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In this work, we investigate chiral topological superconductors on a two-dimensional honeycomb lattice with
coexisting d,2_y2, d,, and s-wave pairing symmetries. Using a Ginzburg-Landau free energy analysis, the pairing
gap function is shown to exhibit a tri-component form s + d,2 e + d, %2, where ¢; and ¢, are phase
differences between the d- and s-wave pairing components, which spontaneously breaks both time reversal and
Cs rotational symmetries. Chern numbers of the energy bands are calculated to be nonzero, demonstrating the
topologically nontrivial nature of the system. The anomalous AC Hall conductivity is computed, which is not
invariant under C rotations, reflecting the anisotropic nature of the pairing gap function. Fractional magnetic
vortices are also discussed, arising from the multicomponent nature of the pairing gap function.
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I. INTRODUCTION

Chiral superconductors [1] have attracted intense research
interests because of their potentials in realizing topological
quantum computations [2—18]. Typical chiral pairing states
include chiral p-wave [19-27], d-wave [28-32], and f-wave
pairings [33-37], corresponding to orbital angular momentum
of a Cooper pair equal to one, two, and three, respec-
tively. Possible chiral d-wave superconductors include certain
copper-oxide high-temperature superconductors [38—42] and
honeycomb correlated systems [43—-45]. Based on the doped
Hubbard model on the honeycomb lattice, it is theoretically
proposed that superconductivity arising from correlated elec-
trons may take the form of a chiral d + id singlet pairing or
a p % ip triplet pairing, depending on the doping level and
interaction strength [46—49]. At doping levels near the van
Hove singularity (VHS), the d + id singlet pairing dominates
at weak coupling, while the p & ip triplet pairing becomes
more prominent when the interaction strength increases [50].
Recently, there has been evidence that the surface of YPtBi
material may host chiral d + id superconducting pairing
[51,52].

Exotic chiral superconductivities can also emerge from
multilayer systems. For example, recent studies have revealed
the possible presence of chiral d-wave superconducting pair-
ing in twisted bilayer graphene [53-62]. Interestingly, it has
been proposed in Ref. [32] that the method of twisting bilayer
materials provides a strategy to stack two layers of Bi2212
thin films together and rotate them at a certain angle. When the
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twist angle increases from 0° to 45° in the twisted cuprate sys-
tem, the pairing symmetry transitions from s + id to dy>_,» +
idyy [32,63,64]. In addition, the study of a superconducting
heterojunction with one side characterized by the p, & ip, gap
function and the other side the conventional s-wave one found
the pairing pattern to be s + in[e"?/%p, + nze~¢/2p, ] with
nj ==x1(j =1,2,3), where ¢ is the phase difference be-
tween the p,- and p,-wave pairing components [65].

One significant feature of chiral superconductivity is the
spontaneous breaking of time reversal symmetry, as signified
by the non-collinear phase difference between different com-
ponents of pairing order parameters. Time-reversal symmetry
breaking can be detected through various methods, such as
muon spin relaxation experiments [66,67], Josephson inter-
ference measurements [68—73], the magneto-optical Faraday
effect [74], and Kerr rotation experiments [75-79]. In Kerr
rotation experiments, the system breaking time-reversal sym-
metry typically exhibits a nonzero Kerr rotation angle of light,
meaning that the polarization direction of reflected light ro-
tates. This effect can be measured using ultrahigh sensitivity
zero-field Kerr effect measurements. Since the Kerr angle is
related to the AC Hall conductivity oy under zero external
magnetic field, a nonvanishing AC Hall conductivity is an
evidence for the existence of time reversal symmetry breaking
in the system [80,81].

In this paper, we investigate chiral superconductors on a
honeycomb lattice in the case where nearest-neighbor pairing
dominates, with coexisting d,>_,2, dy, and s-wave pairing
symmetries. The coexistence of these three pairing symme-
tries can be either intrinsic or extrinsic, where “intrinsic”
refers to simultaneous instabilities in the three superconduct-
ing channels in the material, and “extrinsic” refers to the
situation where the coexistence is induced via the proximity

©2026 American Physical Society
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FIG. 1. One of the twelve degenerate configurations of the tri-
component-pairing gap function on a honeycomb lattice, in which
¥y, Y1, and VY, represent the s-, d»_2-, and d,,-pairing compo-
nents, respectively. The phase of s-wave order parameter is fixed
to zero, i.e., || + |11 ]€® + |y, |e®2. The choices of the values of
parameters in the free energy are included in the text. It is worth
emphasizing that the two components ¥, and 1, in the figure have a
phase difference of 0.4527, not perpendicular with each other.

effect by superimposing a conventional s-wave superconduc-
tor on top of a chiral d + id one. The experimentally observed
nematic superconductivity in twisted bilayer graphene [61]
has been proposed to be possibly arising from the intrin-
sic coexistence of these pairing components as discussed in
Ref. [62]; while the extrinsic scenario is applicable to any
d + id pairing material in proximity with an s-wave one. As
to be discussed shortly, the Cg rotational symmetry is spon-
taneously broken for the tri-component-pairing, whereas the
d =+ id pairing preserves this symmetry. Hence, the resulting
anisotropic Hall response signals can serve as signatures for
nematic superconductivity in the “intrinsic” case, and chiral
d % id pairing in the “extrinsic” case in the materials.

From a free energy perspective, there are complex frustra-
tions and intertwinings among the d,>_,2-, dy,-, and s-wave
pairing components. On the one hand, the quadratic Josephson
couplings favor a relative 4 /2 phase difference between
any two of the three pairing symmetries; and on the other
hand, the existence of an exotic quartic term in the free
energy which is first order in v, and cubic in d-wave com-
ponents favors a phase difference of nw (or mm /2) between
the d»_y2- (or dy,-) wave and s-wave pairings, where both
m and n are integers. However, the phase differences among
the three pairing components cannot simultaneously satisfy
all these conditions. Based on a Ginzburg-Landau (GL) free
energy analysis, we find that the pairing gap function is of
the form s + d>_2€"" + dyye'?, where ¢ (and ¢,) represents
the phase difference between the d,>_2- (and d,,-) wave and
the s-wave pairing order parameters as shown in Fig. 1.

The obtained pattern of tri-component-pairing
s+ de_pe® +de'® not only spontaneously breaks the
time-reversal symmetry, but also breaks the spatial Cg,
symmetry of the honeycomb lattice down to C,. The breaking
of time reversal symmetry manifests itself in the nonvanishing
Hall conductivity, whereas the absence of (g rotational
symmetry in the pairing gap function can be detected
through the spatial anisotropy in Hall conductivity and Kerr
effect. Furthermore, we have confirmed that the pairing is
topologically nontrivial by showing the nonvanishing of the
Chern number and the emergence of a Majorana edge mode
on the boundaries.

FIG. 2. Schematic plot of a two-dimensional honeycomb lattice,
where A and B denote sites in the two inequivalent sublattices. The
three nearest-neighbor vectors for the sublattice site A are shown
as the black arrows as a; = (a, 0), a; = (—a/2, \/ga/2), and a; =
(—a/2, —ﬁa/Z), in which the lattice constant of the honeycomb
lattice is a. The x direction is taken as the direction pointing from
sublattice site A to B, and the y direction is in the perpendicular
direction.

Because of the multicomponent structure of the pair-
ing gap function, the system can host exotic topological
excitations, not possible in superconductors with a single
pairing component. In particular, we show in detail that the
tri-component-pairing superconductivity can host magnetic
vortices carrying arbitrary fractions of the magnetic flux quan-
tum [82]. Other exotic topological excitations such as chiral
skyrmions can also exist in the tri-component-pairing system
[83]. Three-component superconductors have been studied to
some extent, revealing spontaneous time-reversal symmetry
breaking [84], and novel topological solitons [85].

The rest of the paper is organized as follows. In Sec. II,
we begin with a GL free energy analysis, from which the
form of the pairing gap function and the symmetry break-
ing pattern are derived. In Sec. III, by using a microscopic
Bogoliubov-de Gennes (BdG) Hamiltonian of a pairing gap
function s + d,2_ 2" + dyye'?* on the honeycomb lattice, we
show the opening of the topological mass gap and the nonzero
Chern number. The anisotropic anomalous AC Hall conduc-
tivity is studied in Sec. IV. In Sec. V, fractional magnetic
vortices are discussed. Conclusions are presented in Sec. VI.

II. GINZBURG-LANDAU FREE ENERGY ANALYSIS

A. Uniform Ginzburg-Landau free energy

We consider a superconducting system on the honeycomb
lattice as shown in Fig. 2. The superconducting pairing gap
function will be shown to exhibit a tri-component form with
competing d,>_,2-, dyy-, and s-wave pairing symmetries, based
on a combination of symmetry and GL free energy analysis.

The point group symmetry of a monolayer of honeycomb
lattice is Cg,, which contains six rotations and six reflections,
as shown in Fig. 3. The most general GL free energy respect-
ing the U(1) gauge, the time reversal, and the Cg, point group
symmetries up to the quartic order is given by:

F=F%+F"+F®, (1)
in which

FO = aly,|* + Bl
FO = ay(lyn* + o) + Ba(vi > + a2 ()
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FIG. 3. Schematic plot of the twelve symmetry elements of the
Cs, group consisting of six rotation and six reflection operations.
The rotation operations are represented as Cg, Gz, C,, C32 and C65
in the text, corresponding to rotations around z axis by angles /3,
2 /3, 7, 47 /3, and 5 /3. The six reflection planes of the reflection
operations are determined by the planes spanned by z axis and the
dashed lines 11, 12, 13, l4, 15, 16-

and

FO =y Pl + W2l + gaa (v — viy3)?
+gsa[ V2 (U7 + v3) + 9l (v +v3?)]
+ &l (Wi + Y V1 — [¥2l?)
— (U3 + UV + Y], 3)

where ¥, ¥ and ¥, represent the complex order parameters
for the s-wave, d,»_>-wave, and d,,-wave, respectively; oy <
0,0y <0, B; >0, Bs > 0in the superconducting phase when
three pairing symmetries coexist; y represents the phase-
independent coupling term between the s-wave and d-wave
pairing components; g4; > 0 is the coefficient of the term
which contains the quadratic Josephson coupling 1/[12 5‘2 +
h.c. between d,>_ - and d,,-wave components; gz > 0 is the
coefficients of the quadratic Josephson coupling 1,0:2(1//12 +
wzz) + H.c. between s- and d-wave components; g, repre-
sents the quartic coupling term which is first order in ¥
and cubic in d-wave components. We note that both g;; > 0
and g4s > 0 are taken to be positive so that relative £ /2
phase differences are energetically favored between any two
of the three pairing components v, ¥, ¥,. In what follows,
by setting the phase of ¥, to zero, we write

Vs =l Y =1le?, Yo = [ale®, @)

in which |y, |¥] and || are magnitudes of the s-wave,
dy>_yo-wave, and d,,-wave order parameters, and ¢; and ¢,
are the phase differences of ¥r; and v, relative to 1. Notice
that it is the term with coefficient g, ,, which breaks the U(1)
rotational symmetry down to Cg,. A more detailed derivation
of Eq. (1) based on symmetry analysis is provided in Ap-
pendix A. The origin of the tricomponent form of the pairing
gap function can be most evidently seen by retaining only the
phase-sensitive terms in Eq. (1). Plugging the expressions of
Y, ¥ and ¥, in Eq. (4) into Eq. (1), we obtain

F = fi(l¥s], [¥1]) cos 26
+ L2(Ysl, [¥2]) cos 2¢
+ fo(l¥1l, [¥2]) cos (2¢2 — 2¢1)
+ AUl 111, [¥2]) cos ¢y
+ LU [l [¥al) cos 2¢n — ¢1), ()

where

FAUs) [ D) = 2gal W P19 1,

LWl [Val) =285l P19,

SoUnl 1Wal) =2gaa ¥ P19,
FAUsl 191 1921) =28 ¥l [ (v P = 2192l),
LUl Wl 192]) = = 28, [l 19 1921 (6)

Since f1, f>, and fj are all positive, ¢, ¢, and ¢, — ¢; all tend
to take values of £ /2, meaning that at least one of ¢y, ¢,, or
¢» — ¢ will deviate from +m /2.

Next we focus on the f] and f; terms in Eq. (5). Since g/,
can be either positive or negative, the sign of f{ is determined
by the product of g, and (|¥]* — 2|y|*), while the sign
of f; is determined by g, ,. When g, > 0, we have f; <0,
then 2¢, — ¢ tends to take values of 2nm. In this case, if
|12 — 2|12|* > 0, then ¢; tends to be (2m + 1), resulting
in ¢ = 2m + 2n+ D) /2; whereas if |;|> —2|y»|> <0,
¢1 tends to take the value of 2m, resulting in ¢ = (m + n)m,
where both m and n are integers. A similar analysis can be per-
formed for a negative g, ,. The inclusion of the g, term makes
the competition between ¢, ¢» and ¢, — ¢; more complex,
depending on the specific parameters taken in Eq. (1). Notice
that it is impossible for ¢; and ¢, to satisfy all the constraints
set by fo. f1, f2. f{, and f;.

For a full treatment, in order to determine the pattern of the
three order parameters, an iterative numerical method is ap-
plied to obtain the solution of the pairing gap function by min-
imizing Eq. (1). The obtained results of pairing configurations
are shown in Fig. 1. The parameters in free energy in Eq. (1) to
obtain Fig. 1 are chosen as oy = —Np, oy = —3.179Np, B, =
2.635Np /T2, Ba = 0.790Nr /T2, gaa = 2.640Np /T2, g =
0.275Np/T?, and g, = —1.525Nr /T?, where Np is the den-
sity of states at the Fermi level and 7, is the superconducting
transition temperature. As previously discussed, the three pa-
rameters gq4, 84, and g, have significant impacts on the
relative phases among different pairing components, thereby
requiring careful consideration. On the other hand, y is chosen
to be 0 for simplification, as its value does not have a decisive
influence on the relative phases and the symmetry breaking
pattern. The obtained order parameters for this particular
choice of parameters are || = 0.604kpT., |¥r1| = 1.029k5T.,,
[V = 0.962kpT,, ¢ = 0.3837, and ¢, = 0.8357. We note
that the phase difference between the two d-wave components
is ¢, — ¢ = 0.4527, which is not equal to 7w /2 as in the
chiral d + id case.

The symmetry-breaking pattern of the configuration in
Fig. 4(a;) can be determined as

Co» X 2T — & @)

where Z1 is the Z, group generated by time reversal op-
eration. Eq. (7) is straightforward to be verified because
the m-rotation around z axis takes x,y to —x, —y, result-
ing in d>_p — de_p and d,, — d,,. Except for C;, all
other symmetries are spontaneously broken in the ground
state in Fig. 4(a;). Since |Cg, X ZZT|/|C2| = 12, where |...|
represents the number of group elements, there are 12
degenerate solutions of the ground state pairing configura-
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FIG. 4. Degenerate configurations of the tri-component-pairing s + d,2_ € +d, 2. Symmetry operations which can generate the

configuration from the one in (a;) are indicated on top of each figure, where E is the identity operation; T is time reversal; Cg, C3, . .

rotations; and [y, [, ..

5
., Cg are

., lg are reflections. In all panels, ¢, and ¢, are not perpendicular with each other. In panels (a3), (as), (bs), and (bs), ¥

and ¥, are not exactly collinear, and v, is not precisely equal to £ /2. The parameters in Eq. (1) are chosen as oy = —Np, oy = —3.179Np,
Bs = 2.635NF/T62, Bs = 0.790NF/T62, y =0, g4u = 2.640NF/TCZ, 8sd = 0.275NF/TCZ, and g, = 71.525NF/TCZ, where Ny is the density of
states at the Fermi level and T.. is the superconducting transition temperature.

tions. The other eleven degenerate configurations are shown in
Figs. 4(a;)—4(ag) and 4(b;)—4(be), which can be obtained by
performing the broken symmetry operations on the configura-
tion in Fig. 4(a;). The symmetry operations that can be used
to generate the corresponding configuration from Fig. 4(a;)
are indicated on top of each subfigure in Fig. 4.

B. Other lattice symmetries

On the free energy level, degenerate d,»_,» and d,, pairings
can occur for other lattice symmetries as well, not just the
Csy symmetry considered in Sec. ITA. In this subsection,
we discuss the general forms of free energies when there
is a coexistence of s-, dy>_2-, and d,,-pairing components,
focusing on the special cases for planar point groups where
dy_y- and dyy-channels are degenerate, namely, they form a
two-dimensional irreducible representation of the symmetry
group.

It turns out that there are eight planar point group sym-
metries that satisfy the condition of degenerate d,>_,» and d,y
pairings, including Cs,, D3, D3j, D34, Cey, Dg, Den, and Dyy.
Among the eight point group symmetries, seven of them—
from Cs, to Dg,—share the same form of free energy up to
quartic order as the Cg, case given in Eq. (1), whereas the
Dy, case has a different form, as summarized in Table 1. More

TABLE 1. Point groups with d;-d, degeneracy and the corre-
sponding free energy. The explicit forms of F©, F\”, F®  F/©,
F;”, and F'™ are given in Egs. (2), (3), (9), and (10).

Symmetry groups G-L free energy

Csy, D3, D3y, D3y, Cey, Ds, Dy, FO + F,,(O) +F®
D4d F/(O) +F(1,(0) +F/(4)

explicitly, the free energy F’ for Dy, is given by
F = FS/(O) + Fdf(O) + F/(4), 8
in which
FO = o[y + Bilvsl*,
F{O = aj(1yn ] + [l + B9 P + 1¥2? 9)
and
F'™ =yt P12 + vsal s (9 12 + [ )
+8ua(Vivs® +itys)
+gulw (i +v3) + vV + v (0)

In this case, we also expect a mixture of dy2_2-, dy,-, and

s-wave pairing symmetries when g/, >0 and g, > 0 in
Eq. (10).

III. TOPOLOGICAL CHIRAL PAIRING

A. Microscopic model

Now we turn to a microscopic model. Retaining terms up to
the nearest neighbors, it is direct to construct the Bogoliubov-
de Gennes (BdG) Hamiltonian for the tricomponent supercon-
ducting pairing on a two-dimensional honeycomb lattice. The
BdG Hamiltonian can be written as

H= Z\y,jhkqfk, (1)
k
in which Wy = (ck, 1 Chp 1 cikA ¢Cikg i)T’ where c,:U and
, : ’

Ck;,c represent the creation and annihilation operators, respec-
tively, for an electron with momentum k = (k,, k,) and spin
o in the sublattice j = A, B; hy, is the 4 x 4 BdG Hamiltonian
matrix containing the normal-state Hamiltonian Hy (k) and the
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pairing term A(k), given by

e — (Ho(k)

AT (k)

A(k) =
_HI(—k))" 12

In the absence of a staggered potential [86—88], the normal-
state Hamiltonian can be expressed as

Ho(k) = €(k)o + €,(k)a, — pov, (13)

where

3
e(k) = —t Z cos (k - a;),
i=1

3
(k) =1 sin(k-a), (14)

i=1

in which o, (o = x, y, z) are 2 x 2 Pauli matrices that encode
the sublattice degree of freedom, op is the 2 x 2 identity
matrix, p is the chemical potential, ¢ is the nearest-neighbor
hopping amplitude, and a; (i = 1, 2, 3) are vectors defined
in Fig. 2. The Hamiltonian Hy(k) describes the kinetic
energy and nearest-neighbor hopping of electrons in the non-
superconducting state of the system.

Considering the superconducting pairing in the chiral spin-
singlet state, the tri-component-pairing term can be expressed
as

A(k) = As(k) + Ao (k) + Ay (k)e'®, (15)
where
Ag(k) = |rg]oo, (16)

and

Ap_p (k)= [yl { |:cos (kya)— cos (%/@ﬂ) cos (? ya):| Oy
— |:sin (kya) + sin <lkxa> cos (ék},a>j|ay }
2 2
Ay (k) = «/§|1ﬂ2| < |:— sin (%kxa) sin (?k_ﬂ)}dx
+ |:cos (%kxa) sin (?kﬂ)]q}. 17

According to the calculations in Appendix B, (A_y2, Ayy)
transform in the same way as (d2_y, dry) under the Cg,
group. Hence (A,2_y2, A,y) represent d-wave pairings for the
discrete symmetry group C,.

Substituting Eqs. (16) and (17) into Eq. (15), we obtain

A(k) = ASUO + Ax(k)ax + Ay(k)ayv (18)
where

Ay = [l 19)

and

Ack) = |1/,1|ei¢1 |:cos (kya) — cos (%kﬂ) CcoS <%§kya):|

_ ﬁlwzlei% |:Sin <%kxa> sin <\/7§kya):| y
Ay(k) == |ei¢u |:sin (kya) + sin (%kxa) cos (?kya>i|
+ V3| e? |:cos (%kxa) sin (*/;kyaﬂ. (20)

The 4 x 4 BdG Hamiltonian can be expressed as
he = [Re(Ay)o, +Re(Ay)oy + Aoplty
— [m(A;)o, +Im(A))oy]T,
+ (ex0x + €,0, — woy)1;, 21

where 1, (¢ = x,y, z) are the Pauli matrices in the particle-
hole channel. Diagonalization of 7 gives two pairs of energy
eigenvalues +F;(k) for each momentum k,

Eik) = JIA + A + AR + € + €+ 2 + (<) Dy,
(22)
where i = 1, 2 and
D =4p*(e] +€)) + 21AP 1A 1P — (ATA + A2AY)
T A[21A7 + €A — ey (AL A 4+ AYAY)]
+ AJA+ A + (A + A3
— 8uAlexRe(Ay) + €,Re(A))]. (23)
The plots of E(k) and E,(k) are depicted in Fig. 5 by
taking || = 0.0604¢, || = 0.1029¢, |r2] = 0.0962¢, ¢ =
0.3837w, ¢ = 0.8357w, and pu = —0.4¢, which give a fully
gapped energy spectrum. To more clearly demonstrate the
gap, Fig. 5(c) is created by fixing k, = 47t /(3+/3a) (which
is the y coordinate of the K point) and plotting the curves of

+E »(k) as functions of k, only. It is evident that a gap exists
at the Dirac point K = (0 47y where E ~ £0.454¢ and the

’ 3\/§a
gap size E ~ 0.103r.

B. Chern number

A nonvanishing Chern number is the signature of a non-
trivial topological property for two-dimensional systems,
which is defined as [89,90]

1
C=— [ d*kF,y k), (24)
2im

in which the Berry connection A, (k)(« = x, y) and the asso-
ciated field strength Fy, (k) are given by

Aq(k) = (n(k)|0y [n(k)),
Foy(k) = 3:A, (k) — 9yAc(k), (25)

where |n(k)) is a normalized wave function of the nth energy
band. With the opening of the mass gap, the four eigenstates
of the BdG Hamiltonian in Eq. (21) are everywhere nonde-
generate, so that a Chern number C, can be defined for each
band n as labeled in Fig. 5(c). At T = 0 K, the Chern num-
bers for corresponding energy bands are calculated as C; = 1,
C, = -3, C; = 3, and Cy = —1, using the numerical method
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(b) ©

FIG. 5. Eigenvalues of the BdG Hamiltonian in Eq. (21).
(a) Presents three-dimensional plots of the positive E£; and E, as
functions of k, where a gap opens at the Dirac points. (b) Provides
a top view of (a). (c) Illustrates the variation of the four eigenvalues
with respect to k, with the &, coordinate fixed to be the y component
of the K point. In all plots, we set || = 0.06047, || = 0.1029¢,
[¥>] = 0.0962¢, ¢y = 0.3837, ¢p, = 0.8357, and u = —0.4¢.

proposed in Refs. [91,92]. The choices of order parameters
and chemical potential are the same as in Fig. 5, correspond-
ing to Fig. 4(a;). The sum of the Chern numbers of the two
occupied bands (i.e., n = 1, 2) is —2, which is consistent with
the characteristics of a chiral d-wave superconductivity.

The behavior of the Chern numbers under the transforma-
tions of the Cg, x ZI group elements is illustrated in Fig. 6.
If ¢» — ¢1 <, the Chern numbers are given by C; =1,
C, = -3, C3 =3, C4 = —1, and the sum of the Chern num-
bers of the bands with negative energies is —2; conversely,

<Band 1

+Band 2
Band 3

“Band 4

[

—_

Chern number
o

'
[
T

-

2
@&'C’L g‘Cﬂ)
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Ce ©
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Caq &5 w5 ge Lo <Oy
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A \ 1 I ¢ @C@%QC} Dy D DN

FIG. 6. Evolution of Chern numbers under symmetry operations
in Cﬁv X Z; .

(a) (b)

FIG. 7. Plots for (a) armchair and (b) zigzag edges on the hon-
eycomb lattice, in which the thickened bonds represent the bonds on
the edges.

if ¢ — ¢ > m, the Chern numbers change sign, and the
sum is 2. It can be observed that rotational transformations
do not alter the Chern numbers, while mirror reflection and
time-reversal transformations reverse the sign of the Chern
numbers.

C. Edge states

When Chern number is nonzero, it is expected that chiral
edge states emerge on the boundaries of the system [93,94],
which, for the case of topological superconductors, are Ma-
jorana modes propagating unidirectionally along the sample
boundaries [2,10,12-14,95-97].

To further study the topological properties of
the obtained tri-component superconducting pairing
s+ do_pe? +dye'®, we solve edge states for different
boundary geometries, namely, armchair, and zigzag as
shown in Fig. 7, by taking the 1D edge direction of the
two-dimensional honeycomb lattice to be periodic and the
perpendicular direction to be open and finite with 100 unit
cells of the honeycomb lattice. Figures 8(a) and 8(b) display
the numerical results for the energy spectrum for armchair

1.0 1o 1.0 Peio
A\
0.8 0.8
0.5} 0.5
0.6 r 0.6
Elt ool \\ Elt 0_0/ /
: 0.4 0.4
So— J
-0.5} -0.5}
0.2 0.2
~
100220200 02 0.4 *° “19%2°0200 02 04 °°
@ ko (b) Ko

FIG. 8. Energy spectrum for (a) armchair edge and (b) zigzag
edge. p,s are the integrated wave-function probabilities in the first
ten stripes of unit cells close to the boundaries. The choices of order
parameters and chemical potential are the same as in Fig. 5.
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and zigzag boundaries, respectively, in which the horizontal
axes are the momenta in the periodic directions, namely,
ky for armchair and k, for zigzag (for definition of x and y
directions, see Fig. 2), and the vertical axis is the exictation
energy E in units of hopping 7. The grey scales p, in Figs. 8(a)
and 8(b) are defined as

10
pe=y_ Y Y W0 M (26)

j=1A=ABo=1,|

in which j is the index of the stripe of unit cells measured
from the edge in the direction perpendicular to the edge, A
is the index for sublattice sites within a unit cell, o is the spin
index, and v, (j, A) is the wave function for the corresponding
eigenstate. Notice that p, represents the integrated wave func-
tion probabilities in the first ten stripes of unit cells close to
the boundaries, thereby can be used for calibrating the degree
of localization of the wave functions near the boundaries.

As can be seen from Fig. 8(a), two well-defined dispersive
mid-gap modes can be clearly observed for the armchair case.
The relatively dark colors of the two mid-gap lines undoubt-
edly hint at their edge state nature. Moreover, the two chiral
edge modes both cross E = 0 in Fig. 8(a), consistent with a
total Chern number of the two negative energy bands being
equal to 2. As for the case of the zigzag edge shown in
Fig. 8(b), two chiral edge modes crossing £ = 0 can also be
observed, again consistent with the bulk Chern number.

IV. ANISOTROPIC ac HALL CONDUCTIVITY

Under the influence of incident light, the refractive index
of a material changes, which in turn alters the polarization
state of the light. This is known as the optical Kerr effect
[98,99], and the angle of polarization change is called the Kerr
angle, which can be used as a signal for chiral topological
phase [100,101]. In the optical Kerr effect, we focus on the
interaction between light and matter, which is influenced by
the anomalous ac Hall conductivity oy (w) [102—104]. The
Kerr angle, 6k, is directly related to o (), and as a result, the
presence of oy (w) can be used as an experimental signature
for the existence of time-reversal symmetry breaking.

A. Expression for ac Hall conductivity
The anomalous ac Hall conductivity is the antisymmetric
part of the optical Hall conductivity,
ou(®) = ; limloy(g. @) —on(g. @), (27)
|

2}‘13(\1,,, + 2a),,)2(v;"vy — vxv;‘)[u(AjAy — AXA;‘,) + 2iAs(exImA, — ,ImA,)]

in which w is the frequency of the incident light, and the opti-
cal Hall conductivity oy, (g, w) is related to the current-current
correlator 7,,(¢q, ®) via

1
Ux;’(qs w) = %ﬂxy(qv w). (28)

The current-current correlator m,,(q, @) is defined as
mo@.o) = [ e 1.0, 0@on. @9
0

in which J, = e Dk \Illj Do Wy is the o’th component (@ = x, y)
of the current operator, and 9, is the «’th component of the
velocity operator in Nambu notation given by

1
B = 2(0. ® 00), 1, (30)

where A is the normal part of the BdG Hamiltonian in
Eq. (21), namely,

B = (—poo + €0, + €,0,)1.. 31

Under time-reversal transformation, the current correlator
changes as m,, — my,; and under mirror reflection transfor-
mation along % or ¥ axis, the current correlator changes as
Ty, — —yy (for details, see Appendix C), both of which
result in a sign change of oy. Therefore, if either of the two
above symmetries is unbroken, oy must be zero in order to
preserve the invariance of the observable quantity. Hence, to
obtain a nonzero ac Hall conductivity, both time-reversal and
mirror symmetries along the X and j axes must be broken.

Specifically, in superconducting systems with a multiband
feature and a symmetry-breaking pattern of Cg, x Z1 — G,
as described by Eq. (21), the condition for generating a
nonzero oy is fulfilled. A straightforward evaluation from
Egs. (27)—-(31) yields the anomalous ac Hall conductivity as
follow,

@) = 1 e’ d*k
T Sovie g ) @R &

where v,, is the bosonic Matsubara frequency, w, is
the fermionic Matsubara frequency, B = 1/kgT, v, =
(1/h)0, (ex —i€y), @ = x,y, and € represents a positive in-
finitesimal here. For the tri-component-pairing state s+
dy_pe® + dyye'?” with time-reversal symmetry breaking, the
leading term of the vertex correction is zero and thus can be
neglected [105]. Detailed derivation of Eq. (32) is included in

(P ep + ET) (W wp + E)[1*(@n + vn)* + EF][1*(@n + vn)* + E7]

(32)

(

Appendix D. The reason why oy (w) is nonzero can be directly
seen from Eq. (32) as follows. In order for the Hall signal
to be non-vanishing, the integrand in Eq. (32) must be even
under the reflection x <> y. Indeed, the eigen-energy E,, in the
denominator remains unchanged under the exchange of the
x and y indices, whereas the terms involving (viv, — v,v}),
(AAY — AYA), and (e,ImA, — €,ImA,) in the numerator
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FIG. 9. Anisotropy of the real (solid line) and imaginary (dashed line) parts of the anomalous ac Hall conductivity in Eq. (32). (a) Shows
the line-shape for oy (w) without any symmetry operations, (b) and (c) present the line-shapes for oy (w) when the coordinate axes are rotated
by /3 and 27 /3 angles around the z axis, respectively. Both real part and imaginary part in all panels reach a peak at iw ~ 0.9¢. The fact that
on # 0 demonstrates that the system is in a chiral topological superconducting phase, and the change in oy after rotation in (b) and (c) reflects
the anisotropy of the anomalous ac Hall conductivity under the tri-component-pairing configuration. In this figure, we use the same parameters

as in Fig. 5, and set the temperature kT = 0.01z.

change sign under x <>y, so that the overall numerator is
also even. As a result, Eq. (32) satisfies the condition for
generating a non-vanishing ac Hall conductivity.

B. Numerical results for ac Hall conductivity

The line-shapes for both the real and imaginary parts of
oy (w) as functions of w are plotted in Fig. 9(a), where the
same parameters for the chemical potential and superconduct-
ing pairing are used as in Fig. 5, and the temperature is set to
be kgT = 0.01z. From Fig. 9(a), it can be observed that when
the incident light energy satisfies fiw = [E| (k) 4+ Ez(k)]min &
0.9¢, both Re(oy) and Im(oy) exhibit peaks. The peak po-
sition in Im(oy) can be understood from resonances. Notice
that Im(oy) contains delta-functions §(E; + E, + hw) and
8(Ey + E; — liw) (see Appendix D for details). The energy
conservation constraint in §(E| + E, + hiw) cannot be satis-
fied for positive w, and the constraint in §(E; + E» — hw) can
be satisfied only when w is above the two-particle continuum,
ie., hw = [E (k) + E»(k)]min. This is the reason for the onset
of a nonzero Im(oy) at [E (k) + E»(k)]min, Where a peak
shows up due to an enhancement of the density of states.
On the other hand, Re(oy) is related to Im(oy ) through the
Kramers-Kronig relation,

* Im[oy ()] do/ (33)

o —w

1
Relo(@)] = —P /

—0Q

which means that if a peak appears in the imaginary part
at a certain frequency, the real part will inevitably undergo
significant changes in the nearby frequency range, and it is
highly likely to also form a peak.

In addition, the temperature dependence of the anoma-
lous ac Hall conductivity without any symmetry operations
is shown in Fig. 10. For clearer numerical variation, the fre-
quency is chosen near the peak value of oy in Fig. 9(a),
i.e., hiw = 0.9¢. As the temperature increases from 0 to the
superconducting critical temperature 7T, both the real and
imaginary parts of oy decrease gradually, with a slow decay
near 7 = 0 and a faster decay close to 7.. We note that for the
oy curves with any symmetry operation, fixing the frequency
at an arbitrary value should yield a temperature dependence
of oy similar to that shown in Fig. 10.

A nonvanishing oy (w) leads to Kerr effect in the material,
which can be used as an experimental signature for detecting
time reversal symmetry breaking. When polarized light is
incident on the surface of a chiral topological superconductor,
the polarization direction of the reflected light undergoes ro-
tation due to the nonzero ac Hall conductivity of the material.
For thick samples (k& > A), the Kerr angle 6x depends on
oy (w) as follows [98]:

where A is the wavelength of the incident light, and d denotes
the separation of monolayer pairs. And for thin samples (7 <
A), the Kerr angle is given by [80],

o (w)

2w

To (34)

—oy

Oy + 4m (o2

0k (w) = Rearctan ( n 013) ), (35)

where o,, is the longitudinal optical conductivity.

C. Comparison with d + id pairing and breaking
of rotational symmetry

We emphasize that the behavior of ac Hall conductivity
for the tri-component s + d,2_ 2" + d,,e'® pairing exhibits
notable differences compared with the chiral d-wave one
d>_y + idyy,. In the chiral d-wave case, oy vanishes at the
Dirac point where the chemical potential i = 0. On the other
hand, oy is nonvanishing even at the Dirac point for the

041 oagf .
/g 0.40 /g 047 h
o ok

. 045
£ 037 € om
& 036 E 043

035 0.42 .

0_’1/1

00 02 04 06 08 10 00 02 04 06 08 10

(@) T/T. (B) T/T.

FIG. 10. Real (panel (a)) and imaginary (panel (b)) parts of the
anomalous ac Hall conductivity for s + d,2_2e + d,e?? pairing as
functions of the temperature. Same order parameters and chemical
potential are taken as in Fig. 9, and the frequency is set to be
ho =0.9z.
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FIG. 11. Real (solid line) and imaginary (dashed line) parts of
the anomalous ac Hall conductivity for (a) s + d,2_2€% + d,ye®
pairing, and (b) d,2_,» + id,, pairing gap function, as functions of
chemical potential. In (a), the same parameters for the tri-component-
pairing are used as in Fig. 5, while in (b), [2_2| = |¥y,| = 0.1¢.
It is worth noting that in (a), oy for the tri-cofnponent-pairing is
nonzero at u = 0, with a value of (—0.0387 4 0.0723i)e? /A, while
oy for the d + id pairing completely vanishes at u = 0. In all plots,
we set kgT = 0.017 with mixed hw = 0.35¢.

s+ d2_2e'? + d,ye'? pairing, because of the presence of the
Ag(eImA, — €,ImA,) term in the numerator of Eq. (32), as
shown in Fig. 11.

It is noted that, for the parameter choices in the figure, the
anomalous ac Hall conductivity of the tricomponent pairing
exhibits a single peak in both the real and imaginary parts
within the range —0.03r < p < 0, whereas the curve for the
d + id pairing gradually approaches zero. The origin of the
peak in Fig. 11(a) is essentially the same as those in Fig. 9.
Specifically, when Zw = 0.35¢ is fixed, the peak position
Mpeak satisfies (Ey + E»)min = 0.35¢ = fiw. At this threshold,
Im(oy ) exhibits a peak due to an enhancement of the den-
sity of states, and Re(oy) follows via the Kramers—Kronig
relation. For |it| > |tpeak|, one has (Ey + E3)min > 0.35¢, and
oy has not yet attained its maximum. For |u| < |tpeakl,
(E1 + E>)min < 0.35¢, leading to a gradual decrease after the
peak, including a region where Re(oy) < 0, consistent with
Fig. 9. By contrast, for the d + id pairing in Fig. 11(b), at
u = —0.03¢ one already has (E| + E3)min < 0.35¢, and this
inequality persists as || decreases further. Consequently, oy
exhibits no peak and gradually approaches zero.

Furthermore, unlike the chiral d-wave pairing, the ac Hall
conductivity for the s + d,2_ €' + dyye'%? pairing is not in-
variant under the Cg rotational operation, since Cg sSymmetry is
spontaneously broken in the tri-component case. Figures 9(b)
and 9(c) show the line shapes of Re[oy (w)] and Im[oy (w)]
when the coordinate axes are rotated by 7 /3 and 27 /3 angles
around the z axis, respectively. Namely, the X and y directions
in Eq. (32) for calculating oy (w) are replaced by %' and 3’
directions, where (%', §) are obtained from (%, ) by a rotation
of angle 7 /3 for Fig. 9(b) and 2rr /3 for Fig. 9(c). It is evident
from Figs. 9(a)-9(c) that the line shapes are different for the
three setups, indicating an anisotropy in the ac Hall response
of the system along different directions. Such anisotropy can
be used as an experimental probe to distinguish between chiral
d + id pairing and the tricomponent s + d2_2€"" + d, e
pairing. '

V. FRACTIONAL VORTICES IN MAGNETIC FIELDS

In this section, we discuss another physical property of the
tri-component-pairing with mixed d,>_y2-, dy,-, and s-wave
symmetries—fractional vortices, which occur in multicompo-
nent pairing systems [82].

To study vortex structures in superconductors, the spa-
tial gradient terms of order parameters and magnetic fields
need to be included in the Ginzburg-Landau free energy. By
incorporating these effects, the free energy functional can be
written as

F=F©® ©) ) B 1 . 2
=F7+F"+F"+ > + o [(V + 2ieA)ys|
s

1 1
+ ——|(V + 2ieA)Y 1 |> + —[(V + 2ieA) ¥ |, (36)
21’)’11 21’112

in which the expressions for F*) and F d(o) are the same as
in Eq. (2), and F® is given in Eq. (3). Here, m;, are
the effective masses of the Cooper pairs associated with the
order parameters v ., e is the electron charge, and the
order parameters are coupled to the vector potential A via
minimal coupling. Performing the functional derivative of
Eq. (36) with respect to the vector potential A (for details, see
Appendix E), we obtain the expression of the supercurrent as

4,2 2 (0 2 (0 2 (Y
J =—4dep |:cos <2>V¢S+sm (2>cos (2>V¢1
Y AN
+ sin <§> sin (5)V¢2+26A}, 37

in which

2 2 2
RS A LTy 11

2my 2my 2my

(38)

and 6 and y are given by

| = v/2msp cos (g)
[y1| = /2m p sin (g) co (g)
Y| = V/2map sin (%) sin (Z> (39)

2
In the far-field region, i.e., at distances away from the vor-
tex core much larger than the magnetic penetration length A,
the supercurrent vanishes. Therefore, integrating over a closed
path o around the vortex core in the far-field region gives

w2

fde:O. (40)

Then we arrive at the following equation for the magnetic flux
® = ¢ _dlI - A carried by the vortex:

e (? 2 () cos? (¥
o = 2e|:cos (2>A¢S+sm (2>cos (2)A¢1
o (O . LY
+sin (5) sin (E)A¢2i|, (41)

where A¢; 12 = 550 dl - V¢; 1, are the phase windings of
the order parameters. It then follows that depending on the
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values of A¢,, A¢;, and A¢,, vortices in tri-component-
pairing superconducting system can carry either integer or
arbitrary fractional magnetic flux quanta. Specifically, when
A¢s = APy = A¢y = 2nm, the magnetic flux of the vortex
is ® = —n®d(, where &y = /e denotes the standard flux
quantum. In this case, the vortices are the Abrikosov vortices
of an ordinary superconductor, each carrying n flux quanta.

If A¢1 = A¢y =2nm and A¢s + Ay = 0, the magnetic
flux becomes

o= cos? 0 A¢; + sin? 0 A¢
T 2e 2)~ 2)~ "
= cosOnd,. (42)

Since cos 6 can take an arbitrary value, such a vortex can carry
an arbitrary fraction of the magnetic flux quantum, similar
to the case in two-component superconductors. Likewise, if
A¢) = A¢s = 2nmr and A¢; + A¢, = 0, one obtains

. (0 -
® = —|cos 3 + sin 3 cosy [ndy, 43)
and if instead A¢y = A¢; = 2nm and A¢; + A¢, = 0, the
flux is

0 0 1
& = —|cos® <§) — sin? <§> cos y |ndy. 44)

In either case, vortices can carry arbitrary fractional magnetic
flux quanta.

More generally, for Agy; = 2k, Apy = 2k, and A¢, =
2k, 7, the flux carried by the vortex is given by:

|®] = Agkik, Do (45)
in which
6 0
Mok, = kg cos® (5) + ki sin? (5> cos? (g)
0
+ka sin’ <§> sin? (%) (46)

or alternatively

2 2 2
xkxklh:(ks'%' gl +k2|wz|>

g ny my
—1
2 2 2
_(wm vl +|wz|> @
nig m my

which is again a fractional vortex with an arbitrary value of
magnetic flux.

VI. CONCLUSIONS

In conclusion, we have investigated the existence of chiral
topological superconductivity on a two-dimensional hon-
eycomb lattice with tri-component-pairing gap function of
mixed s-, d,-,2-, and d,,-wave symmetries. Using a Ginzburg-
Landau free energy analysis, the overall pairing gap function
can be determined as s + d,2_2€" + d,ye™®?, which sponta-
neously breaks the time reversal, rotational, and reflectional
symmetries. The symmetry-breaking pattern of the pairing

configuration is Ce, X Z3 — G, leading to 12 degenerate

solutions of the ground state pairing configuration. Based on
a microscopic model for the tri-component-pairing on the
honeycomb lattice, the system is shown to be a fully gapped
topological superconductor with nonzero Chern number and
mid-gap edge states. Furthermore, the anomalous ac Hall con-
ductivity is calculated to be non-vanishing, which breaks the
Cg rotational symmetry, reflecting the anisotropic nature of the
tri-component-pairing gap function. Fractional vortices are
also discussed, which arise from the multicomponent pairing
structure of the system.
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APPENDIX A: G-L FREE ENERGY ANALYSIS
OF A TRI-COMPONENT PAIRING FUNCTION
WITH Cs, SYMMETRY

In this section, we give a quick review of the Cg, group
and G-L free energy. Here (x> — y?, xy) is an E, represen-
tation of the Cy, group, and A; representation is symmetric
under all operations. The product rules for the A;-, A;-,
and Ej-representations of Cg, and the corresponding example
functions can be worked out as Table II:

The two generators of the Cg, group are r = Cg, and f =
11, as defined in the main text. The generator relation repre-
sentation for Cg, is Cg, = (r, f|r® = f?> = (rf)® = e). Write
d, = dsz —y,and dy = 3xy. The result of the action of the two
group generators on this set of coordinates is

()= (205 Ta)(@)

()= %))

Since the coordinate of the linear term of d is (di, d»),
when we come to the quadratic term of d, A; is represented
as |d1|> + |da|?, A, is represented as i(d}d> — d;d; ), and E is
represented as (|d;|*> — |d,|?, didy + djdy).

(AD)

1. Quadratic terms in free energy of d-wave

(d1, dp) forms an E;-representation of Cg, group, and E; x
E, = Ay + Ay + E», there is only one Cg,-invariant combina-
tion, A;. Thus we have only one term in the free energy of
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TABLE II. Multiplication table of irreducible representations of
the Cg, group.

Cev Ay A, E, Functions
Ay A A, E, 7, x>+, 2
Aj A, E, Jz
E; Al +A+ B (x* =y, xy)
d-wave up to quadratic level, i.e.,

@ =1l + vl (A2)

2. Cubic terms in free energy of d-wave

Although the free energy only contains even-order terms
of the order parameters, the presence of an isotropic s-wave
order parameter, in addition to the d-wave order parameters,
allows the d-wave component to take cubic terms. These cubic
terms, together with the first-order terms of the s-wave order
parameter, contribute to the quartic terms in the free energy.

Ey x Ey x B = (A + Ay + Ey) x Es, (A3)

where the first E, on the right-hand side of Eq. (A3) is the
quadratic term of d-wave components, and the second E, is
the linear term.

The action of Cg and /; on the E,-representation which de-
scribes the linear term of the d-wave components is given by
Eq. (A1), while the transformations of the E,-representation
which describes the quadratic term of the d-wave components

are given by
o (1l =1\ _ (=172 =372\ (ldi* — |daP?
\did, + dzdy V32 =172 J\did, + djd, )

/ ldi* —|da*\ _ (1 0\ (ldi]* —|daf

! didy +dyd,) — \0 —1)\d{dr +d;d, )
It is evident that (d|, d>)o, transforms in the same way as
(Id1|* — |da|?, dfdy + d5dy) under the Cg, group, where o is

the Pauli matrix. Thus, there is one cubic term of d-wave order
parameters,

O =y (v = [Wal?) — v (Ui + 5 vn).

(A4)

(A5)

3. Quartic terms in free energy of d-wave
Up to quartic terms, we need to consider the product (E, X
Ey) x (B2 X Ep),
(Ex X E3) X (Ey X E3)
= (A1 +Ay+ Ex) X (A1 + Az + Ep)
=AI+A+E+A+A +E+E
+Ex + (A1 + Ay + Ey). (A6)

So there should be three extra Cg,-invariant terms in the free
energy up to quartic terms:

A x Ay £ = (1 P 4 ),
Ay x Ayt 1D = — (i — Yy )%

Ex x Ey: £ = (14n* — W2l 4+ (Wivn + vivn )
(A7)

However, f(4) [ l* + 1l + 2yl + vityil = 1(4) -
f @ thus, there are only two extra linearly independent terms
up to quartic level.

If we include the mixture with an s-wave pairing order
parameter, the overall free energy up to the quartic order is

F = aq([yn* + Wal?) + Balvn I* + 192
+ Y + Bl + I P (v + [v2 )
+ aa (Wi — yiys)?
gVl (U7 +v37) + 2 (v +v3)]
+ &l + (Y1 — Y2l
— (Ui + U)W V2 + i3] (A8)

APPENDIX B: d-WAVE SYMMETRY OF THE PAIRING
FUNCTIONS A._,» AND A,,

For simplicity, the pairing term involving A,>_» and A,
separately can be considered as
Agk) = Ap o () + Ay (k)e'?, (B1)

where the definitions of A »
in the main text. Let

g1 = |l |:COS (kya) — cos (%kxa> cos (?kya):|,
Yy |ei®2 |:_«/§ sin (%km) sin (?k‘a>i|

—y» and A,, are given in Eq. (17)

& =
—hy = —| ] |:sin (kea) + sin (%kxa) cos (?kya>:|,
hy = |1//2|e"¢2 |:\/§ cos <%kxa> sin (?kﬂ)]. (B2)
In this case, we have
Ae_yp(k)e” = g10¢ + (—=h)oy,
Ay (k)e® = g0, + hyo,. (B3)

The pairing operator that only involves A,>_,» and A, can be
written as

(B4)

Aq(k)
; (AT(k) 0 >\I’k,
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or more explicitly,

N g 0 (g1 + g2)ox + (=hi +hy)oy \ | <
Ay=Y (i cf coiyciy) : Mo (B5)
B [(g1 + 82)ox + (=h1 + h2)oy] 0 o
C
—kp

where the spin indices are omitted because we focus on the momentum, with upward spin always paired with positive momentum
and downward spin with negative momentum. Consider the two parts that include o, and o, separately,

Ag(k) = Agy(k) + Agy(k), (B6)
in which A, (k) = (g1 + g2)0, and Agy (k) = (—hy + hy)o,.
The action of Cy rotation on A, is

A ; T eND 0 81+ 8203\ gt 10 )
U<c6>Ade*(cﬁ>=;wcﬁ)w;w(cé)wcé)([(gl et 0 )U (Co)U (Co)¥U (Co)
Cky
0 &) + 8o\ |
— T ez + "
—;% ety Coky c_k,n([( ¢+ o 0 ) C;_kA , (B7)
CikB

in which

g, = I Ie"‘ﬁ1 {—% |:c0s (kya) — cos (lkxa) cos <§kya>i| — ? |:—\/§sin (%kxa) sin (? ya)j| },
g/2 _ |w2|ei¢2 { ? |:cos (kya) — cos (%kxa) cos (?kya>:| — %|:—«/§ sin <%kxa> sin (?kﬂ)] } (BS)

The action of the /; mirror reflection on Ay is

\S)

~ n A ~ A ~ 0 + Oy \ A N ~
0)ALD 1) =Y U(ll)\IJ,lU*(h)U(h)([( IR )U 0 1)l (1)
k X
CkA
_ P 0 (g} +8)0x \ | Cke B9
Zk:(CkA Chy C—ka Ckg)<[(g1/ + ggl)Ux]T 0 C;kA , (B9)
s
where
. 1 3\ ]
8/1/ — |¢1|e’¢‘ |:cos (kya) — cos <§kxa> cos (—%kﬂ) =g,
) 1 3
g/2/ = |W2|€l¢2 |:—\/§ sin <§kxa> sin (—% ya>] = —g>. (B10)
Thus, (g10%, g20,) forms an E, representation of thp Cey group.
On the other hand, the action of Cy rotation on Ay, is
~ PN n Foa A 0 —hy+h ~ A A
0(C)An0"(Co) = U(C@\IJ,IU‘(06)U<66)<[(_h1 + o]t it 2yfy)U*(cs)U(cs)wkU (Co)
k y
CkA
_ i + O (_h/l + hlz)o'y CkB
- ;(CkA Chy C—ka Ck3)<[(_h/1 + h’z)o'y]Jf 0 C_J:ka ’ (B11)
.

in which

—h, = —|y |ei¢1 {—% |:sin(kxa) + sin <%kxa) cos (?k_ﬂ)] + ? |:x/§cos <%kxa) sin (?kya)} }
W, = |¢2|€i¢2{_§ |:Si1‘l(kxa) + sin <%kxa> cos (?kﬂ)] — %|:«/§cos <%kxa> sin <%§kya):| } (B12)
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The result of the /; mirror reflection acting on Ady is

A NAR L Pt A 7\ 0 (=h1 + h2)oy N A+ 0 v At
Ul)ALxU'(h) = zk:U(ll)‘Ika (ll)U(ll)<[(_hl + oyl 0 U'DU )WU ' (1)
CkA
P 0 (=h +h)oy\ | cks
= (¢, ¢, C_k,C—ky) . Y ’ ¥ , (B13)
; b Ty T T ([(—h1 + 15)o 1" 0 ) €
ks
where
) 1 3
_h/l/ = —|y |el¢l |:Sin (k),c/a) + sin (Ekga) cos (—%k(}’g):| = —hy,
A 1 3
Wy = |y |:x/§cos (§k)’c’a> sin (—%k;a):| = —hy. (B14)

Therefore, (—hy 0y, hyo,) also forms an E, representation of the Cs, group.
Since (Ay2_y2, A,y) is a linear combination of (g0y, g20,) and (—hyoy, hy0y), (A_y2, Ayy) is also an E representation of
the Cs, group and thus transforms in the same way as (d2_y2, dyy).

APPENDIX C: ANOMALOUS ac HALL CONDUCTIVITY UNDER THE MIRROR REFLECTION SYMMETRIES OF Cg,

From Eq. (29) in the main text, the current-current correlator is
o0 . R N
Txy(q, @) =/ dre ([J{(q. 1), Jy(q, 0)]), (ChH
0

where J, = e 3", W0, W, and Oy = (0, ® 00)(1/)d hY, o = x, y, i.e,

1 0 0 0 —u € — i€y 0 0 0 v, 0 O
~ 10 1 0 0|1 € + i€y —u 0 0 v 0 0 O
=19 o0 -1 o|5%| o 0 u —€, + i€ 0 0 0 uof| ©@
0O 0 0 -1 0 0 —€, — l€, m 0 0 v 0
in which v, = (1/h)0, (ex — i€y), vy = (1/h)0, (€ + i€y). For v, and vy,
1 1 3 1 1 3
O €x = ta |:sin (kea) + 3 sin <§kxa — %kya) + 5 sin (Ekxa + %—kya):|,
1 1 3 1 1 3
O €y = ta|:cos (kya) — 7 cos <§kxa — %kﬂ) -3 cos (Ekxa + %_kya):|,
3 1 3 1 3
O €x = —£ta sin | —k,a — £kva —sin | =k.a + £kva ,
i 2 2 2 2 2
3 1 3 1 3
0,6 = ‘/T_za |:cos <§kxa - ‘/T_kya) ~ cos <§kxa + %kﬂ)]. (C3)

Under mirror reflection transformation along x axis, i.e, the /; reflection defined in Fig. 3 in the main text, the above partial
derivatives transform as

11 (0k,€x) = Ok, €x,

ll(akxey) = Ok, €x,

11 (0, €x) = — O €x.

11(0k,€y) = =0 €x- (C4)
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Thus, lyv, = vy, jvy = —v,, and then
0O v, O 0 Ck,
R ; v 0 0 o]« .
we=eY e denen)|§ o o o] ] =0
X —ka
k 0 0 v 0)\cf,
-y 0 0 Ck,
n —v* 0 0 0 Ck, .
Wy =e) (G, cucmew)| o o o —vy ci: =~ ©)
k 0 0 —vr 0 )\

Under mirror reflection transformation along y axis, i.e, the /4 reflection defined in Fig. 3 in the main text, the above partial
derivatives transform as

I4(3k,€x) = —,€x,
l4(8kx6y) = 3kx€X,
14(akv6x) = 8k>,ex,
l4(8kyey) = —akvéx. (C6)
Thus lyv, = =}, Ly, = v} , and
0 -V 0 0 Chky
A — 0 0 0 Chky A
L, =e el e g, e, Vx g =—J,
4 Zk:(kg ka Ok k) 0 0 0 —v¥ € gy
0 0 —Vy 0 ¢y
—KaA
0 v;‘ 0 o0 Chky
vy 0 0 0 Cky A
el el o Ky C—ky « T =J,. ((69))]
Xk: kp “ka ) 0 0 0 vy kaB y
0 0 v 0)\c,,
Therefore l171,,(q, w) = —m,y(q, @), l47,y(q, ©) = —7x,(q, @), meaning that under mirror reflection transformation along £ or

$ axis, the current correlator changes as 7, — —,,, which results in a sign change of oy.
However, if the mirror symmetry axis is not aligned with the & or § axis, but instead coincides with one of the other four axes
defined in Fig. 3 of the main text (e.g., the /,-reflection), the transformation of the aforementioned partial derivatives becomes

1 3 1 1 3 1
b (9 €x) = ta|:sin <§kxa + %kya) -3 sin <§kxa — %kya) + 3 sin (kxa)j|,

1 3 1 1 3 1
L(0k.€y) = ta |:cos (zkxa + %_kya> — 5 cos (zkxa - %_kya) — 5 cos (kxa):|,
3 1 3
b (Bkyex) = —%ta[— sin <§kxa — %kﬂ) — sin (kxa):|,

L (0, €y) = %gta |:cos (%kxa - gkya) — cos (kxa):|. (C8)

And the transformations under /3, /s, and /g reflections follow analogously. Consequently, within the Cg, point group, the four
mirror reflection operations other than those along the X and § axes do not enforce a sign reversal of oy . Therefore a nonzero
anomalous ac Hall conductivity can be realized without breaking the l,-, I3-, Is-, and l¢-reflection symmetries.

APPENDIX D: ANOMALOUS ac HALL CONDUCTIVITY FORMULAS

Perform an S-matrix expansion of the current-current correlator, Eq. (29), to one-loop level, we have

Ty (@ V) = ZTr[vx (ke +2) Gotk, )tk + 1) Goth + 4. 0, + v D1)
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where Gy(k, w,) = (iliw, — ht)~!, and o, is the fermionic Matsubara frequency, satisfying /iw, = (2n + 1) /8. Take the
antisymmetric difference of (D1) and simplify for the ¢ = O case of interest,

4hv,,(hv,, + 2hwn)2(vjvy — vxv;‘)[,u(A: Ay — AXA;) + 2iA (e, ImA, — €,ImA )]

ie?
nxy'(vm) - nyx(vm) = Z

F 2T (ParE)Pert B[Pt ml B[Rt mr + B3]
Thus the anomalous ac Hall conductivity can be written as
1
oH (V) = %[nxy(vm) — Tyx (V)]
_ i / d?k Z 2h(hv,, + 2hwn)2(v;vy — vxv;‘)[,u(Aj Ay — AXA;) + 2iAs(exImA, — ,ImA,)] D3)
hgJ (2m)? 4 (R0} + E}) (w2 + E2) [ (@, + v)? + E2][A* (0, + vi)? + EZ]

Taking the limit iv,, = w + i€, the above equation corresponds to Eq. (32) in the main text. By performing the Matsubara
summation over w,, we obtain

2 d*k
oy(w) = % 2y h2(v;"vy — v ) [(ATA — AXA;‘) + 2iAs(exImA, — ,ImA,)]
T ) )
1 —np(E)) —np(Ex)|[ Ei\+ E, + how — ic n E +E, — how+ i€
ZE]Ez(E] +E2)2 (E] +E2+Fla))2+€2 (E] +E2 —ha))2+€2
l’lp(E])—nF(Ez) E] —E2~|—ha)—i6 + E] —Ez—hw+i€ (D4)
2E1E2(E1 — E2)2 (E1 — Ez + Fl(,())2 + €? (E1 — Ez — hco)z + €? ’
where € is a positive infinitesimal. At T = 0K, ng(E|) = np(E;) = 0, and [0y (w)]r—ok can be written as
62 d2k 2/ % * * * .
[on(@)]r—0k = N 2 )2F’ (vivy, — vxvy)[u(AxAy — ALAY) + 2iA (e ImAy — €,ImA,)]
T )
y 1 E\+ E) 4+ hw — i€ n E|+E, — ho +ie . D5)
2E\E>(E; + E2)2 (Ey+ E, + hw)2 + €2 (E\1+E, — an))2 + €2

APPENDIX E: SUPERCURRENT OF THE TRI-COMPONENT-PAIRING SUPERCONDUCTOR IN MAGNETIC FIELDS

It is not straightforward to infer the vortex configurations directly from Eq. (36) in the main text. As pointed out in Ref. [82],
the GL free energy functional of a two-gap superconductor can be exactly mapped onto the extended Faddeev model, which
consists of a three-component unit vector r, a massive vector field C, and a density-related variable p. In the tri-component
superconducting system with d,>_2-, dyy-, and s-wave pairings, n is extended to an eight-component vector in the SU(3) case,

defined in terms of the normalized complex order-parameter vector z and the SU(3) Gell-Mann matrices A,(a = 1,2, ..., 8):
Ne =2 haz, (El)
in which
z:l< Ve Y1 )T’ (E2)
P \V2my 2mi /2m;

and the order parameters can be written as

Yy = +/2mgp cos (%)ei‘z’f,
% )
Yy = /2m; p sin <§) cos (g)d‘p‘,
o Y\ it
2) 2)e ‘

Vs = /2map sin ( sin ( (E3)
Substituting Eq. (E3) into Eq. (36) and adopting the London limit (|1 1 2| = const), we obtain
2 2 2
P >, P o, B
F = Z;(Wa) + 1760+ 5+ Vot Vokn, (E4)

024503-15



LL JIAO, ZHANG, WU, AND YANG

PHYSICAL REVIEW B 113, 024503 (2026)

where
* | s|2 lyil® | 1yl
— Yy Vi, — lewl)—}— (%V%—%V% 2( v 14! + 123 A,
nm my my
(E5)
Vo = F® + F” = 2gaalyn |’ 192, (E6)
and

Vokn = p*[Ki(n] — n3) + Ky (n§ — n3) + K3 (ng — n3) + Kanny + Ksnane)., (E7)

in which Kl = 2gsdmsm1, Kz = 2g5dmsm2, K3 = ngdmlmg, K4 = 48/3(1« /mgmj, Ks = 4g’sdm24/m5m1, and

n = sm@cos(y)COS(Sl, n, = sm@cos(g) sin 8y,

0
n3 = sin’ cos y, ny = sin’ [ml cos? (Z) — my sin? (Z)],
2 2 2

ng = sin @ sin ( )coség, ns = sin 6 sin (%) sin &,

0
ne = sin < ) sin y cos &y, n7 = sin’ <§) sin y sin §y,

ng = Jg[cos <2> + sin <§> cos’ (%) — 25sin® (g) cos’ (g)}, (E8)

where 1,2 denote the relative phase differences among the three order parameters, with Yy = ¢;

—¢2, V1 = ¢1 — ¢, and

y» = ¢ — ¢s. The free energy functional can be further expressed as:

2 0
F = %[sinz 6 cos’ (%)(Vyl)z + sin” 6 sin® (%)(Vyzf + sin* <§) sin® y(Vyo)z]

2

0 6 0 > B
+ pz[sinz <§> cos? (%)Vﬁbl + sin? (§> sin? (%)w)z + cos? (5)v¢s + 2eA} + 5 VotV (E9)

The variation of the second term in the free energy functional given in Eq. (E9) directly leads to the expression for the

0 0 0
J = —4dep? |:cos2 (§>V¢S + sin® <5) cos’ (%)chl + sin® <§) sin’ (g)quz + ZeA]. (E10)
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