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Quantum dynamics of strongly correlated systems is a challenging problem. Although the low energy
fractional excitations of one-dimensional integrable models are often well understood, exploring quantum
dynamics in these systems remains challenging in the gapless regime, especially at intermediate and high
energies. Based on the algebraic Bethe ansatz formalism, we study spin dynamics in a representative one-
dimensional strongly correlated model, i.e., the antiferromagnetic spin- 1

2 XXZ chain with the Ising anisotropy,
via the form-factor formulas. Various excitations at different energy scales are identified crucial to the dynamic
spin structure factors under the guidance of sum rules. At small magnetic polarizations, gapless excitations
dominate the low energy spin dynamics arising from the magnetic-field-induced incommensurability. In contrast,
spin dynamics at intermediate and high energies is characterized by the two- and three-string states, which
are multiparticle excitations based on the commensurate Néel ordered background. Our work is helpful for
experimental studies on spin dynamics in both condensed matter and cold atom systems beyond the low energy
effective Luttinger liquid theory. Based on an intuitive physical picture, we speculate that the dynamic feature
at high energies due to the multiparticle antibound state excitations can be generalized to nonintegrable spin
systems.

DOI: 10.1103/PhysRevB.100.184406

I. INTRODUCTION

The real-time dynamics reveals rich information of the
quantum nature of strongly correlated many-body states
[1–14]. On the other hand, one-dimensional integrable mod-
els due to their exact solvability provide reliable reference
points for studying quantum and thermodynamic correlations
[15–27], and certain characteristic features exhibited in these
integrable models are relevant to even nonintegrable systems.
The spin- 1

2 antiferromagnetic (AFM) Heisenberg XXZ chain,
a representative of integrable models, is an ideal system for
a nonperturbative study on quantum spin dynamics [28–37].
Nevertheless, it remains a very challenging problem due
to the interplay between quantum fluctuations and the dy-
namic evolution. On the experimental side, a great deal of
high precision measurements have been performed on quasi-
one-dimensional (1D) materials by using neutron scattering
and electron spin resonance (ESR) spectroscopy [12,38–47].
These systems are faithfully described by the 1D spin- 1

2 AFM
Heisenberg model.

There has appeared significant progress in calculating the
dynamic spin structure factors (DSSF) [28–36]. At zero field,
contributions to the DSSFs from the two- and four-spinon
excitations can be calculated analytically by using the quan-
tum affine symmetry [48–52], however, this method ceases
to apply at nonzero fields. In the algebraic Bethe ansatz
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formalism [18,53], the matrix elements of local spin operators
between two different Bethe eigenstates are expressed in
terms of the determinant formulas in finite systems [54–57].
Accompanied with a judicious identification of the dominant
excitations to spin dynamics, this method can be used to
efficiently calculate the DSSFs for considerably large systems.
Excellent agreements between theories and experiments have
been established for the SU(2) invariant spin- 1

2 AFM Heisen-
berg chain, confirming the important role of spinon excitations
in the dynamic properties [46].

In this paper, we study quantum spin dynamics in an
AFM spin- 1

2 XXZ chain with the Ising anisotropy at zero
temperature in a longitudinal magnetic field. The spin chain
under consideration is gapped at zero field, and an increasing
field tunes the system into the gapless regime [17], in which
the full spin dynamics remains to be explored. Working within
the algebraic Bethe ansatz formalism, we identify various spin
excitations separated at different energy scales. The S−+(q, ω)
channel is dominated by the psinon pair excitations resem-
bling the zero field des Cloizeaux-Pearson (DCP) modes [58],
whose momentum range shrinks with increasing polarization.
The coherent low energy excitations of the S+−(q, ω) channel
resemble the Larmor mode at q → 0 and become incoherent
at q → π . The two- and three-string states play important
roles at intermediate and high energies, reflecting the back-
ground Néel configuration. The low energy excitations in the
longitudinal Szz(q, ω) channel exhibit the soundlike spectra at
q → 0 while the spectra in the high energy sector reflect the
excitonic excitations on the gapped Néel background. These
high-frequency features of spin dynamics cannot be captured
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by the low energy effective Luttinger liquid theory. Based on
a simple physical picture, we argue that the revealed dynamic
features are also relevant to nonintegrable cases.

The rest of this paper is organized as follows. In Sec. II,
the model Hamiltonian is presented. In Sec. III, the method
of algebraic Bethe ansatz and the calculation method are
introduced. In Sec. IV, the transverse DSSFs are calculated.
In Sec. V, the longitudinal DSSFs are calculated. Discussions
and conclusions are made in Sec. VI. Various details of
calculations are presented in Appendices A–F.

II. THE MODEL HAMILTONIAN

The Hamiltonian of the 1D spin- 1
2 AFM chain with the

periodic boundary condition in the longitudinal magnetic field
h is defined as

H0 = J
N∑

n=1

{
Sx

nSx
n+1 + Sy

nSy
n+1 + �

(
Sz

nSz
n+1 − 1

4

)}
,

H = H0 − h
N∑

n=1

Sz
n, (1)

where N is the total site number. The spin operators on the
nth site are Sα

n = 1
2σα with α = x, y, z. We consider the axial

region with the anisotropic parameter � = cosh η > 1.
The ground state at zero field is known to exhibit the long-

range Neel ordering, and, hence, is spin gapped. If the ex-
ternal field h is small, then there is no magnetization. The
magnetization m = 〈G|Sz

T |G〉/N starts to develop when h is
above a critical value hc(�), and then the system enters the
gapless regime, where |G〉 represents the ground state and
Sz

T = ∑N
i=1 Sz

i is the z component of total spin. h and m are
conjugate variables through the relation h = ∂e0/∂m with
e0 = 〈G|H0|G〉/N . For calculations presented below, we adopt
a typical value of � = 2 (which applies to the SrCo2V2O8

material [59]) and N = 200 unless explicitly mentioned, and
the corresponding critical field is hc/J = 0.39 [17]. We will
calculate the zero temperature DSSFs, which are expressed in
the Lehman representation as

Saā(q, ω) = 2π
∑

μ

∣∣〈μ|Sā
q |G〉∣∣2

δ(ω − Eμ + EG), (2)

where a = ± and z; ā = −a for a = ±, and a = ā for a =
z; S±

i = 1√
2
(Sx ± iSy) and the Fourier component of spin is

defined as

Sa
q = 1√

N

∑
j

eiq jSa
j ; (3)

|μ〉 is the complete set of eigenstates; EG and Eμ are eigenen-
ergies of the ground and excited states, respectively.

III. THE BETHE ANSATZ METHOD

In this section, we briefly describe the Bethe ansatz method
that we employ to calculate the DSSF. The fully polarized
state with all spins up is taken as the reference state, based
on which the flipped spins are viewed as particles. A state
with M flipped spins is denoted an M-particle state and the

polarization m = 1/2 − M/N . Each particle wave vector k j is
related to a rapidity λ j through the relation

eik j = sin

(
λ j + i

η

2

)
/ sin

(
λ j − i

η

2

)
. (4)

The set of rapidities {λ j}1� j�M are determined by the integer-
or half-integer-valued Bethe quantum numbers I j as presented
in Appendix A. The “psinon”-pair states nψψ and “psinon-
antipsinon” pair states nψψ∗ (n = 1, 2) with n the pair num-
ber play important roles in both transverse and longitudinal
DSSFs. These eigenstates possess real rapidities [32,60] and
their Bethe quantum numbers are presented in Appendix A.

If some λ j’s are complex [15], the corresponding states
are termed as string states [20] in which some particles form
bounded excitations as discussed in Appendix B. The string
ansatz is an approximation assuming the string pattern of
the complex rapidity distribution. A length-l (l � 1) string is
denoted as χ (l ), which represents a set of complex rapidities

λ
(l )
j = λ(l ) + i

η

2
(l + 1 − 2 j), (5)

for 1 � j � l . Their common real part λ(n), the string center,
is determined from the Bethe-Gaudin-Takahashi (BGT) equa-
tions with the reduced Bethe quantum numbers [20] shown in
Appendix B.

Below we only consider the solutions with one length-l
string denoted as 1χ (l )R where R = mψψ∗ or mψψ . The
errors of complex rapidities are used to judge the validity
of the string ansatz, which can be analytically checked [61].
For the calculated range of 2m from 0.1 to 0.9, our results
exhibit a high numeric accuracy. A bar of 10−6 is set and only
string states within this bar are kept in calculating DSSFs.
The detailed discussions on the error estimation and how to
systematically improve the string ansatz in an exact manner
are included in Appendix D.

The determinant formulas for the form factors 〈μ|S±
j |G〉

can be obtained from the rapidities as presented in Ref. [57]
and as summarized in Appendix C. Due to the exponentially
large number of excited states, only a subset of them with
dominating contributions to the DSSFs are selected. The
validity of the selection is checked by comparing the results
with the exact sum rules, and these sum rules are derived in
Appendix E.

IV. THE TRANSVERSE DYNAMIC SPIN
STRUCTURE FACTOR

In this section, we discuss the dominant contribu-
tions of excited states to the transverse DSSFs includ-
ing nψψ∗, nψψ (n = 1, 2), 1χ (2)R, and 1χ (3)R where R =
1ψψ∗ and 1ψψ . We also check the saturation of these excita-
tions by comparing with the exact sum rules.

A. The momentum-resolved sum rule of the transverse DSSF

The transverse first frequency moment (FFM) sum rule is

W⊥(q) =
∫ ∞

0

dω

2π
ω[S+−(q, ω) + S−+(q, ω)]

= α⊥ + β⊥ cos q, (6)
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FIG. 1. The momentum-resolved FFM ratios with 2m equal to
(a) 0.2, (b) 0.5, and (c) 0.8, respectively. The pink, blue, red, and
black curves represent cumulative results by including the psinon
states nψψ (n = 1, 2) in S−+, the psinon-antipsinon states nψψ∗

(n = 1, 2), the two-string states and three-string states in S+−, re-
spectively. In (a), the pink and blue curves overlap significantly and
so do the red and black curves in (c).

where α⊥ = −e0 − �∂e0/∂� + mh and β⊥ = (2 − �2)
∂e0/∂� + �e0. To evaluate the saturation levels, we define
the ratio of the momentum-resolved FFMs as

ν
(1)
⊥ (q) = W̃⊥(q)/W⊥(q), (7)

where W̃⊥(q) is calculated from the partial summations over
the selected excitations.

The calculated momentum-resolved transverse FFM ratios
ν

(1)
⊥ (q) in the Brillouin zone are displayed in Fig. 1 for three

representative magnetizations of 2m = 0.2, 0.5, and 0.8. The
magnetic polarization breaks time-reversal symmetry, and
thus S+− contributes more prominently than S−+ to sum
rules. We start with plotting S−+ contributions, which take
into account the “psinon”-pair states nψψ (n = 1, 2) with
n the pair number. These eigenstates possess real rapidities
[32,60] and their Bethe quantum numbers are presented in
Appendix A.

The S+− channel is more involved: Dominant excitations
include the “psinon-antipsinon” pair states denoted as nψψ∗
and string states. Combined with S−+, different contributions
are plotted and their relative weights are displayed explicitly.
The nψψ∗ excitations are with real rapidities and their Bethe
quantum numbers are given in Appendix A. These states
with n = 1 and 2 contribute significantly to S+−(q, ω) at
high polarizations, particularly at long wave lengths. But their
weights become less important as polarization decreases. This
observation is supported by considering the limit of 2m → 0
at Sz

T = 1, then |μ〉’s in Eq. (2) belong to the subspace of
Sz

T = 0, whose dimension is N!/( N
2 !)2. In this sector, there

only exist two states with all real rapidities representing even
and odd superpositions of two symmetry breaking Néel states.
The dominant weights near the critical line hc(�) should arise
from string states.

The calculation for S+−(q, ω) is significantly improved by
including the string state contributions shown in Fig. 1. The
two-string excitations 1χ (2)R (R = 1ψψ∗, 1ψψ ) greatly im-
prove the saturation level of the FFM ratios for both interme-
diate and high polarizations at all momenta. In particular, the
1χ (2)1ψψ∗ contributions are more dominant than 1χ (2)1ψψ ,
typically one order higher. However, at small polarizations,
the two-string contributions decrease quickly in particular at
long wavelengths, indicating the necessity of including states

FIG. 2. Schematic plot of a representative spin configuration in
the real space within: (a) the Néel ordered ground state at zero field;
(b) the incommensurate ground state at a nonzero field h > hc; (c) a
state with real particle wave vectors contributing to S−+; (d) a state
with real particle wave vectors contributing to S+−; (e) a two-string
state contributing to S+−; (f) a three-string state contributing to S+−.
The blue hollow circle represents a spin up which is viewed as
vacuum, and the yellow solid circle represents a spin down which
is viewed as a particle. A particle is removed from (added to) the
incommensurate ground state configuration in S−+ (S+−), which is
represented by an arrow pointing out of (into) the corresponding
position in (b).

with even longer strings. Including the three-string excitations
1χ (3)1ψψ∗ further improves the saturation level of ν

(1)
⊥ (q) at

small polarizations, while their contributions are minor above
the half polarization. The 1χ (3)1ψψ excitations are neglected
since their contributions are about two orders smaller. After
combining all the excitations above, a high saturation level
(>80%) is reached for all momenta at the intermediate (e.g.,
2m = 0.5) and high polarizations (e.g., 2m = 0.8). At small
polarizations (e.g., 2m = 0.2), ν (1)(q) is still well saturated for
most momenta. Nevertheless, the saturation level decreases
when m → 0 at q = 0, and the trend is more prominent for
even smaller polarization. There may exist unknown modes
with significant weights around zero momentum.

B. String states and spin dynamics

The appearance of string states can be inferred based on an
intuitive physical picture. Figure 2(a) shows a pictorial plot of
a representative spin configuration in the Néel ordered ground
state at zero field. The system becomes incommensurate at
h > hc as shown in Fig. 2(b), but there is still a reminiscence
of the Néel ordering when the magnetization is small. The ex-
cited states contributing to S−+ have one less particle than the
ground state. As shown in Fig. 2(c), removing a particle leads
to a configuration which still consists of unbound particles.
Hence the dominant excitations in S−+ are Bethe eigenstates
with real rapidities.

On the other hand, the states in S+− have one more particle
than the ground state and the situation is more complicated
with three possibilities. If the particle is added into the region
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FIG. 3. The intensity plots for the transverse DSFs S−+(q, ω)
from (a1) to (c1) and S+−(q, ω) from (a2) to (c2) in the q-ω plane all
with the same intensity scale. 2m equals 0.2 in (a1,2), 0.5 in (b1,2), and
0.8 in (c1,2). The δ function in Eq. (2) is broadened via a Lorentzian
function 1

π
γ /[(ω − Eμ + EG)2 + γ 2] with γ = 1/400.

where the Néel ordering is absent, all particles in the resulted
excited state remain to be unbounded as shown in Fig. 2(d).
The second possibility is to bind the new particle with another
existing particle, which gives a two-string state displayed in
Fig. 2(e). Figure 2(f) plots the third possibility of a three-string
state: The additional particle can be inserted into the middle
position of two particles and they form a three-body bounded
entity. Based on the above configuration of a diluted Néel or-
dering state, adding a particle cannot create four particles in a
row, hence string states of higher orders occur with much rarer
chances, mainly as high order fluctuation effects. Therefore,
the S+− DSSF should be dominated by the above three types
of excited states. We also expect that the roles played by string
states will diminish as increasing the magnetic polarization
but are enhanced by increasing the anisotropy. These intuitive
considerations are supported by the Bethe ansatz calculations
to be discussed below.

C. The spectral weights

The intensity plots of the transverse DSSFs are presented
in the q-ω plane in Fig. 3 at representative values of 2m. The
spectra of S−+(q, ω) exhibit the reminiscence of the DCP
modes at zero field [58] shown in Figs. 3(a1), 3(b1), and
3(c1) but are significant only in the momentum interval of
2mπ < q < 2π − 2mπ . This can be understood intuitively in
terms of the 1D Hubbard chain at half filling. Although a weak
coupling picture is employed below, charge gap already opens
at infinitesimal U > 0 and there is no phase transition. The
gapless excitations are insensitive to the high energy charge
sector, hence, we expect the analysis below should also apply
to the case of AFM spin chains. At magnetization m, the Fermi
points for two spin components split exhibiting the Fermi
wave vectors k f↑,↓ = π ( 1

2 ± m). The minimum momentum
for flipping a spin down to up is the difference between
k f↑,↓ , i.e., �k f = 2mπ or equivalently (1 − m)2π , and the
energy cost is zero. At small polarizations, S−+(q, ω) is very
coherent near q = �k f , while as q approaches π , it becomes

h̄ω/J
0 2 4 6 8

0

10

20

30

40

50

60
(a)

h̄ω/J
0 2 4 6 8

(b)

FIG. 4. Spectrum intensity evolution of S⊥(q, ω) = S+−(q, ω) +
S−+(q, ω) vs h̄ω/J at (a) q = π

2 , and (b) q = 3π

4 . In (a) and (b), lines
from bottom to up correspond to 2m varying from 0.1 to 0.9 with the
step of 0.1. Contributions from psinon excitations in the S−+ channel
are plotted in pink. Psinon-antipsinon, two-string, and three-string
states in the S+− channel are plotted in blue, red, and black colors,
respectively. The broadening parameter γ = 1/50.

a continuum. The lower boundary of the continuum touches
zero at q = π corresponding to flipping a spin down at one
Fermi point and adding it to the spin-up Fermi point on the
opposite direction. The momentum interval for S−+ shrinks as
increasing polarization and vanishes at the full polarization.

The spectra of S+−(q, ω) are presented in Figs. 3(a2),
3(b2), and 3(c2). At small polarizations, the spectra resemble
the DCP modes and further split into three sectors. Recall the
ground state evolution as increasing polarization: At � > 1,
the ground state exhibits the Néel ordering at m = 0 or the
commensurate charge-density wave (CDW) of particles. With
hole doping, the ground state quantum-mechanically melts
and becomes incommensurate. The low energy excitations
are thus gapless, however, the intermediate and high energy
excitations still sense the gapped Néel state. Applying S−(q)
on |G〉 corresponds to adding back one particle. A prominent
spectra feature at low energy is the coherent Larmor pre-
cession mode. At q = 0 and the isotropic case, the Larmor
precession mode describes the rigid body rotation with the
eigenfrequency ω = h unrenormalized by interaction. With
anisotropy and away from q = 0, it is renormalized by in-
teraction but remains sharp. The antiferromagnetic coupling
causes the downturn of the dispersion touching zero at q =
±2πm and then disappears. The spectra around q = π is
incoherent as a reminiscence of the two-spinon continuum in
the zero-field DCP mode. The intermediate and high energy
spectra arise from the two- and three-string states describing
two- and three-particle bound states, respectively. The energy
separations among these three sectors are the reminiscence of
the spin gap of the Néel state. With increasing polarization,
the Larmor mode evolves to the magnon mode. The states
containing a pair of bounded magnons contribute to the upper
dynamical branch, which are high energy modes since the
coupling is antiferromagnetic.

We explicitly display the transverse DSF intensities vs
h̄ω/J from small to large polarizations at two representative
wave vectors q = π

2 and 3
4π shown in Fig. 4. The peaks reflect

the large-weight region of the spectra in Fig. 3. The low fre-
quency peaks are typically from the two-particle excitations
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FIG. 5. The evolution of peaks in DSSFs of S+− and S−+ at
different momenta versus magnetic field h with lines of peaks marked
by χ

(3)
π/2, χ

(2)
π/2, R−+

π/2, χ (2)
π , R+−

0 , R+−,a
π/2 , and R+−,b

π/2 . The pink, blue, red,
and black colors correspond to real states in S−+, real states in S+−,
two-string states in S+−, and three-string states in S+−, respectively.
The hollow circles represent the peak positions extracted from DSSF
spectral figures similar to Fig. 4. The solid lines are determined by
solving the energies of the Bethe eigenstates with the largest weight
values around the spectral peaks.

of the 1ψψ and 1ψψ∗ states. In contrast, the intermediate
and high frequency peaks are based on multiparticle string
state excitations. For example, the 2-string states 1χ (2)1ψψ

are four-particle excitations composed of a two-particle bound
state and a psinon-psinon pair excitation. Therefore, the
string-state-based peaks are typically more smeared than the
low frequency peaks.

The evolutions of the spectral peaks at momenta 0, π
2 , and

π as tuning the magnetic field are displayed in Fig. 5. We
identify the lines of peaks

χ
(3)
π/2, χ

(2)
π/2, R−+

π/2, χ
(2)
π , R+−

0 , R+−,a
π/2 , R+−,b

π/2 , (8)

where the subscripts denote the corresponding momenta, and
a, b label the two branches of peaks in R+−

π/2. The positions
of the hollow circles are determined as follows: We locate
the spectral peak frequency position of each channel at the
corresponding momenta. Further, the Bethe states with the
largest spectral weight and the associated quantum numbers
can be identified, and the corresponding eigenenergies are
plotted by solid lines in Fig. 5 which indeed pass through the
hollow circles.

Here we briefly summarize these states, with details in-
cluded in Appendix F. For the three-string states 1χ

(3)
π/21ψψ∗,

which consist of a three-string, one psinon, and one anti-
spinon, the Bethe eigenstate at the peak position of S+−(q, ω)
is characterized with the partition of momenta as

kχ (3) = π (1 − m), kψ = 0, kψ∗ = π
(

1
2 + m

)
, (9)

where k denotes the momentum, m is the magnetization
per site, and the subscripts in k represents the type of the
excitation. For the two-string states 1χ

(2)
π/21ψψ∗, the momen-

tum partition is

kχ (2) = π (1 + m), kψ = π, kψ∗ = π
(

3
2 − m

)
. (10)

q/π
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1

FIG. 6. The momentum-resolved FFM ratios at 2m = 0.1. The
pink, blue, red, and black curves represent cumulative results by
including the psinon states nψψ (n = 1, 2) in S−+, the psinon-
antipsinon states nψψ∗ (n = 1, 2), the two-string states and three-
string states in S+−, respectively, as before. The anisotropy � = 2,
and system size N = 200.

Similarly, that of χ (2)
π is

kχ (2) = π (1 − 2m), kψ = kψ∗ = π
(

1
2 + m

)
. (11)

The spectral peaks from states of real momenta are located
at boundaries of the two-particle continuum, which is an
analog of the x-ray edge singularity [62,63]. For the following
excitations, their momentum partitions are

R−+
π/2 : kψ1 = π

(
1
2 + m

)
, kψ2 = π (1 − m),

R+−
0 : kψ = π

(
1
2 + m

)
, kψ∗ = π

(
1
2 − m

)
,

R+−,a
π/2 : kψ = π

(
1
2 + m

)
, kψ∗ = π (1 − m),

R+−,b
π/2 : kψ = π

(
3
2 − m

)
, kψ∗ = πm. (12)

In all of the above cases, to obtain the momentum transfer
q in Eq. (2), an additional π shift must be added since
S+− and S−+ change the ground state magnetization by 1.
It is interesting to note that several lines in Fig. 5 exhibit
nearly linear relation. The identification of the above Bethe
eigenstates is useful for an analytic analysis of the spectral
peaks in the thermodynamic limit, which will be left for a
more careful future study.

D. More discussions on transverse DSFs

To further investigate the behavior of the transverse DSFs
near the critical point, we present the FFM ratio at 2m = 0.1
in Fig. 6. A high saturation level (>80%) is reached for
most momenta, however, near q = 0, ν

(1)
⊥ (q) drops to about

50%. This indicates that there may exist unknown modes with
significant weights around zero momentum.

We also investigate the relation of the transverse DSSFs
with the anisotropy parameter � as shown in Fig. 7. We use
the momentum-integrated sum rule [64]

Raā = 1

N

∑
q

∫ ∞

0

dω

2π
Sa,ā(q, ω) = 1

4
+ m

2
ca, (13)
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FIG. 7. The � dependence of the ratios of momentum integrated
intensity (a) ν−+, and (b) ν+−. The parameter values are N = 200 and
2m = 0.05. In (a), the contributions from 1ψψ and 2ψψ states are
included. In (b), the blue, red, and black curves display the results by
cumulatively including the psinon-antipsinon, two-string, and three-
string contributions in S+−, respectively.

where ca = ±1, 0 for a = ± and z, respectively. The satu-
ration ratio for the integrated intensity is defined as νaā =
R̃aā/Raā with a = ± and z, where R̃aā is from the partial
summations over the selected excitations.

The small polarization regime is considered for the ex-
ample of 2m = 0.05, and the anisotropy parameter � takes
values of 2, 4, 6, 8, 10, and 16. For S−+, the contributions
to ν−+ from the 1ψψ and 2ψψ states drop to about 80%
as increasing �, and the absent weights may arise from
string states. For S+−, the dominance of three-string states
continuously enhances as increasing � towards the Ising limit.
While the three-string states become increasingly dominant
as approaching the critical line, it is known that there are no
strings of length longer than two in the zero magnetic field
case [65,66]. A more careful investigation of the regime of
very small magnetization will be deferred to a future work.

V. THE LONGITUDINAL DYNAMIC SPIN
STRUCTURE FACTOR

In this section, we continue to present the longitudinal
DSSF, i.e., Szz(q, ω) of Eq. (1), and also check the saturation
level by using sum rules.

A. The momentum-resolved ratios of the longitudinal DSSF

The momentum resolved longitudinal first frequency mo-
ment (FFM) sum rule is known as

W‖(q) =
∫ ∞

0

dω

2π
ωSzz(q, ω) = (1 − cos q)α‖ [67], (14)

where α‖ = −e0 + �∂e0/∂�. We define the ratio of ν
(1)
‖ (q) =

W̃‖(q)/W‖(q) in the longitudinal channel, where again W̃‖(q)
is calculated from the partial summations over the selected
excitations.

The momentum-resolved ratios ν (1)
zz (q) at representative

polarizations and the intensities of Szz(q, ω) are plotted
in Fig. 8 after taking into account excitations of 1ψψ∗,

q/π
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FIG. 8. The momentum-resolved FFM ν
(1)
|| (q) ratios from (a) to

(c), and the intensity plots from (d) to (f) for the longitudinal DSF
Szz. 2m equals 0.2 in (a) and (d), 0.5 in (b) and (e), and 0.8 in (c) and
(f), respectively. In (a), (b), and (c), the blue, red, and black lines
are cumulative results by including 1ψψ∗, 2ψψ∗, and 1χ (2)1ψψ

excitations. The broadening parameter in the intensity plots is γ =
1/400.

2ψψ∗, and 1χ (2)1ψψ states. Satisfactory saturation levels
are obtained.

B. The spectral weights

The calculated spectra weights are plotted in Figs. 8(d),
8(e) and 8(f) for 2m = 0.2, 0.5, and 0.8, respectively. This
quantity is equivalent to the dynamic density-density corre-
lations of a 1D interacting spinless fermion system through
the Jordan-Wigner transformation with the identification of
the Fermi wave vector k f = π

2 (1 − 2m).
At small polarizations, the contribution of string states

dominates the high energy spectra branch. The low energy
excitations in the long wavelength regime are very coherent
due to the structure of 1D phase space, while those at 2k f

are incoherent, both of which can be described by the 1D
Luttinger liquid theory [68]. The high energy excitations are
the reminiscence of the gapped excitonic excitations in the
commensurate Néel background. With increasing polariza-
tion, particle filling touches the band bottom where the band
curvature is important, and thus the low energy coherent
excitations are suppressed and particle-hole continuum be-
comes more prominent. When the ground state evolves further
away towards the full polarization, the low energy excitations
are more incoherent, and the spectra from the string state
excitations diminish.

VI. DISCUSSION AND CONCLUSION

We discussion the implication of our results for experi-
ments. The quasi-1D SrCo2V2O8 AFM chain can be effec-
tively described by the XXZ model with parameters � =
2, J = 3.55meV, and the Landé factor gz = 6.2, and the crit-
ical value of magnetic field is about hc = 4T [47,59]. The
Brillouin zone of the material is folded into a fourth due
to its fourfold screw periodic structure, hence the electronic
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spin resonance (ESR) measurements can detect the DSF of
S+− + S−+ at momenta 0, π

2 , π , and 3π
2 , in which π

2 and 3π
2

are equivalent due to the inversion symmetry of the Hamil-
tonian in Eq. (1). Indeed, the ESR experiment on the material
SrCo2V2O8 [59] not only confirms the real excitations but also
clearly observes the string excitations, in which the experi-
mental results agree well with our theoretical predictions in
Fig. 5, demonstrating a rare success of the strong-correlation
description for the real material from low to high energy re-
gions [59]. Furthermore, the quantity 1/2(S+− + S−+) + Szz

can be compared with inelastic neutron scattering experiments
for the whole range of (q, ω).

Besides the spin system, the 1D bosonic system in the
hard-core regime is equivalent to the spin- 1

2 chain, which has
been realized in cold atom experiments [69], and quantum
dynamics of two-magnon bound states has been measured [9].
Our DSSF calculations and various identified excitations pro-
vide helpful guidance to the experimental study of quantum
spin dynamics in these systems.

Although the above concrete calculations are based on
the integrity of the 1D spin- 1

2 XXZ model, we believe that
the underlying physics at high energies is universal not
limited to integrable models. Based on Figs. 2(e) and 2(f), we
have explained the physical picture of two and three-string
states and the absence of four-string states. Similar physics
is also speculated in nonintegrable models, such as in the
two-dimensional AFM XXZ model. Under similar physical
parameter setups, we would expect it is possible to observe
contributions from two, three, four, and up to five-magnon
clustering states, since in a two-dimensional geometry the
coordination number is 4. Certainly for the 2D case, the
method of Bethe ansatz will not be possible, and the theory
study will be deferred to a future publication.

In summary, the zero temperature spin dynamics is stud-
ied for the spin- 1

2 AFM XXZ model in the longitudinal
magnetic field. We find that different dynamic branches are
energetically separated, which originate from various classes
of excitations including psinon-psinon and psinon-antipsinon
pairs at low energy and string excitations at intermediate and
high energies. In particular, for S+−(q, ω) at small magneti-
zations, states with real rapidities contribute negligibly small
to the sum rule, and the three-string states become more and
more dominant as approaching the critical line or increas-
ing anisotropy. These high-frequency spin dynamic features
cannot be captured within the low energy effective theory
of the Luttinger liquid. Our calculations provide important
guidance for analyzing the 1D spin dynamics experiments in
both condensed matter and ultracold atom systems.
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APPENDIX A: BETHE ANSATZ IN THE AXIAL REGIME

In this section, we present the Bethe ansatz equations
(BAE) and the Bethe quantum number (BQN) structure. We

focus on the antiferromagnetic XXZ spin chain [Eq. (1) in the
main text] in the axial regime with � = cosh η > 1.

In the method of the algebraic Bethe ansatz [18], the
monodromy matrix is a 2 × 2 matrix. Its matrix entries
A(λ), B(λ),C(λ), D(λ) are operators acting in the many-body
Hilbert space of the spin chain. By virtue of the Yang-Baxter
equation, all the transfer matrices T (λ) = A(λ) + D(λ) with
different spectral parameter λ’s commute, hence they can be
simultaneously diagonalized. The XXZ Hamiltonian can be
expressed in terms of these transfer matrices, and thus it shares
common eigenstates with all the transfer matrices.

A Bethe eigenstate with M down spins can be expressed
as the result of successively applying the magnon creation
operators B(λ j ) (1 � j � M) onto the reference state |F 〉 =
⊗N

j=1|↑〉 j , as �M
j=1B(λ j )|F 〉. The rapidities {λ j}1� j�M satisfy

the Bethe ansatz equations,

Nθ1(λ j ) = 2π I j +
M∑

k=1

θ2(λ j − λk ), (A1)

where

θn(λ) = 2 arctan

(
tan(λ)

tanh(nη/2)

)
+ 2π

⌊
Re(λ)

π
+ 1

2

⌋
. (A2)

The symbol 
x� represents the floor function, which yields the
largest integer less than or equal to x.

The rapidities can be either real or complex in general. If
all λ j’s are real, then the corresponding state is called a real
Bethe eigenstate. If there exist complex valued λ j’s, then the
state is called a string state [20], whose name comes from the
pattern of λ j’s in the complex plane in the thermodynamic
limit. We will give a brief description in Appendix B.

For a chain with an even number of sites, the ascending
array of Bethe quantum numbers {I j}1� j�M takes integer
values when M is odd and half-integer values when M is even.
The total momentum of this state is

P = πM − 2π

N

M∑
j=1

I j, (A3)

and the energy is

E =
M∑

j=1

sinh2(η)

cosh η − cos(2λ j )
. (A4)

In the subspace with a fixed value of Sz
T , there exist M =

N
2 − Sz

T down spins. In this sector, the BQN of the lowest
energy state are given by

I j = −M + 1

2
+ j, 1 � j � M. (A5)

As for the excited states, the BQN can be grouped into certain
patterns by examining how they can be obtained through
modifying those in the ground state given in Eq. (A5). We
consider two different classes of excited states with purely
real rapidities. Eigenstates with an n pair of psinons are de-
noted nψψ [28], and their Bethe quantum numbers {I j}1� j�M

satisfy

−M − 1

2
− n � I j �

M − 1

2
+ n, (A6)
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where either I1 = −M−1
2 − n or IM = M−1

2 + n to avoid over-
counting. Another class of solutions is called n pair of psinon-
antipsinon states denoted nψψ∗. Among their M Bethe quan-
tum numbers I j’s, M − n of them lying within the range
[−M−1

2 , M−1
2 ], and the remaining n ones lying outside [28].

APPENDIX B: THE BETHE-GAUDIN-TAKAHASHI
EQUATIONS FOR STRING STATES

The rapidities of the BAE can take complex values, and
the corresponding solutions are called string states [20]. The
string ansatz assumes that the complex rapidities form the
string pattern described below.

For a single n string of complex rapidities,

λn
j = λ(n) + i(n + 1 − 2 j)

η

2
, 1 � j � n, (B1)

where λ(n) and η are real numbers, and j is the rapidity index
inside the string. For a finite system the distribution of rapidi-
ties does not exactly follow Eq. (B1). The deviations become
exponentially suppressed as enlarging system size, and the
string ansatz is asymptotically exact in the thermodynamic
limit. Then a general Bethe eigenstate with M rapidities is a
collection of Mn n strings, where

∑
n nMn = M. A real Bethe

eigenstate can be also viewed as a collection of M one strings
in this language.

The BAE Eq. (A1) becomes singular in thermody-
namic limit for a string state with the rapidity pattern of
Eq. (B1). Their regularized version is called the Bethe-
Gaudin-Takahashi (BGT) equations [20], which only contain
the common real part λ(n)

Nθn(λα ) = 2π I (n)
α +

∑
(m,β )�=(n,α)

�nm
(
λ(n)

α − λ
(m)
β

)
, (B2)

with 1 � α � Mn, 1 � β � Mm, where

�nm = (1 − δnm)θ|n−m| + 2θ|n−m|+2 + ...

+ 2θn+m−2 + θn+m, (B3)

and θn is defined in Eq. (A2). The momentum of such a
state is

P = π
∑

n

Mn − 2π

N

∑
nα

I (n)
α (B4)

and the energy is

E =
∑
nα

sinh(η) sinh(nη)

cosh(nη) − cos
(
2λ

(n)
α

) . (B5)

The general rules for determining BQN for distinct eigen-
states are rather complicated [35]. Since only Bethe eigen-
states with up to only two types of strings are considered in
this article, we only present the rules for these special cases
below [35].

Consider a string state with Mm m strings and Mn n
strings, where M = mMm + nMn. Without loss of generality,
we assume m < n. The BQN for the m strings are within the
sets of

A(m)
i =

{
−Wm − 1

2
+ i � Im

j � Wm − 1

2
+ i, 1 � j� Mm

}
,

(B6)

where

Wm = N − 2mMn − (2m − 1)Mm, (B7)

and 0 � i � 2m − 1. For the n strings, the BQN are within the
sets of

A(n)
i =

{
− Wn − 1

2
+ i � In

j � Wn − 1

2
+ i, 1 � j � Mn

}
,

(B8)

where

Wn = N − 2mMm − (2n − 1)Mn, (B9)

and 0 � i � 2n − 1. Not all these BQN yield distinct Bethe
eigenstates. To remove equivalent sets of BQN giving the
same eigenstates, we need to exclude those simultaneously
satisfying the following two conditions

I (m)
1 � −Wm − 1

2
+ 2m − 1,

I (n)
Mn

� Wn − 1

2
+ 2n − (2m − 1). (B10)

In the following, the presence of the rules of Bethe quan-
tum numbers for two-string and three-string states are com-
bined together to reduce the content. We list the rules for the
BQN of the string states calculated in the main text. In the
following formulas, n = 2 or 3. The rule for 1χ (n)1ψψ state
is

−N − 2M

2
� I (n) � N − 2M

2
+ 2n − 1,

−M − n +1

2
+ i � I (1)

j �|, M − n +1

2
+ i, 1� j �M − n,

(B11)

in which i is an integer. The DSF intensity distribution must be
symmetric with respect to the momentum π since the system
possesses inversion symmetry. It is possible for states with
i = 0 to be transformed to those with i �= 0 under inversion,
which must also be included.

For the excitations of the type of 1χ (n)1ψψ (∗), the rule for
the I (n) part is the same, while that for real rapidities is

−M − n − 1

2
+ i � I (1)

jl
� M − n − 1

2
+ i,

1 � l � M − n − 1,

−N − M + n − 3

2
� I (1)

jM−n
� −M − n − 1

2
− 1 + i, or

M − n − 1

2
+ 1 + i � I (1)

jM−n
� N − M + n − 3

2
+ 1, (B12)

where I (1)
j ’s should be arranged in an ascending array,

and −(2n − 1) � i � 2n − 1 again for the purpose of sym-
metrization. The BQN need to be excluded if they simulta-
neously satisfy the following two conditions I (n) � N−2M

2 +
2n − 2 and I (1)

1 � −N−M+n−3
2 + 1 to avoid overcounting as

mentioned above.
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APPENDIX C: THE DETERMINANT FORMULAE

To carry out the DSF calculation, the normalized Bethe state and the matrix element of spin operators are needed. The
normalized state of �M

j=1B(λ j )|F 〉 is denoted as |{λ j}1� j�M〉 below. The matrix entries 〈{μk}1�k�M+1|Sa
q |{λ j}1� j�M〉 can be

formulated into determinant forms [70], which greatly facilitates both analytical and numerical calculations.

1. Real states in the axial regime

We first present the determinant formulas for the real Bethe state. Since |〈{μk}1�k�M+1|S−
q |{λ j}1� j�M〉|2 =

|〈{λ j}1� j�M |S+
−q|{μk}1�k�M+1〉|2, we only present the matrix element for S−

q and Sz
q.

The transverse matrix element can be expressed as

|〈{μ}|S−
q |{λ}〉|2 = NδP({λ})−P({μ}),q|sin iη|�

M+1
k=1 | sin(μk − iη/2)|2

�M
j=1| sin(λ j − iη/2)|2

× 1

�k �=k′ | sin(μk − μk′ + iη)|� j �= j′ | sin(λ j − λ j′ + iη)|
| det H−|2

| det �({μ}) det �({λ})| . (C1)

in which H− is an (M + 1) × (M + 1) matrix. For 1 � k � M + 1, 1 � j � M,

H−
k j = 1

sin(μk − λ j )

[
�M+1

l=1(l �=k) sin(μl − λ j + iη) −
(

sin(λ j − iη/2)

sin(λ j + iη/2)

)N

�M+1
l=1(l �=k) sin(μl − λ j − iη)

]
; (C2)

and for 1 � k � M + 1,

H−
k,M+1 = 1

sin(μk + iη/2) sin(μk − iη/2)
. (C3)

For the longitudinal matrix element, the expression for 〈{μk}1�k�M |Sz
q|{λ j}1� j�M〉 is

|〈{μ}|Sz
q|{λ}〉|2 = N

4
δP({λ})−P({μ}),q�

M
k=1

∣∣∣∣ sin(μk − iη/2)

sin(λ j − iη/2)

∣∣∣∣
2

× 1

�k �=k′ | sin(μk − μk′ + iη)|� j �= j′ | sin(λ j − λ j′ + iη)|
| det(H − 2P)|2

| det �({μ}) det �({λ})| , (C4)

in which the M × M matrices H and P are given by

Hk j = 1

sin(μk − λ j )

[
�M

l=1(l �=k) sin(μl − λ j + iη) −
(

sin(λ j − iη/2)

sin(λ j + iη/2)

)N

�M
l=1(l �=k) sin(μl − λ j − iη)

]
, (C5)

and

Pk j = �M
l=1 sin(λl − λ j − iη)

sin(μk + iη/2) sin(μk − iη/2)
, for 1 � k � M, 1 � j � M. (C6)

The off-diagonal matrix element � jk at ( j �= k) is

� jk = sin(2iη)

sin(λ j − λk − iη) sin(λ j − λk + iη)
, (C7)

and the diagonal matrix element � j j is

� j j = N
sin(iη)

sin(λ j − iη/2) sin(λ j + iη/2)
−

M∑
l=1,l �= j

sin(2iη)

sin(λ j − λl − iη) sin(λ j − λl + iη)
. (C8)

2. The reduced determinant formula for string states

In calculating the DSFs, if we directly plug in the rapidities of the string state solutions into Eqs. (C7) and (C8), the matrix �

becomes singular. The L’Hospital’s rule must be applied to remove the singularities [35]. The reduced matrix �(r) is defined
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by [35]

�(r)
nα,nα = N

n∑
j=1

⎡
⎣ sin(iη)

sin
(
λ

(nα)
j − iη/2

)
sin

(
λ

(nα)
j + iη/2

) −
M∑

k=1(k �=nα j, j±1)

sin(2iη)

sin
(
λ

(nα)
j − λk − iη

)
sin

(
λ

(nα)
j − λk + iη

)

+
n∑

l=1(l �= j, j±1)

sin(2iη)

sin
(
λ

(nα)
j − λ

(nα)
l − iη

)
sin

(
λ

(nα)
j − λ

(nα)
l + iη

)
⎤
⎦,

�
(r)
nα,mβ =

n∑
j=1

m∑
k=1

sin(2iη)

sin
(
λ

(nα)
j − λ

(mβ )
k − iη

)
sin

(
λ

(nα)
j − λ

(mβ )
k + iη

) , nα �= mβ, (C9)

in which λ
(nα)
j = λ(nα) + i(n + 1 − 2 j)η/2, where λ(nα) is the common real part of the α’th length-n string.

The formula for |〈{μ}|S−
q |{λ}〉|2, where |{μ}〉 is a string state, |{λ}〉 a real Bethe eigenstate, is given by

|〈{μ}|S−
q |{λ}〉|2 = NδP({λ})−P({μ}),q

| sin(iη)|
�n(| sinn−1(2iη)|)Mn

�M+1
k=1 | sin(μk + iη/2)|

�M
j=1| sin(λ j + iη/2)|

1

� j �= j′ | sin(λ j − λ j′ + iη)|

× 1

�mβl �=nαl ′,l ′±1

∣∣ sin
(
μ

(nα)
l − μ

(mβ )
l ′ + iη

)∣∣
| det H−|2

| det �({λ})| · | det �r ({μ})| . (C10)

The expression for |〈{μ}|Sz
q|{λ}〉|2 can be obtained similarly, as

|〈{μ}|Sz
q|{λ}〉|2 = N

4
δP({λ})−P({μ}),q

1

�n(| sinn−1(2iη)|)Mn
�M

j=1

∣∣∣∣ sin(μ j + iη/2)

sin(λ j + iη/2)

∣∣∣∣
2 1

� j �= j′ | sin(λ j − λ j′ + iη)|

× 1

�mβl �=nαl ′,l ′±1

∣∣ sin
(
μ

(nα)
l − μ

(mβ )
l ′ + iη

)∣∣
| det(H − 2P)|2

| det �({λ})| · | det �r ({μ})| . (C11)

APPENDIX D: DEVIATION OF STRING STATES

The string ansatz is known to be not exact even in the
thermodynamic limit. The solutions of rapidities may deviate
from the pattern assumed by string ansatz. Such deviations
must be taken into account when they are large [61]. In this
section, we give the formulas for an exact treatment of string
deviations for 1χ (2)R and 1χ (3)R excitations.

The branch cut of logarithmic function is taken as the
negative real axis which is identified with R− + i0. From this
the branch cut of arctan function is accordingly determined
via the definition

arctan(z) = 1

2i
(ln(1 + iz) − ln(1 − iz)). (D1)

For a 1χ (2)R type excitation, let the two complex rapidities
be λ

(2)
± = λ(2) ± i(η/2 + δ), where δ represents the deviation

from the pattern of string ansatz, and the remaining M − 2
real rapidities be {λk}1�k�M−2. Let the corresponding BQN
be J± and {Jk}1�k�M−2. Then the two BAE for the complex
rapidities are

Nθ1
(
λ(2)

a

) = 2πJa+, θ2
(
λ(2)

a −λ
(2)
−a

)+
M−2∑
k=1

θ2
(
λ(2)

a − λk
)
, (D2)

where a = ±. In the following, we assume that λ(2) �= 0, δ �=
0, and λ(2) − λ j �= 0, 1 � j � M − 2.

From the choice of branch cut for arctan function, the real
part of the difference between the equations of a = + and a =
− in Eq. (D2) gives

J− − J+ = �(δ), (D3)

in which �(x) = 1 when x � 0 and �(x) = 0 when x < 0.
Taking the sum of the equations for a = + and a = − in
Eq. (D2), setting δ = 0, and comparing with the reduced BGT
equation, we obtain

J− + J+ = I (2) + N

⌊
λ(2)

π
+ 1

2

⌋
+ N

2
(−)


λ(2)

π/2 �
. (D4)

The sign of δ can be determined from Eq. (D4) by noticing
that J± are integers (half integers) when M is odd (even), i.e.,

�(δ) = mod

(
I (2) − M + 1 + N

2
, 2

)
. (D5)

Combining Eqs. (D4) and (D5) together, the BQN J± can be
determined from the reduced one I (2) in BGT equations. For
the BQN of real rapidities, it can be shown that Jk = Ik , 1 �
k � M − 2. To solve the exact values of rapidities, Eq. (D2) is
replaced with the following two real equations. The first one is
the sum of the two equations in Eq. (D2) but not setting δ = 0.
The second one is obtained by taking the imaginary part of the
a = + equations in Eq. (D2), as∣∣∣∣ tan(λ(2)

+ −λ
(2)
− )−i tanh η

tan(λ(2)
+ −λ

(2)
− )+i tanh η

∣∣∣∣

=
∣∣∣∣ tan(λ(2)

+ ) − i tanh η/2

tan(λ(2)
+ ) + i tanh η/2

∣∣∣∣
N

· �k

∣∣∣∣ tan(λ(2)
+ −λk ) + i tanh η

tan(λ(2)
+ − λk ) − i tanh η

∣∣∣∣.
(D6)

Combining these two equations with the BAE for real rapidi-
ties, the exact solutions can be solved. The first order deviation
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of δ can be obtained from Eq. (D6). Up to first order of δ, the
left hand side (LHS) of Eq. (D6) is |δ|/(sinh(η) cosh(η)).

For the case of 1χ (3)R excitation, the logic is similar.
Let the three complex rapidities be λ(3)

a with a = ±, 0 and
the real rapidities be {λk}1�k�M−3. Let the corresponding
Bethe quantum numbers be Ja (a = ±, 0) and {Jk}1�k�M−3.
To parametrize the string deviations, the complex rapidities
are written as λ

(3)
0 = λ(3) and λ

(3)
± = λ(3) + ε ± i(η + δ). The

BAE for the three complex rapidities are

Nθ1
(
λ(3)

a

) = 2πJa +
∑
b�=a

θ2
(
λ(3)

a − λ
(3)
b

) M−3∑
k=1

θ2
(
λ(3)

a − λk
)
,

(D7)

where a, b = ±, 0. We assume that λ(3) �= 0, ε �= 0, δ �= 0,
and λ(3) − λ j �= 0, 1 � j � M − 3.

The real part of the difference between the equations for
a = + and a = − in Eq. (D7) gives

J− − J+ = 1. (D8)

Taking the sum of the three equations in Eq. (D7), setting
ε = δ = 0, and comparing with the reduced BGT equation,
we obtain

J+ + J0 + J− = I (3) + N

(
2

⌊
λ(3)

π
+ 1

2

⌋
+ (−)


λ(3)

π/2 �
)

−
∑

k

(⌊
λ(3) − λk

π
+ 1

2

⌋
+ 1

2
(−)


λ(3)−λk
π/2 �

)
.

(D9)

To determine J± and J0, the sum of the equations for a = ± in
Eq. (D7) is taken, yielding

2π (J+ + J−) + θ2
(
λ

(3)
+ − λ

(3)
0

) + θ2
(
λ

(3)
− − λ

(3)
0

)
= N (θ1(λ(3)

+ ) + θ1(λ(3)
− ))

−
∑

k

(θ2(λ(3)
+ − λk ) + θ2(λ(3)

− − λk )). (D10)

Define A to be the right hand side of Eq. (D10). Since
θ2(λ(3)

+ − λ0) + θ2(λ(3)
− − λ0) ∈ (−2π, 2π ), J+ + J− is the

even (odd) integer number within (A/2π − 1, A/2π + 1)
when M is even (odd). Hence

J+ + J− = (1 + (−)M )

⌊
1

2

(
A

2π
+ 1

)⌋
+ (1 − (−)M )

×
(⌊

1

2

(
A

2π
+ 1

)
+ 1

2

⌋
− 1

2

)
. (D11)

From Eqs. (D8), (D9), and (D11), the values of J± and J0

can be determined from the reduced BQN I (3) in the BGT
equation. The BQN for real rapidities can be proved to be of
the following expression in a similar manner,

Jk = Ik −
⌊

λk − λ(3)

π
+ 1

2

⌋
− 1

2
(−)


λk −λ(3)

π/2 �
, (D12)

where 1 � k � M − 3.
For solving rapidities, Eq. (D7) is replaced with the fol-

lowing three real equations. The first one is the sum of the
equations for a = ±, a = 0 in Eq. (D7) without setting ε and
δ to be zero. The second one is Eq. (D10). The third one is

by taking the imaginary part of the difference between the
equations for a = + and a = − in Eq. (D10), which is∣∣∣∣ tan

(
λ

(3)
+ − λ

(3)
0

) − i tanh η

tan
(
λ

(3)
+ − λ

(3)
0

) + i tanh η

∣∣∣∣

=
∣∣∣∣ tan(λ(3)

+ − λ
(3)
− ) + i tanh η

tan(λ(3)
+ − λ

(3)
− ) − i tanh η

∣∣∣∣ ·
∣∣∣∣ tan(λ(3)

+ ) − i tanh η/2

tan(λ(3)
+ ) + i tanh η/2

∣∣∣∣
N

·�k

∣∣∣∣ tan(λ(2)
+ − λk ) + i tanh η

tan(λ(2)
+ − λk ) − i tanh η

∣∣∣∣. (D13)

Let ε = r sin θ , δ = r cos θ . For first order deviation, we
remark that up to first order in ε and δ, the LHS of
Eq. (D13) is r/(2 sinh η cosh η), and θ can be determined from
Eq. (D10) as

θ = −φ + πsgnφ, (D14)

in which φ is defined to be 1
2 A − πJ0. The values of r and θ

can be used as the initial inputs in an iterative solution of ε

and δ.

APPENDIX E: SUM RULES

The momentum-resolved first frequency sum rules are pre-
sented below. The transverse first frequency moment (FFM)
sum rule is W⊥(q) = ∫ ∞

0
dω
2π

ω[S+−(q, ω) + S−+(q, ω)] =
α⊥ + β⊥ cos q, where α⊥ = −e0 − �∂e0/∂� + mh and
β⊥ = (2 − �2)∂e0/∂� + �e0. Its longitudinal version is
also known as W‖(q) = ∫ ∞

0
dω
2π

ωSzz(q, ω) = (1 − cos q)α‖
[67], where α2 = −e0 + �∂e0/∂�.

Here we summarize the derivation of the first frequency
moment sum rule in Eq. (6) following Ref. [67]. The first
frequency moment is defined as

ωaā(q) =
∫ ∞

−∞

dω

2π
ωSaā(q, ω). (E1)

The expressions of ω+− + ω−+ and ωzz are derived as a
function of � and h for the XXZ Hamiltonian [Eq. (1) in the
main text].

By inserting a complete set of eigenstates and performing
the integration with respect to t and ω, ωii (i = x, y, z) can be
transformed as

ωii = 1

N

∑
j, j′

e−iq( j− j′ )
∫ ∞

−∞

dω

2π

∫ ∞

−∞
dtωeiωt

×
∑

μ

ei(EG−Eμ )t 〈G|Si
j |μ〉〈μ|Si

j′ |G〉

= − 1

N

∑
j, j′

e−iq( j− j′ )〈G|[H, Sa
j

]
Sa

j′ |G〉.

Similarly

ωii = 1

N

∑
j, j′

e−iq( j− j′ )〈G|Si
j

[
H, Si

j′
]|G〉. (E2)

Since the system is invariant under inversion transformation
defined as P �S jP−1 = �S− j , i.e.,

P|G〉 = |G〉, PHP−1 = H, (E3)

Eq. (E2) becomes

ωii = 1

N

∑
j, j′

e−iq( j− j′ )〈G|Si
j′
[
H, Si

j

]|G〉, (E4)
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where in obtaining the last line the change of summation
indices − j → j′ and − j′ → j is performed. Combining these
results together, we obtain

ωii = − 1

2N

∑
j, j′

e−iq( j− j′ )〈G|[[H, Si
j

]
, Si

j′
]|G〉. (E5)

The commutation relations for i = x, y, z can be carried out
explicitly, and the results for ωii are

ωxx(yy) = − 1

N

∑
j

[
(1 − � cos q)〈G|Sy(x)

j Sy(x)
j+1|G〉

+ (� − cos q)〈G|Sz
jS

z
j+1|G〉 − h

2
Sz

j

]
,

ωzz = − 1

N
(1 − cos q)

∑
j

〈G|(Sx
j S

x
j+1 + Sy

j S
y
j+1

)|G〉.

(E6)

In the main text S+−(q, ω) and S−+(q, ω) are calculated,
and their first frequency moment sum rule can be derived from
ωxx and ωyy through

ω+− + ω−+ = 2(ωxx + ωyy). (E7)

Under the help of the Hellman-Feynman theorem, we have

〈G|
∑

j

Sz
jS

z
j+1|G〉 = ∂e0

∂�
,

〈G|
∑

j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)|G〉 = e0 − �
∂e0

∂�
. (E8)

where e0 is defined as

e0 =
∑

j

〈G|(Sx
j S

x
j+1 + Sy

j S
y
j+1 + �Sz

jS
z
j+1

)|G〉. (E9)

The magnetic field h and magnetization m are related through
the Legendre transform

h = 1

N

∂e0

∂m
. (E10)

Combining these results together, the first frequency moment
sum rule can be expressed as

ω+−(q) + ω−+(q) = − 2

N

[
(�(1 + � cos q) − 2 cos q)

∂e0

∂�

+ (1 − � cos q)e0 − m
∂e0

∂m

]
, (E11)

ωzz(q) = − 1

N
(1 − cos q)

(
e0 − �

∂e0

∂�

)
. (E12)

APPENDIX F: BETHE EIGENSTATES AT SPECTRAL
PEAK POSITIONS IN TRANSVERSE DSFS

In this section, we identify the Bethe eigenstates with the
largest weight values around the spectral peaks at momenta
0, π

2 , π . The energies of these eigenstates can be obtained by
solving the Bethe ansatz equations, which correspond to the
peak positions in the DSSF spectra as shown in Fig. 5. In the
following, Sz

T = ∑N
i=1 Sz

i is the z component of the total spin,
M = N

2 − Sz
T is the number of magnons, and m = Sz

T /N is the
magnetization per site. For simplicity, we assume that both N

and Sz
T are even integer numbers. For the expressions of the

momentum k of the excitations χ (n) (n = 1, 2), ψ , and ψ∗,
the limit of N → ∞ is taken with m fixed.

For the line of χ
(3)
π
2

in Fig. 5, the Bethe quantum numbers
of the corresponding Bethe eigenstate are given by

I (3) = 1

2
Sz

T ,

I (1)
j = −M − 4

2
+ j − 1 + �

(
j − M

2
+ 3

)
, (F1)

where 1 � j � M − 3, and � is the step function defined as
�(x) = 0 if x � 0 and �(x) = 1 if x > 0. The momenta of the
excitations are determined by Eq. (B4) as kχ (3) = π (1 − m),
kψ = 0, and kψ∗ = π (1/2 + m).

For the line of χ
(2)
π/2, the Bethe quantum numbers of the

corresponding Bethe eigenstate are

I (2) = −1

2
Sz

T ,

I (1)
j = −M − 3

2
+ j − 2 + �

(
j − M

2
+ 1

)
, (F2)

where 1 � j � M − 2. The momenta of the excitations are
kχ (2) = π (1 + m), kψ = π , and kψ∗ = π (3/2 − m).

For the line of χ (2)
π , the Bethe quantum numbers of the

corresponding Bethe eigenstate are

I (2) = Sz
T + 2,

I (1)
j = −M − 3

2
+ j, (F3)

where 1 � j � M − 2. The momenta of the excitations are
kχ (2) = π (1 − 2m), kψ = kψ∗ = π (1/2 + m).

For the line of R−+
π/2 (m � 1/4), the Bethe quantum num-

bers of the corresponding Bethe eigenstate are

I (1)
j = −M − 1

2
+ j − 1 + �

(
j − M + N

4

)
, (F4)

where 1 � j � M. The momenta of the excitations are kψ1 =
π (1/2 + m) and kψ2 = π (1 − m).

FIG. 9. Distributions of Bethe quantum numbers for the string
excitations which have local maximal weight values at the corre-
sponding momentum. The positions of the solid circles represent
the Bethe quantum numbers of the particles. The system size and
magnetization are taken as N = 32 and Sz

T = 8.
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For the line of R+−
0 , the Bethe quantum numbers of the

corresponding Bethe eigenstate are

I (1)
j = −M − 1

2
+ j, 1 � j � M − 1,

I (1)
M = M − 1

2
+ Sz

T + 1. (F5)

The momenta of the excitations are kψ = π (1/2 + m) and
kψ∗ = π (1/2 − m).

For the line of R+−,a
π/2 , the Bethe quantum numbers of the

corresponding Bethe eigenstate are

I (1)
j = −M − 1

2
+ j, 1 � j � M − 1,

I (1)
M = N

4
− M − 1

2
. (F6)

The momenta of the excitations are kψ = π (1/2 + m) and
kψ∗ = π (1 − m).

For the line of R+−,b
π/2 , the Bethe quantum numbers of the

corresponding Bethe eigenstate are

I (1)
j = −M − 1

2
+ j, 1 � j � M − 1,

I (1)
M = N

4
+ M − 1

2
. (F7)

The momenta of the excitations are kψ = π (3/2 − m) and
kψ∗ = πm. Schematically, we present the distributions of
Bethe quantum numbers of string excitations in Fig. 9.
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