constraints
set by f0, f1, f2, f ′

1, and f ′
2.

For a full treatment, in order to determine the pattern of the
three order parameters, an iterative numerical method is ap-
plied to obtain the solution of the pairing gap function by min-
imizing Eq. (1). The obtained results of pairing configurations
are shown in Fig. 1. The parameters in free energy in Eq. (1) to
obtain Fig. 1 are chosen as αs = −NF , αd = −3.179NF , βs =
2.635NF /T 2

c , βd = 0.790NF /T 2
c , gdd = 2.640NF /T 2

c , gsd =
0.275NF /T 2

c , and g′
sd = −1.525NF /T 2

c , where NF is the den-
sity of states at the Fermi level and Tc is the superconducting
transition temperature. As previously discussed, the three pa-
rameters gdd , gsd , and g′

sd have significant impacts on the
relative phases among different pairing components, thereby
requiring careful consideration. On the other hand, γ is chosen
to be 0 for simplification, as its value does not have a decisive
influence on the relative phases and the symmetry breaking
pattern. The obtained order parameters for this particular
choice of parameters are |ψs| = 0.604kBTc, |ψ1| = 1.029kBTc,
|ψ2| = 0.962kBTc, φ1 = 0.383π , and φ2 = 0.835π . We note
that the phase difference between the two d-wave components
is φ2 − φ1 = 0.452π , which is not equal to π/2 as in the
chiral d + id case.

The symmetry-breaking pattern of the configuration in
Fig. 4(a1) can be determined as

C6v × ZT
2 → C2 (7)

where ZT
2 is the Z2 group generated by time reversal op-

eration. Eq. (7) is straightforward to be verified because
the π -rotation around z axis takes x, y to −x,−y, result-
ing in dx2−y2 → dx2−y2 and dxy → dxy. Except for C2, all
other symmetries are spontaneously broken in the ground
state in Fig. 4(a1). Since |C6v × ZT

2 |/|C2| = 12, where | . . . |
represents the number of group elements, there are 12
degenerate solutions of the ground state pairing configura-
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FIG. 4. Degenerate configurations of the tri-component-pairing s + dx2−y2 eiφ1 + dxyeiφ2 . Symmetry operations which can generate the
configuration from the one in (a1) are indicated on top of each figure, where E is the identity operation; T is time reversal; C6, C3, . . . ,C5

6 are
rotations; and l1, l2, . . . , l6 are reflections. In all panels, φ1 and φ2 are not perpendicular with each other. In panels (a3), (a5), (b3), and (b5), ψ1

and ψs are not exactly collinear, and ψ2 is not precisely equal to ±π/2. The parameters in Eq. (1) are chosen as αs = −NF , αd = −3.179NF ,
βs = 2.635NF /T 2

c , βd = 0.790NF /T 2
c , γ = 0, gdd = 2.640NF /T 2

c , gsd = 0.275NF /T 2
c , and g′

sd = −1.525NF /T 2
c , where NF is the density of

states at the Fermi level and Tc is the superconducting transition temperature.

tions. The other eleven degenerate configurations are shown in
Figs. 4(a2)–4(a6) and 4(b1)–4(b6), which can be obtained by
performing the broken symmetry operations on the configura-
tion in Fig. 4(a1). The symmetry operations that can be used
to generate the corresponding configuration from Fig. 4(a1)
are indicated on top of each subfigure in Fig. 4.

B. Other lattice symmetries

On the free energy level, degenerate dx2−y2 and dxy pairings
can occur for other lattice symmetries as well, not just the
C6v symmetry considered in Sec. II A. In this subsection,
we discuss the general forms of free energies when there
is a coexistence of s-, dx2−y2 -, and dxy-pairing components,
focusing on the special cases for planar point groups where
dx2−y2 - and dxy-channels are degenerate, namely, they form a
two-dimensional irreducible representation of the symmetry
group.

It turns out that there are eight planar point group sym-
metries that satisfy the condition of degenerate dx2−y2 and dxy

pairings, including C3v , D3, D3h, D3d , C6v , D6, D6h, and D4d .
Among the eight point group symmetries, seven of them—
from C3v to D6h—share the same form of free energy up to
quartic order as the C6v case given in Eq. (1), whereas the
D4d case has a different form, as summarized in Table I. More

TABLE I. Point groups with d1-d2 degeneracy and the corre-
sponding free energy. The explicit forms of F (0)

s , F (0)
d , F (4), F ′(0)

s ,
F ′(0)

d , and F ′(4) are given in Eqs. (2), (3), (9), and (10).

Symmetry groups G-L free energy

C3v , D3, D3h, D3d , C6v , D6, D6h F (0)
s + F (0)

d + F (4)

D4d F ′(0)
s + F ′(0)

d + F ′(4)

explicitly, the free energy F ′ for D4d is given by

F ′ = F ′(0)
s + F ′(0)

d + F ′(4), (8)

in which

F ′(0)
s = α′

s|ψs|2 + β ′
s|ψs|4,

F ′(0)
d = α′

d (|ψ1|2 + |ψ2|2) + β ′
d (|ψ1|2 + |ψ2|2)2, (9)

and

F ′(4) = γdd |ψ1|2|ψ2|2 + γsd |ψs|2(|ψ1|2 + |ψ2|2)

+ g′
dd

(
ψ2

1 ψ∗2
2 + ψ∗2

1 ψ2
2

)
+ g′

sd

[
ψ∗2

s

(
ψ2

1 + ψ2
2

) + ψ2
s

(
ψ∗2

1 + ψ∗2
2

)]
. (10)

In this case, we also expect a mixture of dx2−y2 -, dxy-, and
s-wave pairing symmetries when g′

dd > 0 and g′
sd > 0 in

Eq. (10).

III. TOPOLOGICAL CHIRAL PAIRING

A. Microscopic model

Now we turn to a microscopic model. Retaining terms up to
the nearest neighbors, it is direct to construct the Bogoliubov-
de Gennes (BdG) Hamiltonian for the tricomponent supercon-
ducting pairing on a two-dimensional honeycomb lattice. The
BdG Hamiltonian can be written as

H =
∑

k



†
k hk
k, (11)

in which 
k = (ckA,↑ ckB,↑ c†
−kA,↓ c†

−kB,↓)T , where c†
k j ,σ

and
ck j ,σ represent the creation and annihilation operators, respec-
tively, for an electron with momentum k = (kx, ky) and spin
σ in the sublattice j = A, B; hk is the 4 × 4 BdG Hamiltonian
matrix containing the normal-state Hamiltonian H0(k) and the
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pairing term �(k), given by

hk =
(

H0(k) �(k)

�†(k) −HT
0 (−k)

)
. (12)

In the absence of a staggered potential [86–88], the normal-
state Hamiltonian can be expressed as

H0(k) = εx(k)σx + εy(k)σy − μσ0, (13)

where

εx(k) = −t
3∑

i=1

cos (k · ai ),

εy(k) = t
3∑

i=1

sin (k · ai ), (14)

in which σα (α = x, y, z) are 2 × 2 Pauli matrices that encode
the sublattice degree of freedom, σ0 is the 2 × 2 identity
matrix, μ is the chemical potential, t is the nearest-neighbor
hopping amplitude, and ai (i = 1, 2, 3) are vectors defined
in Fig. 2. The Hamiltonian H0(k) describes the kinetic
energy and nearest-neighbor hopping of electrons in the non-
superconducting state of the system.

Considering the superconducting pairing in the chiral spin-
singlet state, the tri-component-pairing term can be expressed
as

�(k) = �s(k) + �x2−y2 (k)eiφ1 + �xy(k)eiφ2 , (15)

where

�s(k) = |ψs|σ0, (16)

and

�x2−y2 (k)= |ψ1|
{[

cos (kxa)− cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
σx

−
[

sin (kxa) + sin

(
1

2
kxa

)
cos

(√
3

2
kya

)]
σy

}
,

�xy(k) =
√

3|ψ2|
{[

− sin

(
1

2
kxa

)
sin

(√
3

2
kya

)]
σx

+
[

cos

(
1

2
kxa

)
sin

(√
3

2
kya

)]
σy

}
. (17)

According to the calculations in Appendix B, (�x2−y2 ,�xy)
transform in the same way as (dx2−y2 , dxy) under the C6v

group. Hence (�x2−y2 ,�xy) represent d-wave pairings for the
discrete symmetry group C6v .

Substituting Eqs. (16) and (17) into Eq. (15), we obtain

�(k) = �sσ0 + �x(k)σx + �y(k)σy, (18)

where

�s = |ψs|, (19)

and

�x(k) = |ψ1|eiφ1

[
cos (kxa) − cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]

−
√

3|ψ2|eiφ2

[
sin

(
1

2
kxa

)
sin

(√
3

2
kya

)]
,

�y(k) = −|ψ1|eiφ1

[
sin (kxa) + sin

(
1

2
kxa

)
cos

(√
3

2
kya

)]

+
√

3|ψ2|eiφ2

[
cos

(
1

2
kxa

)
sin

(√
3

2
kya

)]
. (20)

The 4 × 4 BdG Hamiltonian can be expressed as

hk = [Re(�x )σx + Re(�y)σy + �sσ0]τx

− [Im(�x )σx + Im(�y)σy]τy

+ (εxσx + εyσy − μσ0)τz, (21)

where τα (α = x, y, z) are the Pauli matrices in the particle-
hole channel. Diagonalization of hk gives two pairs of energy
eigenvalues ±Ei(k) for each momentum k,

Ei(k) =
√

|�x|2 + |�y|2 + |�s|2 + ε2
x + ε2

y + μ2 + (−)iDk,

(22)

where i = 1, 2 and

D2
k = 4μ2(ε2

x + ε2
y

) + 2|�x|2|�y|2 − (
�2

x�
∗2
y + �2

y�
∗2
x

)
+ 4

[
ε2

x |�y|2 + ε2
y |�x|2 − εxεy(�x�

∗
y + �y�

∗
x )
]

+ �2
s [(�x + �∗

x )2 + (�y + �∗
y )2]

− 8μ�s[εxRe(�x ) + εyRe(�y)]. (23)

The plots of E1(k) and E2(k) are depicted in Fig. 5 by
taking |ψs| = 0.0604t , |ψ1| = 0.1029t , |ψ2| = 0.0962t , φ1 =
0.383π , φ2 = 0.835π , and μ = −0.4t , which give a fully
gapped energy spectrum. To more clearly demonstrate the
gap, Fig. 5(c) is created by fixing ky = 4π/(3

√
3a) (which

is the y coordinate of the K point) and plotting the curves of
±E1,2(k) as functions of kx only. It is evident that a gap exists
at the Dirac point K = (0, 4π

3
√

3a
), where E ≈ ±0.454t and the

gap size δE ≈ 0.103t .

B. Chern number

A nonvanishing Chern number is the signature of a non-
trivial topological property for two-dimensional systems,
which is defined as [89,90]

C = 1

2iπ

∫
d2kFxy(k), (24)

in which the Berry connection Aα (k)(α = x, y) and the asso-
ciated field strength Fxy(k) are given by

Aα (k) = 〈n(k)|∂α|n(k)〉,
Fxy(k) = ∂xAy(k) − ∂yAx(k), (25)

where |n(k)〉 is a normalized wave function of the nth energy
band. With the opening of the mass gap, the four eigenstates
of the BdG Hamiltonian in Eq. (21) are everywhere nonde-
generate, so that a Chern number Cn can be defined for each
band n as labeled in Fig. 5(c). At T = 0 K, the Chern num-
bers for corresponding energy bands are calculated as C1 = 1,
C2 = −3, C3 = 3, and C4 = −1, using the numerical method

024503-5



LI, JIAO, ZHANG, WU, AND YANG PHYSICAL REVIEW B 113, 024503 (2026)

FIG. 5. Eigenvalues of the BdG Hamiltonian in Eq. (21).
(a) Presents three-dimensional plots of the positive E1 and E2 as
functions of k, where a gap opens at the Dirac points. (b) Provides
a top view of (a). (c) Illustrates the variation of the four eigenvalues
with respect to kx , with the ky coordinate fixed to be the y component
of the K point. In all plots, we set |ψs| = 0.0604t , |ψ1| = 0.1029t ,
|ψ2| = 0.0962t , φ1 = 0.383π , φ2 = 0.835π , and μ = −0.4t .

proposed in Refs. [91,92]. The choices of order parameters
and chemical potential are the same as in Fig. 5, correspond-
ing to Fig. 4(a1). The sum of the Chern numbers of the two
occupied bands (i.e., n = 1, 2) is −2, which is consistent with
the characteristics of a chiral d-wave superconductivity.

The behavior of the Chern numbers under the transforma-
tions of the C6v × ZT

2 group elements is illustrated in Fig. 6.
If φ2 − φ1 < π , the Chern numbers are given by C1 = 1,
C2 = −3, C3 = 3, C4 = −1, and the sum of the Chern num-
bers of the bands with negative energies is −2; conversely,

FIG. 6. Evolution of Chern numbers under symmetry operations
in C6v × ZT

2 .

FIG. 7. Plots for (a) armchair and (b) zigzag edges on the hon-
eycomb lattice, in which the thickened bonds represent the bonds on
the edges.

if φ2 − φ1 > π , the Chern numbers change sign, and the
sum is 2. It can be observed that rotational transformations
do not alter the Chern numbers, while mirror reflection and
time-reversal transformations reverse the sign of the Chern
numbers.

C. Edge states

When Chern number is nonzero, it is expected that chiral
edge states emerge on the boundaries of the system [93,94],
which, for the case of topological superconductors, are Ma-
jorana modes propagating unidirectionally along the sample
boundaries [2,10,12–14,95–97].

To further study the topological properties of
the obtained tri-component superconducting pairing
s + dx2−y2 eiφ1 + dxyeiφ2 , we solve edge states for different
boundary geometries, namely, armchair, and zigzag as
shown in Fig. 7, by taking the 1D edge direction of the
two-dimensional honeycomb lattice to be periodic and the
perpendicular direction to be open and finite with 100 unit
cells of the honeycomb lattice. Figures 8(a) and 8(b) display
the numerical results for the energy spectrum for armchair

FIG. 8. Energy spectrum for (a) armchair edge and (b) zigzag
edge. ρes are the integrated wave-function probabilities in the first
ten stripes of unit cells close to the boundaries. The choices of order
parameters and chemical potential are the same as in Fig. 5.
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and zigzag boundaries, respectively, in which the horizontal
axes are the momenta in the periodic directions, namely,
kx for armchair and ky for zigzag (for definition of x and y
directions, see Fig. 2), and the vertical axis is the exictation
energy E in units of hopping t . The grey scales ρe in Figs. 8(a)
and 8(b) are defined as

ρe =
10∑
j=1

∑
λ=A,B

∑
σ=↑,↓

|ψσ ( j, λ)|2, (26)

in which j is the index of the stripe of unit cells measured
from the edge in the direction perpendicular to the edge, λ

is the index for sublattice sites within a unit cell, σ is the spin
index, and ψσ ( j, λ) is the wave function for the corresponding
eigenstate. Notice that ρe represents the integrated wave func-
tion probabilities in the first ten stripes of unit cells close to
the boundaries, thereby can be used for calibrating the degree
of localization of the wave functions near the boundaries.

As can be seen from Fig. 8(a), two well-defined dispersive
mid-gap modes can be clearly observed for the armchair case.
The relatively dark colors of the two mid-gap lines undoubt-
edly hint at their edge state nature. Moreover, the two chiral
edge modes both cross E = 0 in Fig. 8(a), consistent with a
total Chern number of the two negative energy bands being
equal to ±2. As for the case of the zigzag edge shown in
Fig. 8(b), two chiral edge modes crossing E = 0 can also be
observed, again consistent with the bulk Chern number.

IV. ANISOTROPIC ac HALL CONDUCTIVITY

Under the influence of incident light, the refractive index
of a material changes, which in turn alters the polarization
state of the light. This is known as the optical Kerr effect
[98,99], and the angle of polarization change is called the Kerr
angle, which can be used as a signal for chiral topological
phase [100,101]. In the optical Kerr effect, we focus on the
interaction between light and matter, which is influenced by
the anomalous ac Hall conductivity σH (ω) [102–104]. The
Kerr angle, θK , is directly related to σH (ω), and as a result, the
presence of σH (ω) can be used as an experimental signature
for the existence of time-reversal symmetry breaking.

A. Expression for ac Hall conductivity

The anomalous ac Hall conductivity is the antisymmetric
part of the optical Hall conductivity,

σH (ω) = 1
2 lim

q→0
[σxy(q, ω) − σyx(q, ω)], (27)

in which ω is the frequency of the incident light, and the opti-
cal Hall conductivity σxy(q,w) is related to the current-current
correlator πxy(q, ω) via

σxy(q, ω) = 1

h̄ω
πxy(q, ω). (28)

The current-current correlator πxy(q, ω) is defined as

πxy(q, ω) =
∫ ∞

0
dteiωt 〈[Ĵ†

x (q, t ), Ĵy(q, 0)]〉, (29)

in which Ĵα = e
∑

k 

†
k v̂α
k is the α’th component (α = x, y)

of the current operator, and v̂α is the α’th component of the
velocity operator in Nambu notation given by

v̂α = 1

h̄
(σz ⊗ σ0)∂kα

h0
k, (30)

where h0
k is the normal part of the BdG Hamiltonian in

Eq. (21), namely,

h0
k = (−μσ0 + εxσx + εyσy)τz. (31)

Under time-reversal transformation, the current correlator
changes as πxy → πyx; and under mirror reflection transfor-
mation along x̂ or ŷ axis, the current correlator changes as
πxy → −πxy (for details, see Appendix C), both of which
result in a sign change of σH . Therefore, if either of the two
above symmetries is unbroken, σH must be zero in order to
preserve the invariance of the observable quantity. Hence, to
obtain a nonzero ac Hall conductivity, both time-reversal and
mirror symmetries along the x̂ and ŷ axes must be broken.

Specifically, in superconducting systems with a multiband
feature and a symmetry-breaking pattern of C6v × ZT

2 → C2

as described by Eq. (21), the condition for generating a
nonzero σH is fulfilled. A straightforward evaluation from
Eqs. (27)–(31) yields the anomalous ac Hall conductivity as
follow,

σH (ω) = lim
iνm→ω+iε

e2

h̄β

∫
d2k

(2π )2

∑
ωn

2h̄3(νm + 2ωn)2(v∗
x vy − vxv

∗
y )[μ(�∗

x�y − �x�
∗
y ) + 2i�s(εxIm�y − εyIm�x )](

h̄2ω2
n + E2

1

)(
h̄2ω2

n + E2
2

)[
h̄2(ωn + νm)2 + E2

1

][
h̄2(ωn + νm)2 + E2

2

] . (32)

where νm is the bosonic Matsubara frequency, ωn is
the fermionic Matsubara frequency, β = 1/kBT , vα =
(1/h̄)∂kα

(εx − iεy), α = x, y, and ε represents a positive in-
finitesimal here. For the tri-component-pairing state s +
dx2−y2 eiφ1 + dxyeiφ2 with time-reversal symmetry breaking, the
leading term of the vertex correction is zero and thus can be
neglected [105]. Detailed derivation of Eq. (32) is included in

Appendix D. The reason why σH (ω) is nonzero can be directly
seen from Eq. (32) as follows. In order for the Hall signal
to be non-vanishing, the integrand in Eq. (32) must be even
under the reflection x ↔ y. Indeed, the eigen-energy Eα in the
denominator remains unchanged under the exchange of the
x and y indices, whereas the terms involving (v∗

x vy − vxv
∗
y ),

(�x�
∗
y − �∗

x�y), and (εxIm�y − εyIm�x ) in the numerator
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FIG. 9. Anisotropy of the real (solid line) and imaginary (dashed line) parts of the anomalous ac Hall conductivity in Eq. (32). (a) Shows
the line-shape for σH (ω) without any symmetry operations, (b) and (c) present the line-shapes for σH (ω) when the coordinate axes are rotated
by π/3 and 2π/3 angles around the z axis, respectively. Both real part and imaginary part in all panels reach a peak at h̄ω ≈ 0.9t . The fact that
σH �= 0 demonstrates that the system is in a chiral topological superconducting phase, and the change in σH after rotation in (b) and (c) reflects
the anisotropy of the anomalous ac Hall conductivity under the tri-component-pairing configuration. In this figure, we use the same parameters
as in Fig. 5, and set the temperature kBT = 0.01t .

change sign under x ↔ y, so that the overall numerator is
also even. As a result, Eq. (32) satisfies the condition for
generating a non-vanishing ac Hall conductivity.

B. Numerical results for ac Hall conductivity

The line-shapes for both the real and imaginary parts of
σH (ω) as functions of ω are plotted in Fig. 9(a), where the
same parameters for the chemical potential and superconduct-
ing pairing are used as in Fig. 5, and the temperature is set to
be kBT = 0.01t . From Fig. 9(a), it can be observed that when
the incident light energy satisfies h̄ω = [E1(k) + E2(k)]min ≈
0.9t , both Re(σH ) and Im(σH ) exhibit peaks. The peak po-
sition in Im(σH ) can be understood from resonances. Notice
that Im(σH ) contains delta-functions δ(E1 + E2 + h̄ω) and
δ(E1 + E2 − h̄ω) (see Appendix D for details). The energy
conservation constraint in δ(E1 + E2 + h̄ω) cannot be satis-
fied for positive ω, and the constraint in δ(E1 + E2 − h̄ω) can
be satisfied only when ω is above the two-particle continuum,
i.e., h̄ω � [E1(k) + E2(k)]min. This is the reason for the onset
of a nonzero Im(σH ) at [E1(k) + E2(k)]min, where a peak
shows up due to an enhancement of the density of states.
On the other hand, Re(σH ) is related to Im(σH ) through the
Kramers-Kronig relation,

Re[σH (ω)] = 1

π
P

∫ ∞

−∞

Im[σH (ω′)]
ω′ − ω

dω′, (33)

which means that if a peak appears in the imaginary part
at a certain frequency, the real part will inevitably undergo
significant changes in the nearby frequency range, and it is
highly likely to also form a peak.

In addition, the temperature dependence of the anoma-
lous ac Hall conductivity without any symmetry operations
is shown in Fig. 10. For clearer numerical variation, the fre-
quency is chosen near the peak value of σH in Fig. 9(a),
i.e., h̄ω = 0.9t . As the temperature increases from 0 to the
superconducting critical temperature Tc, both the real and
imaginary parts of σH decrease gradually, with a slow decay
near T = 0 and a faster decay close to Tc. We note that for the
σH curves with any symmetry operation, fixing the frequency
at an arbitrary value should yield a temperature dependence
of σH similar to that shown in Fig. 10.

A nonvanishing σH (ω) leads to Kerr effect in the material,
which can be used as an experimental signature for detecting
time reversal symmetry breaking. When polarized light is
incident on the surface of a chiral topological superconductor,
the polarization direction of the reflected light undergoes ro-
tation due to the nonzero ac Hall conductivity of the material.
For thick samples (h � λ), the Kerr angle θK depends on
σH (ω) as follows [98]:

θK (ω) = 2π

dω
Im

(
σH (ω)

n(n2 − 1)

)
, (34)

where λ is the wavelength of the incident light, and d denotes
the separation of monolayer pairs. And for thin samples (h �
λ), the Kerr angle is given by [80],

θK (ω) = Re arctan

(
−σH

σxx + 4π
(
σ 2

xx + σ 2
H

)
)

, (35)

where σxx is the longitudinal optical conductivity.

C. Comparison with d + id pairing and breaking
of rotational symmetry

We emphasize that the behavior of ac Hall conductivity
for the tri-component s + dx2−y2 eiφ1 + dxyeiφ2 pairing exhibits
notable differences compared with the chiral d-wave one
dx2−y2 + idxy. In the chiral d-wave case, σH vanishes at the
Dirac point where the chemical potential μ = 0. On the other
hand, σH is nonvanishing even at the Dirac point for the

FIG. 10. Real (panel (a)) and imaginary (panel (b)) parts of the
anomalous ac Hall conductivity for s + dx2−y2 eiφ1 + dxyeiφ2 pairing as
functions of the temperature. Same order parameters and chemical
potential are taken as in Fig. 9, and the frequency is set to be
h̄ω = 0.9t .
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FIG. 11. Real (solid line) and imaginary (dashed line) parts of
the anomalous ac Hall conductivity for (a) s + dx2−y2 eiφ1 + dxyeiφ2

pairing, and (b) dx2−y2 + idxy pairing gap function, as functions of
chemical potential. In (a), the same parameters for the tri-component-
pairing are used as in Fig. 5, while in (b), |ψx2−y2 | = |ψxy| = 0.1t .
It is worth noting that in (a), σH for the tri-component-pairing is
nonzero at μ = 0, with a value of (−0.0387 + 0.0723i)e2/h̄, while
σH for the d + id pairing completely vanishes at μ = 0. In all plots,
we set kBT = 0.01t with mixed h̄ω = 0.35t .

s + dx2−y2 eiφ1 + dxyeiφ2 pairing, because of the presence of the
�s(εxIm�y − εyIm�x ) term in the numerator of Eq. (32), as
shown in Fig. 11.

It is noted that, for the parameter choices in the figure, the
anomalous ac Hall conductivity of the tricomponent pairing
exhibits a single peak in both the real and imaginary parts
within the range −0.03t � μ � 0, whereas the curve for the
d + id pairing gradually approaches zero. The origin of the
peak in Fig. 11(a) is essentially the same as those in Fig. 9.
Specifically, when h̄ω = 0.35t is fixed, the peak position
μpeak satisfies (E1 + E2)min = 0.35t = h̄ω. At this threshold,
Im(σH ) exhibits a peak due to an enhancement of the den-
sity of states, and Re(σH ) follows via the Kramers–Kronig
relation. For |μ| > |μpeak|, one has (E1 + E2)min > 0.35t , and
σH has not yet attained its maximum. For |μ| < |μpeak|,
(E1 + E2)min < 0.35t , leading to a gradual decrease after the
peak, including a region where Re(σH ) < 0, consistent with
Fig. 9. By contrast, for the d + id pairing in Fig. 11(b), at
μ = −0.03t one already has (E1 + E2)min < 0.35t , and this
inequality persists as |μ| decreases further. Consequently, σH

exhibits no peak and gradually approaches zero.
Furthermore, unlike the chiral d-wave pairing, the ac Hall

conductivity for the s + dx2−y2 eiφ1 + dxyeiφ2 pairing is not in-
variant under the C6 rotational operation, since C6 symmetry is
spontaneously broken in the tri-component case. Figures 9(b)
and 9(c) show the line shapes of Re[σH (ω)] and Im[σH (ω)]
when the coordinate axes are rotated by π/3 and 2π/3 angles
around the z axis, respectively. Namely, the x̂ and ŷ directions
in Eq. (32) for calculating σH (ω) are replaced by x̂′ and ŷ′
directions, where (x̂′, ŷ′) are obtained from (x̂, ŷ) by a rotation
of angle π/3 for Fig. 9(b) and 2π/3 for Fig. 9(c). It is evident
from Figs. 9(a)–9(c) that the line shapes are different for the
three setups, indicating an anisotropy in the ac Hall response
of the system along different directions. Such anisotropy can
be used as an experimental probe to distinguish between chiral
d + id pairing and the tricomponent s + dx2−y2 eiφ1 + dxyeiφ2

pairing.

V. FRACTIONAL VORTICES IN MAGNETIC FIELDS

In this section, we discuss another physical property of the
tri-component-pairing with mixed dx2−y2 -, dxy-, and s-wave
symmetries—fractional vortices, which occur in multicompo-
nent pairing systems [82].

To study vortex structures in superconductors, the spa-
tial gradient terms of order parameters and magnetic fields
need to be included in the Ginzburg-Landau free energy. By
incorporating these effects, the free energy functional can be
written as

F = F (0)
s + F (0)

d + F (4) + B2

2
+ 1

2ms
|(∇ + 2ieA)ψs|2

+ 1

2m1
|(∇ + 2ieA)ψ1|2 + 1

2m2
|(∇ + 2ieA)ψ2|2, (36)

in which the expressions for F (0)
s and F (0)

d are the same as
in Eq. (2), and F (4) is given in Eq. (3). Here, ms,1,2 are
the effective masses of the Cooper pairs associated with the
order parameters ψs,1,2, e is the electron charge, and the
order parameters are coupled to the vector potential A via
minimal coupling. Performing the functional derivative of
Eq. (36) with respect to the vector potential A (for details, see
Appendix E), we obtain the expression of the supercurrent as

J = −4eρ2

[
cos2

(
θ

2

)
∇φs + sin2

(
θ

2

)
cos2

(γ

2

)
∇φ1

+ sin2

(
θ

2

)
sin2

(γ

2

)
∇φ2 + 2eA

]
, (37)

in which

ρ2 = |ψs|2
2ms

+ |ψ1|2
2m1

+ |ψ2|2
2m2

, (38)

and θ and γ are given by

|ψs| =
√

2msρ cos

(
θ

2

)
,

|ψ1| =
√

2m1ρ sin

(
θ

2

)
cos

(γ

2

)
,

|ψ2| =
√

2m2ρ sin

(
θ

2

)
sin

(γ

2

)
. (39)

In the far-field region, i.e., at distances away from the vor-
tex core much larger than the magnetic penetration length λ,
the supercurrent vanishes. Therefore, integrating over a closed
path σ around the vortex core in the far-field region gives∮

σ

dl · J = 0. (40)

Then we arrive at the following equation for the magnetic flux
� = ∮

σ
dl · A carried by the vortex:

� = − 1

2e

[
cos2

(
θ

2

)
�φs + sin2

(
θ

2

)
cos2

(γ

2

)
�φ1

+ sin2

(
θ

2

)
sin2

(γ

2

)
�φ2

]
, (41)

where �φs,1,2 = ∮
σ

dl · ∇φs,1,2 are the phase windings of
the order parameters. It then follows that depending on the
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values of �φs, �φ1, and �φ2, vortices in tri-component-
pairing superconducting system can carry either integer or
arbitrary fractional magnetic flux quanta. Specifically, when
�φs = �φ1 = �φ2 = 2nπ , the magnetic flux of the vortex
is � = −n�0, where �0 = π/e denotes the standard flux
quantum. In this case, the vortices are the Abrikosov vortices
of an ordinary superconductor, each carrying n flux quanta.

If �φ1 = �φ2 = 2nπ and �φs + �φ1 = 0, the magnetic
flux becomes

� = − 1

2e

[
− cos2

(
θ

2

)
�φ1 + sin2

(
θ

2

)
�φ1

]
= cos θn�0. (42)

Since cos θ can take an arbitrary value, such a vortex can carry
an arbitrary fraction of the magnetic flux quantum, similar
to the case in two-component superconductors. Likewise, if
�φ1 = �φs = 2nπ and �φ1 + �φ2 = 0, one obtains

� = −
[

cos2

(
θ

2

)
+ sin2

(
θ

2

)
cos γ

]
n�0, (43)

and if instead �φ2 = �φs = 2nπ and �φ1 + �φ2 = 0, the
flux is

� = −
[

cos2

(
θ

2

)
− sin2

(
θ

2

)
cos γ

]
n�0. (44)

In either case, vortices can carry arbitrary fractional magnetic
flux quanta.

More generally, for �φs = 2ksπ , �φ1 = 2k1π , and �φ2 =
2k2π , the flux carried by the vortex is given by:

|�| = λksk1k2�0, (45)

in which

λksk1k2 = ks cos2

(
θ

2

)
+ k1 sin2

(
θ

2

)
cos2

(γ

2

)

+ k2 sin2

(
θ

2

)
sin2

(γ

2

)
, (46)

or alternatively

λksk1k2 =
(

ks
|ψs|2
ms

+ k1
|ψ1|2
m1

+ k2
|ψ2|2
m2

)

·
(

|ψs|2
ms

+ |ψ1|2
m1

+ |ψ2|2
m2

)−1

, (47)

which is again a fractional vortex with an arbitrary value of
magnetic flux.

VI. CONCLUSIONS

In conclusion, we have investigated the existence of chiral
topological superconductivity on a two-dimensional hon-
eycomb lattice with tri-component-pairing gap function of
mixed s-, dx−y2 -, and dxy-wave symmetries. Using a Ginzburg-
Landau free energy analysis, the overall pairing gap function
can be determined as s + dx2−y2 eiφ1 + dxyeiφ2 , which sponta-
neously breaks the time reversal, rotational, and reflectional
symmetries. The symmetry-breaking pattern of the pairing
configuration is C6v × ZT

2 → C2, leading to 12 degenerate

solutions of the ground state pairing configuration. Based on
a microscopic model for the tri-component-pairing on the
honeycomb lattice, the system is shown to be a fully gapped
topological superconductor with nonzero Chern number and
mid-gap edge states. Furthermore, the anomalous ac Hall con-
ductivity is calculated to be non-vanishing, which breaks the
C6 rotational symmetry, reflecting the anisotropic nature of the
tri-component-pairing gap function. Fractional vortices are
also discussed, which arise from the multicomponent pairing
structure of the system.
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APPENDIX A: G-L FREE ENERGY ANALYSIS
OF A TRI-COMPONENT PAIRING FUNCTION

WITH C6v SYMMETRY

In this section, we give a quick review of the C6v group
and G-L free energy. Here (x2 − y2, xy) is an E2 represen-
tation of the C6v group, and A1 representation is symmetric
under all operations. The product rules for the A1-, A2-,
and E2-representations of C6v and the corresponding example
functions can be worked out as Table II:

The two generators of the C6v group are r = C6, and f =
l1, as defined in the main text. The generator relation repre-
sentation for C6v is C6v = 〈r, f |r6 = f 2 = (r f )6 = e〉. Write
d1 = d̂x2−y2 , and d2 = d̂xy. The result of the action of the two
group generators on this set of coordinates is

C6

(
d1

d2

)
=

( −1/2
√

3/2
−√

3/2 −1/2

)(
d1

d2

)
,

l1

(
d1

d2

)
=

(
1 0
0 −1

)(
d1

d2

)
. (A1)

Since the coordinate of the linear term of d is (d1, d2),
when we come to the quadratic term of d , A1 is represented
as |d1|2 + |d2|2, A2 is represented as i(d∗

1 d2 − d∗
2 d1), and E is

represented as (|d1|2 − |d2|2, d∗
1 d2 + d∗

2 d1).

1. Quadratic terms in free energy of d-wave

(d1, d2) forms an E2-representation of C6v group, and E2 ×
E2 = A1 + A2 + E2, there is only one C6v-invariant combina-
tion, A1. Thus we have only one term in the free energy of

024503-10



TRI-COMPONENT-PAIRING CHIRAL SUPERCONDUCTIVITY … PHYSICAL REVIEW B 113, 024503 (2026)

TABLE II. Multiplication table of irreducible representations of
the C6v group.

C6v A1 A2 E2 Functions

A1 A1 A2 E2 z, x2 + y2, z2

A2 A1 E2 Jz

E2 A1 + A2 + E2 (x2 − y2, xy)

d-wave up to quadratic level, i.e.,

f (2) = |ψ1|2 + |ψ2|2. (A2)

2. Cubic terms in free energy of d-wave

Although the free energy only contains even-order terms
of the order parameters, the presence of an isotropic s-wave
order parameter, in addition to the d-wave order parameters,
allows the d-wave component to take cubic terms. These cubic
terms, together with the first-order terms of the s-wave order
parameter, contribute to the quartic terms in the free energy.

E2 × E2 × E2 = (A1 + A2 + E2) × E2, (A3)

where the first E2 on the right-hand side of Eq. (A3) is the
quadratic term of d-wave components, and the second E2 is
the linear term.

The action of C6 and l1 on the E2-representation which de-
scribes the linear term of the d-wave components is given by
Eq. (A1), while the transformations of the E2-representation
which describes the quadratic term of the d-wave components
are given by

C6

(|d1|2 − |d2|2
d∗

1 d2 + d∗
2 d1

)
=

(−1/2 −√
3/2√

3/2 −1/2

)(|d1|2 − |d2|2
d∗

1 d2 + d∗
2 d1

)
,

l1

(|d1|2 − |d2|2
d∗

1 d2 + d∗
2 d1

)
=

(
1 0
0 −1

)(|d1|2 − |d2|2
d∗

1 d2 + d∗
2 d1

)
. (A4)

It is evident that (d1, d2)σz transforms in the same way as
(|d1|2 − |d2|2, d∗

1 d2 + d∗
2 d1) under the C6v group, where σz is

the Pauli matrix. Thus, there is one cubic term of d-wave order
parameters,

f (3) = ψ1(|ψ1|2 − |ψ2|2) − ψ2(ψ∗
1 ψ2 + ψ∗

2 ψ1). (A5)

3. Quartic terms in free energy of d-wave

Up to quartic terms, we need to consider the product (E2 ×
E2) × (E2 × E2),

(E2 × E2) × (E2 × E2)

= (A1 + A2 + E2) × (A1 + A2 + E2)

= A1 + A2 + E2 + A2 + A1 + E2 + E2

+ E2 + (A1 + A2 + E2). (A6)

So there should be three extra C6v-invariant terms in the free
energy up to quartic terms:

A1 × A1 : f (4)
1 = (|ψ1|2 + |ψ2|2)2,

A2 × A2 : f (4)
2 = −(ψ∗

1 ψ2 − ψ∗
2 ψ1)2,

E2 × E2 : f (4)
3 = (|ψ1|2 − |ψ2|2)2 + (ψ∗

1 ψ2 + ψ∗
2 ψ1)2.

(A7)

However, f (4)
3 = |ψ1|4 + |ψ2|4 + ψ∗2

1 ψ2
2 + ψ∗2

2 ψ2
1 = f (4)

1 −
f (4)
2 , thus, there are only two extra linearly independent terms

up to quartic level.
If we include the mixture with an s-wave pairing order

parameter, the overall free energy up to the quartic order is

F = αd (|ψ1|2 + |ψ2|2) + βd (|ψ1|2 + |ψ2|2)2

+αs|ψs|2 + βs|ψs|4 + γ |ψs|2(|ψ1|2 + |ψ2|2)

+ gdd (ψ∗
1 ψ2 − ψ1ψ

∗
2 )2

+ gsd
[
ψ2

s

(
ψ∗2

1 + ψ∗2
2

) + ψ∗2
s

(
ψ2

1 + ψ2
2

)]
+ g′

sd [(ψ∗
s ψ1 + ψsψ

∗
1 )(|ψ1|2 − |ψ2|2)

− (ψ∗
s ψ2 + ψsψ

∗
2 )(ψ∗

1 ψ2 + ψ1ψ
∗
2 )]. (A8)

APPENDIX B: d-WAVE SYMMETRY OF THE PAIRING
FUNCTIONS �x2−y2 AND �xy

For simplicity, the pairing term involving �x2−y2 and �xy

separately can be considered as

�d (k) = �x2−y2 (k)eiφ1 + �xy(k)eiφ2 , (B1)

where the definitions of �x2−y2 and �xy are given in Eq. (17)
in the main text. Let

g1 = |ψ1|eiφ1

[
cos (kxa) − cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
,

g2 = |ψ2|eiφ2

[
−

√
3 sin

(
1

2
kxa

)
sin

(√
3

2
kya

)]
,

−h1 = −|ψ1|eiφ1

[
sin (kxa) + sin

(
1

2
kxa

)
cos

(√
3

2
kya

)]
,

h2 = |ψ2|eiφ2

[√
3 cos

(
1

2
kxa

)
sin

(√
3

2
kya

)]
. (B2)

In this case, we have

�x2−y2 (k)eiφ1 = g1σx + (−h1)σy,

�xy(k)eiφ2 = g2σx + h2σy. (B3)

The pairing operator that only involves �x2−y2 and �xy can be
written as

�̂d =
∑

k



†
k

(
0 �d (k)

�
†
d (k) 0

)

k, (B4)
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or more explicitly,

�̂d =
∑

k

(c†
kA

c†
kB

c−kA c−kB )

(
0 (g1 + g2)σx + (−h1 + h2)σy

[(g1 + g2)σx + (−h1 + h2)σy]† 0

)⎛⎜⎜⎝
ckA

ckB

c†
−kA

c†
−kB

⎞
⎟⎟⎠, (B5)

where the spin indices are omitted because we focus on the momentum, with upward spin always paired with positive momentum
and downward spin with negative momentum. Consider the two parts that include σx and σy separately,

�d (k) = �dx(k) + �dy(k), (B6)

in which �dx(k) = (g1 + g2)σx, and �dy(k) = (−h1 + h2)σy.
The action of C6 rotation on �̂dx is

Û (C6)�̂dxÛ
†(C6) =

∑
k

Û (C6)
†
kÛ †(C6)Û (C6)

(
0 (g1 + g2)σx

[(g1 + g2)σx]† 0

)
Û †(C6)Û (C6)
kÛ †(C6)

=
∑

k

(c†
kA

c†
kB

c−kA c−kB )

(
0 (g′

1 + g′
2)σx

[(g′
1 + g′

2)σx]† 0

)⎛⎜⎜⎝
ckA

ckB

c†
−kA

c†
−kB

⎞
⎟⎟⎠, (B7)

in which

g′
1 = |ψ1|eiφ1

{
−1

2

[
cos (kxa) − cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
−

√
3

2

[
−

√
3 sin

(
1

2
kxa

)
sin

(√
3

2
kya

)]}
,

g′
2 = |ψ2|eiφ2

{√
3

2

[
cos (kxa) − cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
− 1

2

[
−

√
3 sin

(
1

2
kxa

)
sin

(√
3

2
kya

)]}
. (B8)

The action of the l1 mirror reflection on �̂dx is

Û (l1)�̂dxÛ
†(l1) =

∑
k

Û (l1)
†
kÛ †(l1)Û (l1)

(
0 (g1 + g2)σx

[(g1 + g2)σx]† 0

)
Û †(l1)Û (l1)
kÛ †(l1)

=
∑

k

(c†
kA

c†
kB

c−kA c−kB )

(
0 (g′′

1 + g′′
2)σx

[(g′′
1 + g′′

2)σx]† 0

)⎛⎜⎜⎝
ckA

ckB

c†
−kA

c†
−kB

⎞
⎟⎟⎠, (B9)

where

g′′
1 = |ψ1|eiφ1

[
cos (kxa) − cos

(
1

2
kxa

)
cos

(
−

√
3

2
kya

)]
= g1,

g′′
2 = |ψ2|eiφ2

[
−

√
3 sin

(
1

2
kxa

)
sin

(
−

√
3

2
kya

)]
= −g2. (B10)

Thus, (g1σx, g2σx ) forms an E2 representation of the C6v group.
On the other hand, the action of C6 rotation on �̂dy is

Û (C6)�̂dyÛ
†(C6) =

∑
k

Û (C6)
†
kÛ †(C6)Û (C6)

(
0 (−h1 + h2)σy

[(−h1 + h2)σy]† 0

)
Û †(C6)Û (C6)
kÛ †(C6)

=
∑

k

(c†
kA

c†
kB

c−kA c−kB )

(
0 (−h′

1 + h′
2)σy

[(−h′
1 + h′

2)σy]† 0

)⎛⎜⎜⎝
ckA

ckB

c†
−kA

c†
−kB

⎞
⎟⎟⎠, (B11)

in which

−h′
1 = −|ψ1|eiφ1

{
−1

2

[
sin(kxa) + sin

(
1

2
kxa

)
cos

(√
3

2
kya

)]
+

√
3

2

[√
3 cos

(
1

2
kxa

)
sin

(√
3

2
kya

)]}
,

h′
2 = |ψ2|eiφ2

{
−

√
3

2

[
sin(kxa) + sin

(
1

2
kxa

)
cos

(√
3

2
kya

)]
− 1

2

[√
3 cos

(
1

2
kxa

)
sin

(√
3

2
kya

)]}
. (B12)
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The result of the l1 mirror reflection acting on �̂dy is

Û (l1)�̂dyÛ
†(l1) =

∑
k

Û (l1)
†
kÛ †(l1)Û (l1)

(
0 (−h1 + h2)σy

[(−h1 + h2)σy]† 0

)
Û †(l1)Û (l1)
kÛ †(l1)

=
∑

k

(c†
kA

c†
kB

c−kA c−kB )

(
0 (−h′′

1 + h′′
2 )σy

[(−h′′
1 + h′′

2 )σy]† 0

)⎛⎜⎜⎝
ckA

ckB

c†
−kA

c†
−kB

⎞
⎟⎟⎠, (B13)

where

−h′′
1 = −|ψ1|eiφ1

[
sin (k′′

x a) + sin

(
1

2
k′′

x a

)
cos

(
−

√
3

2
k′′

y a

)]
= −h1,

h′′
2 = |ψ2|eiφ2

[√
3 cos

(
1

2
k′′

x a

)
sin

(
−

√
3

2
k′′

y a

)]
= −h2. (B14)

Therefore, (−h1σy, h2σy) also forms an E2 representation of the C6v group.
Since (�x2−y2 ,�xy) is a linear combination of (g1σx, g2σx ) and (−h1σy, h2σy), (�x2−y2 ,�xy) is also an E2 representation of

the C6v group and thus transforms in the same way as (dx2−y2 , dxy).

APPENDIX C: ANOMALOUS ac HALL CONDUCTIVITY UNDER THE MIRROR REFLECTION SYMMETRIES OF C6v

From Eq. (29) in the main text, the current-current correlator is

πxy(q, ω) =
∫ ∞

0
dteiωt 〈[Ĵ†

x (q, t ), Ĵy(q, 0)]〉, (C1)

where Ĵα = e
∑

k 

†
k v̂α
k, and v̂α = (σz ⊗ σ0)(1/h̄)∂kα

h0
k, α = x, y, i.e,

v̂α =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠1

h̄
∂kα

⎛
⎜⎜⎝

−μ εx − iεy 0 0
εx + iεy −μ 0 0

0 0 μ −εx + iεy

0 0 −εx − iεy μ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 vα 0 0
v∗

α 0 0 0
0 0 0 vα

0 0 v∗
α 0

⎞
⎟⎟⎠, (C2)

in which vα = (1/h̄)∂kα
(εx − iεy), v∗

α = (1/h̄)∂kα
(εx + iεy). For vx and vy,

∂kx εx = ta

[
sin (kxa) + 1

2
sin

(
1

2
kxa −

√
3

2
kya

)
+ 1

2
sin

(
1

2
kxa +

√
3

2
kya

)]
,

∂kx εy = ta

[
cos (kxa) − 1

2
cos

(
1

2
kxa −

√
3

2
kya

)
− 1

2
cos

(
1

2
kxa +

√
3

2
kya

)]
,

∂kyεx = −
√

3

2
ta

[
sin

(
1

2
kxa −

√
3

2
kya

)
− sin

(
1

2
kxa +

√
3

2
kya

)]
,

∂kyεy =
√

3

2
ta

[
cos

(
1

2
kxa −

√
3

2
kya

)
− cos

(
1

2
kxa +

√
3

2
kya

)]
. (C3)

Under mirror reflection transformation along x axis, i.e, the l1 reflection defined in Fig. 3 in the main text, the above partial
derivatives transform as

l1
(
∂kx εx

) = ∂kx εx,

l1
(
∂kx εy

) = ∂kx εx,

l1
(
∂kyεx

) = −∂kyεx,

l1
(
∂kyεy

) = −∂kyεx. (C4)
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Thus, l1vx = vx, l1vy = −vy, and then

l1Ĵx = e
∑

k

(
c†

kA
c†

kB
c−kA c−kB

)
⎛
⎜⎜⎝

0 vx 0 0
v∗

x 0 0 0
0 0 0 vx

0 0 v∗
x 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ckA

ckB

c†
−kA

c†
−kB

⎞
⎟⎟⎠ = Ĵx,

l1Ĵy = e
∑

k

(
c†

kA
c†

kB
c−kA c−kB

)
⎛
⎜⎜⎝

0 −vy 0 0
−v∗

y 0 0 0
0 0 0 −vy

0 0 −v∗
y 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ckA

ckB

c†
−kA

c†
−kB

⎞
⎟⎟⎠ = −Ĵy. (C5)

Under mirror reflection transformation along y axis, i.e, the l4 reflection defined in Fig. 3 in the main text, the above partial
derivatives transform as

l4
(
∂kx εx

) = −∂kx εx,

l4
(
∂kx εy

) = ∂kx εx,

l4
(
∂kyεx

) = ∂kyεx,

l4
(
∂kyεy

) = −∂kyεx. (C6)

Thus l4vx = −v∗
x , l4vy = v∗

y , and

l4Ĵx = e
∑

k

(
c†

kB
c†

kA
c−kB c−kA

)
⎛
⎜⎜⎝

0 −v∗
x 0 0

−vx 0 0 0
0 0 0 −v∗

x
0 0 −vx 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ckB

ckA

c†
−kB

c†
−kA

⎞
⎟⎟⎠ = −Ĵx,

l4Ĵy = e
∑

k

(
c†

kB
c†

kA
c−kB c−kA

)
⎛
⎜⎜⎝

0 v∗
y 0 0

vy 0 0 0
0 0 0 v∗

y
0 0 vy 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ckB

ckA

c†
−kB

c†
−kA

⎞
⎟⎟⎠ = Ĵy. (C7)

Therefore l1πxy(q, ω) = −πxy(q, ω), l4πxy(q, ω) = −πxy(q, ω), meaning that under mirror reflection transformation along x̂ or
ŷ axis, the current correlator changes as πxy → −πxy, which results in a sign change of σH .

However, if the mirror symmetry axis is not aligned with the x̂ or ŷ axis, but instead coincides with one of the other four axes
defined in Fig. 3 of the main text (e.g., the l2-reflection), the transformation of the aforementioned partial derivatives becomes

l2
(
∂kx εx

) = ta

[
sin

(
1

2
kxa +

√
3

2
kya

)
− 1

2
sin

(
1

2
kxa −

√
3

2
kya

)
+ 1

2
sin (kxa)

]
,

l2
(
∂kx εy

) = ta

[
cos

(
1

2
kxa +

√
3

2
kya

)
− 1

2
cos

(
1

2
kxa −

√
3

2
kya

)
− 1

2
cos (kxa)

]
,

l2
(
∂kyεx

) = −
√

3

2
ta

[
− sin

(
1

2
kxa −

√
3

2
kya

)
− sin (kxa)

]
,

l2
(
∂kyεy

) =
√

3

2
ta

[
cos

(
1

2
kxa −

√
3

2
kya

)
− cos (kxa)

]
. (C8)

And the transformations under l3, l5, and l6 reflections follow analogously. Consequently, within the C6v point group, the four
mirror reflection operations other than those along the x̂ and ŷ axes do not enforce a sign reversal of σH . Therefore a nonzero
anomalous ac Hall conductivity can be realized without breaking the l2-, l3-, l5-, and l6-reflection symmetries.

APPENDIX D: ANOMALOUS ac HALL CONDUCTIVITY FORMULAS

Perform an S-matrix expansion of the current-current correlator, Eq. (29), to one-loop level, we have

πxy(q, νm) = ie2

β

∑
k,ωn

Tr
[
v̂x

(
k + q

2

)
G0(k, ωn)v̂y

(
k + q

2

)
G0(k + q, ωn + νm)

]
, (D1)
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where G0(k, ωn) = (ih̄ωn − hk)−1, and ωn is the fermionic Matsubara frequency, satisfying h̄ωn = (2n + 1)π/β. Take the
antisymmetric difference of (D1) and simplify for the q = 0 case of interest,

πxy(νm) − πyx(νm) = ie2

β

∑
k,ωn

4h̄νm(h̄νm + 2h̄ωn)2(v∗
x vy − vxv

∗
y )[μ(�∗

x�y − �x�
∗
y ) + 2i�s(εxIm�y − εyIm�x )](

h̄2ω2
n + E2

1

)(
h̄2ω2

n + E2
2

)[
h̄2(ωn + νm)2 + E2

1

][
h̄2(ωn + νm)2 + E2

2

] , (D2)

Thus the anomalous ac Hall conductivity can be written as

σH (νm) = 1

2h̄ω
[πxy(νm) − πyx(νm)]

= e2

h̄β

∫
d2k

(2π )2

∑
ωn

2h̄(h̄νm + 2h̄ωn)2(v∗
x vy − vxv

∗
y )[μ(�∗

x�y − �x�
∗
y ) + 2i�s(εxIm�y − εyIm�x )](

h̄2ω2
n + E2

1

)(
h̄2ω2

n + E2
2

)[
h̄2(ωn + νm)2 + E2

1

][
h̄2(ωn + νm)2 + E2

2

] . (D3)

Taking the limit iνm → ω + iε, the above equation corresponds to Eq. (32) in the main text. By performing the Matsubara
summation over ωn, we obtain

σH (ω) = e2

h̄

∫
d2k

(2π )2 h̄2(v∗
x vy − vxv

∗
y )[μ(�∗

x�y − �x�
∗
y ) + 2i�s(εxIm�y − εyIm�x )]

×
{

1 − nF (E1) − nF (E2)

2E1E2(E1 + E2)2

[
E1 + E2 + h̄ω − iε

(E1 + E2 + h̄ω)2 + ε2
+ E1 + E2 − h̄ω + iε

(E1 + E2 − h̄ω)2 + ε2

]

− nF (E1) − nF (E2)

2E1E2(E1 − E2)2

[
E1 − E2 + h̄ω − iε

(E1 − E2 + h̄ω)2 + ε2
+ E1 − E2 − h̄ω + iε

(E1 − E2 − h̄ω)2 + ε2

]}
, (D4)

where ε is a positive infinitesimal. At T = 0 K, nF (E1) = nF (E2) = 0, and [σH (ω)]T =0 K can be written as

[σH (ω)]T =0 K = e2

h̄

∫
d2k

(2π )2 h̄2(v∗
x vy − vxv

∗
y )[μ(�∗

x�y − �x�
∗
y ) + 2i�s(εxIm�y − εyIm�x )]

× 1

2E1E2(E1 + E2)2

[
E1 + E2 + h̄ω − iε

(E1 + E2 + h̄ω)2 + ε2
+ E1 + E2 − h̄ω + iε

(E1 + E2 − h̄ω)2 + ε2

]
. (D5)

APPENDIX E: SUPERCURRENT OF THE TRI-COMPONENT-PAIRING SUPERCONDUCTOR IN MAGNETIC FIELDS

It is not straightforward to infer the vortex configurations directly from Eq. (36) in the main text. As pointed out in Ref. [82],
the GL free energy functional of a two-gap superconductor can be exactly mapped onto the extended Faddeev model, which
consists of a three-component unit vector n, a massive vector field C, and a density-related variable ρ. In the tri-component
superconducting system with dx2−y2 -, dxy-, and s-wave pairings, n is extended to an eight-component vector in the SU(3) case,
defined in terms of the normalized complex order-parameter vector z and the SU(3) Gell-Mann matrices λa(a = 1, 2, . . . , 8):

na = z†λaz, (E1)

in which

z = 1

ρ

(
ψs√
2ms

ψ1√
2m1

ψ2√
2m2

)T

, (E2)

and the order parameters can be written as

ψs =
√

2msρ cos

(
θ

2

)
eiφs ,

ψ1 =
√

2m1ρ sin

(
θ

2

)
cos

(γ

2

)
eiφ1 ,

ψ2 =
√

2m2ρ sin

(
θ

2

)
sin

(γ

2

)
eiφ2 . (E3)

Substituting Eq. (E3) into Eq. (36) and adopting the London limit (|ψs,1,2| = const), we obtain

F = ρ2

4

∑
a

(∇na)2 + ρ2

16
C2 + B2

2
+ V0 + VρKn, (E4)
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where

C = i

msρ2
(ψ∗

s ∇ψs − ψs∇ψ∗
s ) + i

m1ρ2
(ψ∗

1 ∇ψ1 − ψ1∇ψ∗
1 ) + i

m2ρ2
(ψ∗

2 ∇ψ2 − ψ2∇ψ∗
2 ) − 4e

ρ2

(
|ψs|2
ms

+ |ψ1|2
m1

+ |ψ2|2
m2

)
A,

(E5)

V0 = F (0)
s + F (0)

d − 2gdd |ψ1|2|ψ2|2, (E6)

and

VρKn = ρ4
[
K1

(
n2

1 − n2
2

) + K2
(
n2

4 − n2
5

) + K3
(
n2

6 − n2
7

) + K4n1n′
3 + K5n4n6

]
, (E7)

in which K1 = 2gsd msm1, K2 = 2gsd msm2, K3 = 2gdd m1m2, K4 = 4g′
sd

√
msm1, K5 = 4g′

sd m2
√

msm1, and

n1 = sin θ cos
(γ

2

)
cos δ1, n2 = sin θ cos

(γ

2

)
sin δ1,

n3 = sin2

(
θ

2

)
cos γ , n′

3 = sin2

(
θ

2

)[
m1 cos2

(γ

2

)
− m2 sin2

(γ

2

)]
,

n4 = sin θ sin
(γ

2

)
cos δ2, n5 = sin θ sin

(γ

2

)
sin δ2,

n6 = sin2

(
θ

2

)
sin γ cos δ0, n7 = sin2

(
θ

2

)
sin γ sin δ0,

n8 = 1√
3

[
cos2

(
θ

2

)
+ sin2

(
θ

2

)
cos2

(γ

2

)
− 2 sin2

(
θ

2

)
cos2

(γ

2

)]
, (E8)

where γ0,1,2 denote the relative phase differences among the three order parameters, with γ0 = φ1 − φ2, γ1 = φ1 − φs, and
γ2 = φ2 − φs. The free energy functional can be further expressed as:

F = ρ2

4

[
sin2 θ cos2

(γ

2

)
(∇γ1)2 + sin2 θ sin2

(γ

2

)
(∇γ2)2 + sin4

(
θ

2

)
sin2 γ (∇γ0)2

]

+ ρ2

[
sin2

(
θ

2

)
cos2

(γ

2

)
∇φ1 + sin2

(
θ

2

)
sin2

(γ

2

)
∇φ2 + cos2

(
θ

2

)
∇φs + 2eA

]2

+ B2

2
+ V0 + VρKn. (E9)

The variation of the second term in the free energy functional given in Eq. (E9) directly leads to the expression for the
supercurrent:

J = −4eρ2

[
cos2

(
θ

2

)
∇φs + sin2

(
θ

2

)
cos2

(γ

2

)
∇φ1 + sin2

(
θ

2

)
sin2

(γ

2

)
∇φ2 + 2eA

]
. (E10)
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