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Spin-orbit coupled Fermi liquid theory of ultracold magnetic dipolar fermions
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We investigate Fermi liquid states of the ultracold magnetic dipolar Fermi gases in the simplest two-component
case including both thermodynamic instabilities and collective excitations. The magnetic dipolar interaction is
invariant under the simultaneous spin-orbit rotation but not under either the spin or the orbit one. Therefore, the
corresponding Fermi liquid theory is intrinsically spin-orbit coupled. This is a fundamental feature of magnetic
dipolar Fermi gases different from electric dipolar ones. The Landau interaction matrix is calculated and is
diagonalized in terms of the spin-orbit coupled partial-wave channels of the total angular momentum J . The
leading thermodynamic instabilities lie in the channels of ferromagnetism hybridized with the ferronematic
order with J = 1+ and the spin-current mode with J = 1−, where + and − represent even and odd parities,
respectively. An exotic propagating collective mode is identified as spin-orbit coupled Fermi surface oscillations
in which spin distribution on the Fermi surface exhibits a topologically nontrivial hedgehog configuration.
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I. INTRODUCTION

Recent experimental progress of ultracold electric dipolar
heteronuclear molecules has become a major focus of ultracold
atom physics.1–3 Electric dipole moments are essentially clas-
sic polarization vectors induced by the external electric field.
When they are aligned along the z axis, the electric dipolar
interaction becomes anisotropic exhibiting the dr2−3z2 -type
anisotropy. In Fermi systems, this anisotropy has important
effects on many-body physics including both single-particle
and collective properties.4–14 Fermi surfaces of polarized elec-
tric dipolar fermions exhibit quadrupolar distortion elongated
along the z axis.4,5,7,13 Various Fermi surface instabilities have
been investigated including the Pomeranchuk-type nematic
distortions6,7 and stripelike orderings.10,14 The collective exci-
tations of the zero-sound mode exhibit anisotropic dispersions:
The sound velocity is largest if the propagation wave vector �q
is along the z axis, and the sound is damped if �q lies in the xy

plane.7,8 Under the dipolar anisotropy, the phenomenological
Landau interaction parameters become tridiagonal matrices,
which are calculated at the Hartree-Fock level,6,7 and the
anisotropic Fermi liquid theory for such systems has been
systematically studied.7

The magnetic dipolar gases are another type of dipolar
system. Compared to the extensive research on electric dipolar
Fermi systems, the study on magnetic dipolar ones is a
new direction of research. On the experimental side, laser
cooling and trapping Fermi atoms with large magnetic dipole
moments (e.g., 161Dy and 163Dy with μ = 10μB )15–17 have
been achieved, which provides a new opportunity to study
exotic many-body physics with magnetic dipolar interactions.
There has also been a great amount of progress for realizing
Bose-Einstein condensations of magnetic dipolar atoms.17–21

Although the energy scale of the magnetic dipolar inter-
action is much weaker than that of the electric one, it is
conceptually more interesting if magnetic dipoles are not
aligned by external fields. Magnetic dipole moments are
proportional to the hyperfine spin up to a Lande factor,
thus, they are quantum-mechanical operators rather than the
nonquantized classic vectors as electric dipole moments are.
Furthermore, there is no need to use external fields to induce

magnetic dipole moments. In fact, the unpolarized magnetic
dipolar systems are isotropic. The dipolar interaction does
not conserve spin nor orbit angular momentum but is invariant
under simultaneous spin-orbit (SO) rotation. This is essentially
a spin-orbit coupled interaction. Different from the usual
spin-orbit coupling of electrons in solids, this coupling appears
at the interaction level but not at the kinetic-energy level.

The study of many-body physics of magnetic dipolar Fermi
gases is just at the beginning. For the Fermi liquid properties,
although magnetic dipolar Fermi gases were studied early in
Refs. 6 and 22, the magnetic dipoles are frozen, thus, their
behavior is not much different from the electric ones. It is
the spin-orbit coupled nature that distinguishes nonpolarized
magnetic dipolar Fermi gases from polarized electric ones.
The study along this line was was pioneered by Fregoso and
Fradkin.23,24 They studied the coupling between ferromagnetic
and ferronematic orders, thus, spin polarization distorts the
spherical Fermi surfaces and leads to a spin-orbit coupling in
the single-particle spectrum.

Since Cooper pairing superfluidity is another important
aspect of the many-body phase, we also briefly summarize
the current progress in electric and magnetic dipolar systems.
For the single-component electric dipolar gases, the simplest
possible pairing lies in the p-wave channel because s-wave
pairing is not allowed by the Pauli exclusion principle. The
dipolar anisotropy selects the pz-channel pairing.25–32 Inter-
estingly, for the two-component case, the dipolar interaction
still favors the triplet pairing in the pz channel, even though the
s wave is also allowed. It provides a robust mechanism for the
triplet pairing to the first order in the interaction strength.33–36

The mixing between the singlet and the triplet pairings is with
a relative phase ±π

2 , which leads to a novel time-reversal
symmetry-breaking pairing state.33 The investigation of the
unconventional Cooper pairing symmetry in magnetic dipolar
systems was studied by the authors.37 We have found that
it provides a robust mechanism for a novel p-wave (L = 1)
spin triplet (S = 1) Cooper pairing to the first order in
interaction strength. It comes directly from the attractive part
of the magnetic dipolar interaction. In comparison, the triplet
Cooper pairings in 3He and solid-state systems come from
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spin fluctuations, which is a second-order effect in interaction
strength.38,39 Furthermore, that pairing symmetry was not
studied in 3He systems before in which orbital and spin angular
momenta of the Cooper pair are entangled into the total angular
momentum J = 1. In contrast, in the 3He-B phase,40 L and S

are combined as J = 0, and in the 3He-A phase, L and S are
decoupled, and J is not well defined.41,42

Fermi liquid theory is one of the most important paradigms
in condensed-matter physics on interacting fermions.38,43

Despite the pioneering papers,6,22–24 a systematic study of
the Fermi liquid properties of magnetic dipolar fermions is
still lacking in the literature. In particular, Landau interaction
matrices have not been calculated, and a systematic analysis
of the renormalizations from magnetic dipolar interactions to
thermodynamic quantities has not been performed. Moreover,
collective excitations in magnetic dipolar ultracold fermions
have not been studied before. All these are essential parts of
Fermi liquid theory. The experimental systems of 161Dy and
163Dy are with a very large hyperfine spin of F = 21

2 , thus, the
Fermi liquid theory, taking into account of all the complicated
spin structure, should be very challenging. We take the first step
by considering the simplest case of spin- 1

2 magnetic dipolar
fermions, which preserve the essential features of spin-orbit
physics and address the above questions.

In this paper, we systematically investigate the Fermi liquid
theory of the magnetic dipolar systems including both the
thermodynamic properties and the collective excitations, fo-
cusing on the spin-orbit coupled effect. The Landau interaction
functions are calculated and are diagonalized in the spin-orbit
coupled basis. Renormalizations for thermodynamic quantities
and the Pomeranchuk-type Fermi surface instabilities are
studied. Furthermore, the collective modes are also spin-orbit
coupled with a topologically nontrivial configuration of the
spin distribution in momentum space. Their dispersion relation
and configurations are analyzed.

Upon the completion of this paper, we became aware of
the nice work by Sogo et al.44 Reference 44 constructed the
Landau interaction matrix for dipolar fermions with a general
value of spin. The Pomeranchuk instabilities were analyzed
for the special case of spin 1

2 , and collective excitations were
discussed. Our paper has some overlaps on the above topics
with Ref. 44 but with a significant difference, including the
physical interpretation of the Pomeranchuk instability in the
J = 1− channel and our discovery of an exotic propagating
spin-orbit sound mode.

The remaining part of this paper is organized as follows.
The magnetic dipolar interaction is introduced in Sec. II. The
Landau interaction matrix is constructed at the Hartree-Fock
level and is diagonalized in Sec. III. In Sec. IV, we present the
study of the Fermi liquid renormalization to thermodynamic
properties from the magnetic dipolar interaction. The leading
Pomeranchuk instabilities are analyzed. In Sec. V, the spin-
orbit coupled Boltzmann equation is constructed. We further
perform the calculation of propagating spin-orbit coupled
collective modes. We summarize the paper in Sec. VI.

II. MAGNETIC DIPOLAR HAMILTONIAN

We introduce the magnetic dipolar interaction and the
subtlety of its Fourier transform in this section.

The magnetic dipolar interaction between two spin- 1
2

particles located at �r1,2 reads

Vαβ;β ′α′ (�r) = μ2

r3
[�Sαα′ · �Sββ ′ − 3(�Sαα′ · r̂)(�Sββ ′ · r̂)], (1)

where �S = 1
2 �σ ,α,α′,β,β ′ take values of ↑ and ↓ , �r = �r1 − �r2,

and r̂ = �r/r is the unit vector along �r .
The Fourier transform of Eq. (1) is

Vαβ;β ′α′ (�q) = 4πμ2

3
[3(�Sαα′ · q̂)(�Sββ ′ · q̂) − �Sαα′ · �Sββ ′ ], (2)

which depends on the direction along the momentum transfer
but not its magnitude. It is singular as �q → 0. More rigorously,
Vαβ,β ′α′(�q) should be further multiplied by a numeric factor7

as

g(q) = 3

(
j1(qε)

qε
− j1(qL)

qL

)
, (3)

where ε is a short-range scale cutoff and L is the long-distance
cutoff at the scale of sample size. The spherical Bessel function
j1(x) shows the asymptotic behavior j1(x) → x

3 at x → 0, and
j1(x) → 1

x
sin(x − π

2 ) as x → ∞. In the long wavelength limit
satisfying qε → 0 and qL → ∞, g(q) → 1, and we recover
Eq. (2). If �q is exactly zero, Vαβ;β ′α′ = 0 because the dipolar
interaction is neither purely repulsive nor attractive, and its
spatial average is zero.

The second quantization form for the magnetic dipolar
interaction is expressed as

Hint = 1

2V

∑
�k,�k′,�q

ψ†
α(�k + �q)ψ†

β(�k′)Vαβ;β ′α′(�q)

×ψβ ′ (�k′ + �q)ψα′ (�k), (4)

where V is the volume of the system. The density of states
of two-component Fermi gases at the Fermi energy is N0 =
mkf

π2h̄2 , and we define a dimensionless parameter λ = N0μ
2. λ

describes the interaction strength, which equals the ratio
between the average interaction energy and the Fermi energy
up to a factor on the order of 1.

III. SPIN-ORBIT COUPLED LANDAU INTERACTION

In this section, we present the Landau interaction functions
of the magnetic dipolar Fermi liquid and perform the spin-orbit
coupled partial-wave decomposition.

A. The Landau interaction function

Interaction effects in the Fermi liquid theory are captured by
the Landau interaction function. It describes the particle-hole
channel forward-scattering amplitudes among quasiparticles
on the Fermi surface. At the Hartree-Fock level, the Landau
function is expressed as

fαα′,ββ ′(k̂,k̂′) = f H
αα′,ββ ′ (q̂) + f F

αα′,ββ ′ (k̂,k̂′), (5)

where �k and �k′ are at the Fermi surface with the mag-
nitude of kf and �q is the small momentum transfer in
the forward-scattering process in the particle-hole channel.
f H

αα′,ββ ′ (�q) = Vαβ,β ′α′ (q̂) is the direct Hartree interaction, and
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f F
αα′,ββ ′ (�k; �k′) = −Vαβ,α′β ′(�k − �k′) is the exchange Fock inter-

action. As �q → 0, f H is singular, thus, we need to keep its
dependence on the direction of q̂. More explicitly,

f H
αα′,ββ ′ (q̂) = πμ2

3
Mαα′,ββ ′ (q̂), (6)

f F
αα′,ββ ′ (k̂; k̂′) = −πμ2

3
Mαα′,ββ ′ (m̂), (7)

where the tensor is defined as Mαα′,ββ ′ (q̂) = 3(�σαα′ · q̂)(�σββ ′ ·
q̂) − �σαα′ · �σββ ′ and m̂ is the unit vector along the direction of

the momentum transfer m̂ = �k−�k′

|�k−�k′| . We have used the following
identity:

3(�σαβ ′ · m̂)(�σβα′ · m̂) − �σαβ ′ · �σβα′

= 3(�σαα′ · m̂)(�σββ ′ · m̂) − �σαα′ · �σββ ′ (8)

to obtain Eq. (7).

B. The spin-orbit coupled basis

Due to the spin-orbit nature of the magnetic dipolar
interaction, we introduce the spin-orbit coupled partial-wave
basis for the quasiparticle distribution over the Fermi surface
following the steps below.

The δnαα′ (�k) is defined as

δnαα′ (�k) = nαα′ (�k) − δαα′n0(�k), (9)

where nαα′ (�k) = 〈ψ†
α(�k)ψα′(�k)〉 is the Hermitian single-

particle density matrix with momentum �k and satisfies
nαα′ = n∗

α′α and n0(�k) is the zero-temperature equilibrium
Fermi distribution function n0(�k) = 1 − θ (k − kf ). δnαα′ (�k)
is expanded in terms of the particle-hole angular momentum
basis as

δnαα′ (�k) =
∑
Ssz

δnSsz
(�k)χSsz,αα′

=
∑
Ssz

δn∗
Ssz

(�k)χ †
Ssz,αα′ , (10)

where χSsz,αα′ are the bases for the particle-hole singlet
(density) channel with S = 0 and triplet (spin) channel with
S = 1, respectively. They are defined as

χ00,αα′ = δαα′ , χ10,αα′ = σz,αα′ ,
(11)

χ1±1,αα′ = ∓1√
2

(σx,αα′ ± iσy,αα′ ),

which satisfy the orthonormal condition tr(χ †
Ssz

χS ′s ′
z
) =

2δSS ′δszs ′
z
.

Since quasiparticles are only well defined around the Fermi
surface, we integrate out the radial direction and arrive at the
angular distribution,

δnαα′ (k̂) =
∫

k2dk

(2π )3
δnαα′ (�k). (12)

Please note that angular integration is not performed in
Eq. (12). We expand δnαα′ (k̂) in the spin-orbit decoupled

bases as
δnαα′ (k̂) =

∑
LmSsz

δnLmSsz
YLm(k̂)χSsz,αα′ ,

=
∑

LmSsz

δn∗
LmSsz

Y ∗
Lm(k̂)χ †

Ssz,αα′ , (13)

where YLm(k̂) is the spherical harmonics satisfying the nor-
malization condition

∫
dk̂ Y ∗

Lm(k̂)YLm(k̂) = 1.
We can also define the spin-orbit coupled basis as

YJJz;LS(k̂,αα′) =
∑
msz

〈LmSsz|JJz〉YLm(k̂)χSsz,αα′ ,

(14)
Y†

JJz;LS(k̂,αα′) =
∑
msz

〈LmSsz|JJz〉Y ∗
Lm(k̂)χ †

Ssz,αα′ ,

where 〈LmSsz|JJz〉 is the Clebsch-Gordon coefficient and
YJJz;LS satisfies the orthonormal condition of∫

dk̂ tr[Y†
JJz;LS(k̂)YJ ′J ′

z ;L′S ′ (k̂)] = 2δJJ ′δJzJ ′
z
δLL′δSS ′ . (15)

Using the spin-orbit coupled basis, δnαα′ (k̂) is expanded as

δnαα′ (k̂) =
∑

JJz;LS

δnJJz;LSYJJz;LS(k̂,αα′)

=
∑

JJz;LS

δn∗
JJz;LSY

†
JJz;LS(k̂,αα′), (16)

where δnJJz;LS = ∑
msz

〈LmSsz|JJz〉δnLmSsz
.

C. Partial-wave decomposition of the Landau function

We are ready to perform the partial-wave decomposition for
Landau interaction functions. The tensor structures in Eqs. (6)
and (7) only depend on �σαα′ and �σββ ′ , thus, the magnetic
dipolar interaction only contributes to the spin-channel Landau
parameters, i.e., S = 1. In the spin-orbit decoupled basis,
the Landau functions of the Hartree and Fock channels are
expanded, respectively, as

N0

4π
f

H,F
αα′;ββ ′ (k̂,k̂′) =

∑
Lmsz;L′m′s ′

z

YLm(k̂)χ1sz
(αα′)

×T
H,F
Lm1sz;L′m′1s ′

z
Y ∗

L′m′(k̂′)χ †
1s ′

z
(ββ ′). (17)

For later convenience, we have multiplied the density of states
N0 and the factor of 1/4π such that T H,F are dimensionless
matrices. Without loss of generality, in the Hartree channel,
we choose q̂ = ẑ.

The matrix elements in Eq. (17) are presented below. In the
Hartree channel,

T H
Lm1sz;L′m′1s ′

z
= πλ

3

(
2δsz,0 − δsz,±1

)
δL,0δL′,0δm,0δm′,0δszs ′

z
,

(18)

and in the Fock channel,

T F
Lm1sz;L′m′1s ′

z

= −πλ

2

(
δLL′

L(L + 1)
− δL+2,L′

3(L + 1)(L + 2)
− δL−2,L′

3(L − 1)L

)

×
∫

d�r

[
δszs ′

z
− 4πY1sz

(�r )Y ∗
1s ′

z
(�r )

]
YLm(�r )Y ∗

L′m′(�r ).

(19)
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The magnetic dipolar interaction is isotropic, thus, the spin-
orbit coupled basis is the most convenient. In these bases, the
Landau matrix is diagonal with respect to the total angular
momentum J and its z component Jz as

N0

4π
fαα′;ββ ′ (k̂,k̂′) =

∑
JJzLL′

YJJz;L1(k̂,αα′)

×FJJzL1;JJzL′1Y†
JJz;L′1(k̂,ββ ′). (20)

The matrix kernel FJJzL1;JJzL′1 reads as

FJJzL1;JJzL′1 = πλ

3
δJ,1δL,0δL′,0

(
2δJz,0 − δJz,±1

)

+
∑

msz;m′s ′
z

〈Lm1sz|JJz〉〈L′m′1s ′
z|JJz〉

× T F
Lm1sz;L′m′1s ′

z
. (21)

We found that, up to a positive numeric factor, the second
term in Eq. (21) is the same as the partial-wave matrices in
the particle-particle pairing channel, which was derived for the
analysis of the Cooper pairing instability in magnetic dipolar
systems.37

However, the above matrix kernel FJJzL1;JJzL′1 is not
diagonal for channels with the same values of JJz but different
orbital angular momentum indices L and L′. Moreover, the
conservation of parity requires that even and odd values of L do
not mix. Consequently, FJJzL1;JJzL′1 is either diagonalized or
reduced into a small size of just 2 × 2. For later convenience of
studying collective modes and thermodynamic instabilities, we
present below the prominent Landau parameters in some low
partial-wave channels. Below, we use (J±JzLS) to represent
these channels in which ± represents even and odd parities,
respectively.

The parity odd channel of J = 0− only has one possibility
of (0−011) in which

F0−011;0−011 = π

2
λ. (22)

There is another even-parity density channel with J = 0+,
i.e., (0+000), which receives contribution from short-range
s-wave interaction but no contribution from the magnetic
dipolar interaction at the Hartree-Fock level. The parity odd
channel of J = 1− only comes from (1−Jz11) in which

F1−Jz11;1−Jz11 = −π

4
λ. (23)

Another channel of J = 1−, i.e., (1−Jz10), channel from the
p-wave channel density interactions, which again receives
no contribution from magnetic dipolar interaction at the
Hartree-Fock level. These two J = 1− modes are spin- and
charge-current modes, respectively, and thus, do not mix due
to their opposite symmetry properties under time-reversal
transformation.

We next consider the even-parity channels. The J =
1+ channels include two possibilities of (JJzLS) =
(1+Jz01),(1+Jz21). The former is the ferromagnetism chan-
nel, and the latter is denoted as the ferronematic channel
in Refs. 6 and 24. Due to the spin-orbit nature of the
magnetic dipolar interaction, these two channels are no longer
independent but are coupled to each other. Because the

Hartree term breaks the rotational symmetry, the hybridization
matrices for Jz = 0, ±1 are different. For the case of Jz = 0,
it is

F1+0 =
(

F1001;1001 F1001;1021

F1021;1001 F1021;1021

)
= πλ

12

(
8

√
2√

2 1

)
, (24)

whose two eigenvalues and their associated eigenvectors are

w1+0
1 = 0.69πλ, ψ1+0

1 = (0.98,0.19)T ,
(25)

w1+0
2 = 0.06πλ, ψ1+0

2 = (−0.19,0.98)T .

The hybridization is small. For the case of Jz = ±1, the Landau
matrices are the same as

F1+1 =
(

F1101;1101 F1101;1121

F1121;1101 F1121;1121

)
=

( −4
√

2√
2 1

)
πλ

12
. (26)

Again, the hybridization is small as shown in the eigenvalues
and their associated eigenvectors,

w1+1
1 = −0.37πλ, ψ1+1

1 = (0.97, − 0.25)T ,
(27)

w1+1
2 = 0.12πλ, ψ1+1

2 = (0.25,0.97)T .

Landau parameters, or matrices, in other high partial-wave
channels are neglected because their magnitudes are signifi-
cantly smaller than those above.

We need to be cautious on using Eqs. (24) and (26) in
which the Hartree contribution of Eq. (6) is taken. However,
Eq. (6) is valid in the limit q  kf but should be much larger
than the inverse of sample size 1/L. It is valid to use Eqs. (24)
and (26) when studying the collective spin excitations in Sec. V
below. However, when studying thermodynamic properties,
say, magnetic susceptibility, under the external magnetic-field
uniform at the scale of L, the induced magnetization is also
uniform. In this case, the Hartree contribution is suppressed to
zero, thus, the Landau matrices in the J = 1+ channel are the
same for all the values of Jz as

F1+,thm(λ) =
(

F1Jz01;1Jz01 F1Jz01;1Jz21

F1Jz21;1Jz01 F1Jz21;1Jz21

)
thm

= πλ

12

(
0

√
2√

2 1

)
. (28)

In this case, the hybridization between these two channels
is quite significant. The two eigenvalues and their associated
eigenvectors are

w1+
1 = − π

12
λ, ψ1+

1 =
(√

2

3
, −

√
1

3

)T

,

(29)

w1+
2 = π

6
λ, ψ1+

2 =
(√

1

3
,

√
2

3

)T

.

IV. THERMODYNAMIC QUANTITIES

In this section, we study the renormalizations for thermo-
dynamic properties by the magnetic dipolar interaction and
investigate the Pomeranchuk-type Fermi surface instabilities.
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A. Thermodynamics susceptibilities

The change in the ground-state energy with respect to the
variation in the Fermi distribution density matrix include the
kinetic and interaction parts as

δE

V
= δEkin

V
+ δEint

V
. (30)

The kinetic-energy variation is expressed in terms of the
angular distribution of δnαα′ (k̂) as

δEkin

V
= 4π

N0

∑
αα′

∫
dk̂ δnαα′ (k̂)δnα′α(k̂)

= 8π

N0

∑
LmSSz

δn∗
LmSsz

δnLmSsz
, (31)

where the units of δnSsz
(k̂) and δnLmSsz

are the same as the
inverse of the volume. The variation in the interaction energy
is

δEint

V
= 1

2

∑
αα′ββ ′

∫∫
dk̂ dk̂′fαα′,ββ ′ (k̂,k̂′)δnα′α(k̂)δnβ ′β(k̂′)

= 2
∑

LmszL′m′s ′
z;S

δn∗
LmSsz

fLmSsz,L′m′Ss ′
z
δn∗

L′m′Ss ′
z
. (32)

Adding them together and changing to the spin-orbit coupled
basis, we arrive at

δE

V
= 8π

N0

∑
JJz;LL′;S

δn∗
JJz;LSMJJzLS;JJzL′SδnJJz;L′S, (33)

where the matrix elements are

MJJzLS;JJzL′S = δLL′ + FJJzLS;JJzL′S. (34)

In the presence of the external field hJJzLS , the ground-state
energy becomes

δE

V
= 16π

⎧⎨
⎩

1

2χ0

∑
JJzLL′S

δn∗
JJz;LSMJJzLS;JJzL′SδnJJz;L′S

−
∑

JJzLS

hJJzLSδnJJz;LS

⎫⎬
⎭ , (35)

where χ0 = N0 is the Fermi liquid density of states. At the
Hartree-Fock level, N0 receives no renormalization from the
magnetic dipolar interaction. The expectation value of δnJJzLS

is calculated as

δnJJzLS = χ0

∑
L′

(M)−1
JJzLS;JJzL′ShJJzL′S. (36)

For the J = 1+ channel, M−1 ≈ I − F1+,thm(λ) up to first
order of λ in the case of λ  1. As a result, the external
magnetic field �h along the z axis not only induces the
z-component spin polarization, but also induces a spin-nematic
order in the channel of (J+JzLS) = (1+021), which is an
effective spin-orbit coupling term as

δH =
√

2

12
πλh

∑
k

ψ†
α(�k)

{[
(k2 − 3k2

z

)
σz

− 3kz(kxσx + kyσy)
]}

ψβ(�k). (37)

Apparently, this term breaks time-reversal symmetry and, thus,
cannot be induced by the relativistic spin-orbit coupling in
solid states. This magnetic-field-induced spin-orbit coupling
in magnetic dipolar systems was studied by Fregoso et al.6 and
Fregoso and Fradkin.24

B. Pomeranchuk instabilities

Even in the absence of external fields, Fermi surfaces
can be distorted spontaneously known as Pomeranchuk
instabilities.45 Intuitively, we can imagine the Fermi surface
as the elastic membrane in momentum space. The instabilities
occur if the surface tension in any of its partial-wave channels
becomes negative. In the magnetic dipolar Fermi liquid, the
thermodynamic stability condition is equivalent to the fact that
all the eigenvalues of the matrix MJJzLS;JJzL′S are positive.

We next check the negative eigenvalues of the Landau
matrix in each partial-wave channel. Due to the absence of ex-
ternal fields, the Pomeranchuk instabilities are allowed to occur
as a density wave state with a long wavelength q → 0. For the
case of J = 1+, it is clear that, in the channel of Jz = ±1, the
eigenvalue w1+1

1 in Eq. (27) is negative and the largest among
all the channels. Thus, the leading channel instability is in
the (JJz) = (1+ ± 1) channel, which occurs at w1+1

1 < −1, or,
equivalently, λ > λc

1+1 = 0.86. The corresponding eigenvector
shows that it is mostly a ferromagnetism order parameter with
small hybridization with the ferronematic channel. A repulsive
short-range s-wave scattering, which we neglected above will
enhance ferromagnetism and, thus, will drive λc

1+1 to a smaller
value. The wave vector �q of the spin polarization should be on
the order of 1/L to minimize the energy cost of twisting spin,
thus, essentially exhibiting a domain structure. The spatial
configuration of the spin distribution should be complicated
by actual boundary conditions. In particular, the three-vector
nature of spins implies the rich configurations of spin textures.
An interesting result is that the external magnetic field actually
weakens the ferromagnetism instability. If the spin polarization
is aligned by the external field, the Landau interaction matrix
changes to Eq. (28). The magnitude of the negative eigenvalue
is significantly smaller than that of Eq. (26). As a result, an
infinitesimal external field cannot align the spin polarization
to be uniform, but a finite amplitude is needed.

For simplicity, we only consider ferromagnetism with a
single plane-wave vector �q along the z axis, then the spin
polarization spirals in the xy plane. Since q ∼ 1/L, we can
still treat a uniform spin polarization over a distance large
comparable to the microscopic length scale. Without loss
of generality, we set the spin polarization along the x axis.
As shown in Ref. 24, ferromagnetism induces ferronematic
ordering. The induced ferronematic ordering is also along
the x axis, whose spin-orbit coupling can be obtained based
on Eq. (37) by a permutation among components of �k
as H ′

so(�k) ∝ (k2 − 3k2
x)σx − 3kx(kyσy + kzσz). According to

Eq. (27), ferromagnetism and ferronematic orders are not
strongly hybridized, the energy scale of the ferronematic SO
coupling is about 1 order smaller than that of ferromagnetism.
An interesting point of this ferromagnetism is that it distorts
the spherical shape of the Fermi surface as pointed by Fregoso
and Fradkin.24 This anisotropy will also affect the propagation
of Goldstone modes. Furthermore, spin waves couple to the
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oscillation of the shape of Fermi surfaces bringing Landau
damping to spin waves. This may result in non-Fermi liquid
behavior for fermion excitations and will be studied in a
later paper. This effect in the nematic symmetry-breaking
Fermi liquid state has been extensively studied before in the
literature.46–51

The next subleading instability is in the J = 1− channel
with L = 1 and S = 1 as shown in Eq. (23), which is a spin-
current channel. The generated order parameters are spin-orbit
coupled. For the channel of Jz = 0, the generated SO coupling
at the single-particle level exhibits the three-dimensional (3D)
Rashba type as

Hso,1− = |nz|
∑

k

ψ†
α(�k)(kxσy − kyσx)αβψβ(�k), (38)

where |nz| is the magnitude of the order parameter. The same
result was also obtained recently in Ref. 44. In the absence
of spin-orbit coupling, the L = S = 1 channel Pomeranchuk
instability was studied in Refs. 52 and 53, which exhibits the
unconventional magnetism with both isotropic and anisotropic
versions. They are particle-hole channel analogies of the
p-wave triplet Cooper pairings of 3He isotropic B and
anisotropic A phases, respectively. In the isotropic unconven-
tional magnetic state, the total angular momentum of the order
parameter is J = 0, which exhibits the �k · �σ -type spin-orbit
coupling. This spin-orbit coupling is generated from interac-
tions through a phase transition and, thus, was denoted as the
spontaneous generation of spin-orbit coupling. In Eq. (38),
the spin-orbit coupling that appears at the mean-field single-
particle level cannot be denoted as spontaneous because the
magnetic dipolar interaction possesses the spin-orbit nature.
Interestingly, in the particle-particle channel, the dominant
Cooper pairing channel has the same partial-wave property
of L = S = J = 1. 37

The instability in the J = 1− (spin-current) channel is
weaker than that in the 1+ (ferromagnetism) channel because
the magnitude of Landau parameters is larger in the former
case. The 1− channel instability should occur after the appear-
ance of ferromagnetism. Since spin-current instability breaks
parity, whereas, ferromagnetism does not, this transition is a
genuine phase transition. For simplicity, we consider applying
an external magnetic field along the z axis in the ferromagnetic
state to remove the spin texture structure. Even though the J =
1+ and 1− channels share the same property under rotation
transformation, they do not couple at the quadratic level
because of their different parity properties. The leading-order
coupling occurs at the quartic order as

δF = β1(�n · �n)(�S · �S) + β2|�n × �S|2, (39)

where �n and �S represent the order parameters in the J = 1−
and 1+ channels, respectively. β1 needs to be positive to keep
the system stable. The sign of β2 determines the relative
orientation between �n and �S. It cannot be determined purely
from the symmetry analysis but depends on microscopic
energetics. If β2 > 0, it favors �n ‖ �S, and �n ⊥ �S is favored
at β2 < 0.

V. THE SPIN-ORBIT COUPLED COLLECTIVE MODES

In this section, we investigate another important feature of
the Fermi liquid, the collective modes, which again exhibit the
spin-orbit coupled nature.

A. Spin-orbit coupled Boltzmann equation

We employ the Boltzmann equation to investigate the
collective modes in the Fermi liquid state,43

∂

∂t
n(�r,�k,t) − i

h̄
[ε(�r,�k,t),n(�r,�k,t)]

+ 1

2

∑
i

{
∂ε(�r,�k,t)

∂ki

,
∂n(�r,�k,t)

∂ri

}

− 1

2

∑
i

{
∂ε(�r,�k,t)

∂ri

,
∂n(�r,�k,t)

∂ki

}
= 0, (40)

where nαα′ (�r,�k,t) and εαα′ (�r,�k,t) are the density and energy
matrices for the coordinate (�r,�k) in the phase spaceand [,] and
{,} mean the commutator and anticommutator, respectively.
Under small variations in nαα′ (�r,�k,t) and εαα′ (�r,�k,t),

nαα′ (�r,�k,t) = n0(k)δαα′ + δnαα′ (�r,�k,t),

εαα′ (�r,�k,t) = ε(k)δαα′ +
∫

d3k′

(2π )3
fαα′,ββ ′ (k̂,k̂′)δnββ ′ (k̂′),

(41)

the above Boltzmann equation can be linearized. Plugging the
plane-wave solution of

δnαα′ (�r,�k,t) =
∑

q

δnαα′ (�k)ei(�q·�r−ωt), (42)

we arrive at

δnαα′ (k̂) − 1

2

cos θk

s − cos θk

∑
ββ ′

∫
d�k′

× N0

4π
fαα′,ββ ′ (k̂,k̂′)δnββ ′(k̂′) = 0, (43)

where s is the dimensionless parameter ω/(vf q). The prop-
agation direction of the wave vector �q is defined along the z

direction.
In the spin-orbit decoupled basis defined as δnLmSsz

in
Sec. III B, the linearized Boltzmann equation becomes

δnLmSsz
+ �LL′;m(s)FL′m′Ssz;L′′m′′Ss ′′

z
δnL′′m′′Ss ′′

z
= 0, (44)

where �LL′(s) is equivalent to the particle-hole channel Fermi
bubble in the diagrammatic method as

�LL′;m(s) = −
∫

d�k̂Y
∗
Lm(k̂)YL′m(k̂)

cos θk

s − cos θk

. (45)

For later convenience, we present �LL′;m in several channels
of LL′ and m as follows:

�00;0(s) = 1 − s

2
ln

∣∣∣∣1 + s

1 − s

∣∣∣∣ + i
π

2
s�(s < 1),

�10;0(s) = �01;0 =
√

3s�00;0(s), (46)

�11;0(s) = 1 + 3s2�00;0(s),

�11;1(s) = �11;−1(s) = −1

2
[1 − 3(1 − s2)�00;0(s)].
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Equation (44) can be further simplified by using the spin-
orbit coupled basis δnJJz;LS defined in Sec. III B,

δnJJz;LS+
∑

J ′;LL′
KJJzLS;J ′JzL′S(s)FJ ′JzL′S;J ′JzL′′SδnJ ′JzL′′S = 0,

(47)

where the matrix kernel KJJzLS;J ′JzL′S reads

KJJzLS;J ′JzL′S(s)

=
∑
msz

〈LmSsz|JJz〉〈L′mSsz|J ′Jz〉�LL′;m(s). (48)

B. The spin-orbit coupled sound modes

Propagating collective modes exist if Landau parameters
are positive. In these collective modes, interactions among
quasiparticles rather than the hydrodynamic collisions provide
the restoring force. Because only the spin channel receives
renormalization from the magnetic dipolar interaction, we only
consider spin-channel collective modes. The largest Landau
parameter is in the (1+001) channel in which the spin oscillates
along the direction of �q. The mode in this channel is the
longitudinal spin zero sound. On the other hand, due to the
spin-orbit coupled nature, the Landau parameters are negative
in the transverse spin channels of (1+ ± 1 0 ± 1), and thus,
no propagating collective modes exist in these channels. The
hybridization between (1+001) and (1+021) is small as shown
in Eq. (25), and the Landau parameter in the (1+021) channel is
small, thus, this channel also is neglected below for simplicity.

Because the propagation wave vector �q breaks the parity
and 3D rotation symmetries, the (1+001) channel couples
to other channels with the same Jz. As shown in Eq. (47),
the coupling strengths depend on the magnitudes of Landau
parameters. We truncate Eq. (47) by keeping the orbital
partial-wave channels of L = 0 and L = 1 because Landau
parameters with orbital-partial waves L � 2 are negligible.
There are three channels with L = S = 1 as (0−011), (1−011),
and (2−011). We further check the symmetry properties of
these four modes under the reflection with respect to any plane
containing �q. The mode of (1−011) is even, and the other three
are odd, thus, it does not mix with them. The Landau parameter
in the (2−011) channel is calculated as π

20λ, which is 1 order
smaller than those in (1+001) and (1−001), thus, this channel
is also neglected. We only keep these two coupled channels
(1+001) and (1−001) in the study of collective spin excitations.

The solution of the two coupled modes reduces to a 2 × 2
matrix linear equation as(

1 + �00;0(s)F1001;1001 s�00;0(s)F0011;0011

s�00;0(s)F1001;1001 1 + �00;0(s)F0011;0011

)

×
(

δn1001

δn0011

)
= 0, (49)

where the following relations are used:

K1001;1001(s) = �00;0(s),

K1001;0011(s) = K0011;1001(s)

= 〈0010|10〉〈1010|00〉�01;0(s)

= s�00;0(s),

K0011,0011(s) =
∑
m

|〈1m1 − m|00〉|2�11;m(s)

= 1

3
�11;0(s) + 2

3
�11;1(s)

= �00;0(s). (50)

The condition of the existence of nonzero solutions of Eq. (49)
becomes

(1 − s2)�2
00;0(s) + 2�00;0(s)

F+
F 2×

+ 1

F 2×
= 0, (51)

where F+ = (F1001:1001 + F0011;0011)/2 and F× =√
F1001:1001F0011;0011.
Let us discuss several important analytical properties of

its solutions. In order for collective modes to propagate
in Fermi liquids, its sound velocity must satisfy s > 1,
otherwise it enters the particle-hole continuum and is damped,
a mechanism called Landau damping. We can solve Eq. (51)
as

�±
00;0(s) =

F+ ±
√

F 2+ + (s2 − 1)F 2×
(s2 − 1)F 2×

. (52)

Only the expression of the �−
00;0(s) is consistent with s > 1 and

is kept. The other branch has no solution of the propagating
collective modes.

Let us analytically check two limits with large and small
values of λ, respectively. In the case of 0 < λ  1 such that
s → 1 + 0+, Eq. (51) reduces to

�00;0(sλ1) ≈ 1 − 1

2
ln 2 + 1

2
ln(s − 1) = − 1

2F+
. (53)

Its sound velocity solution is

sλ1 ≈ 1 + 2e−2(1+1/2F+) = 1 + 2e−2−12/7πλ. (54)

The eigenvector can be easily obtained as 1√
2
(1,1)T , which is

an equal mixing between these two modes. On the other hand,
in the case of λ � 1, we also expect s � 1, and thus, Eq. (51)
reduces to

�00;0(sλ�1) ≈ − 1

sF×
= − 1

3s2
, (55)

λ

FIG. 1. (Color online) The sound velocity s in the unit of vf vs
the dipolar coupling strength λ. At 0 < λ  1, s(λ) ≈ 1 + 0+. On
the order of λ � 1, s(λ) becomes linear with the slope indicated in
Eq. (56).
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1

0
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k /ky       F

k /kz F

FIG. 2. (Color online) The spin configuration [Eq. (57)] of
the zero-sound mode over the Fermi surface shows hedgehog-
type topology at λ = 10. The common sign of u1 and u2 is chosen to
be positive, which gives rise to the Pontryagin index +1. Although the
hedgehog configuration is distorted in the z component, its topology
does not change for any values of λ describing the interaction strength.

whose solution becomes

sλ�1 ≈ F×
3

= π

3
√

3
λ. (56)

In our case, F1001 is larger than F0011 but is on the same order.
The eigenvector can be solved as 1√

2F+
(
√

F0011,
√

F1001)T in
which the weight of the (0011) channel is larger.

The dispersion of the sound velocity s with respect to
the dipolar interaction strength λ is solved numerically as
presented in Fig. 1. Collective sound excitations exist for
all the interaction strengths with s > 1. In both limits of
0  λ  1 and λ � 1, the numerical solutions agree with the
above asymptotic analysis of Eqs. (54) and (56). In fact, the
linear behavior of s(λ) already appears at λ ∼ 1, and the slope
is around 0.6. For all the interaction strengths, the (1+001) and
(0−011) modes are strongly hybridized.

This mode is an oscillation of spin-orbit coupled Fermi
surface distortions. The configuration of the (0−011) mode ex-
hibits an oscillating spin-orbit coupling of the �k · �σ type. This

is the counterpart of the isotropic unconventional magnetism,
which spontaneously generates the �k · �σ -type coupling.52,53

The difference is that, here, it is a collective excitation rather
than an instability. It strongly hybridizes with the longitudinal
spin mode. The spin configuration over the Fermi surface can
be represented as

�s(�r,�k,t) =
⎛
⎝u2 sin θ�k cos φ�k

u2 sin θ�k sin φ�k
u2 cos φ�k + u1

⎞
⎠ei(�q·�r−sqvf t), (57)

where (u1,u2)T is the eigenvector for the collective mode.
We have checked that, for all the values of λ, |u2| > |u1| is
satisfied with no change in their relative sign, thus, the spin
configuration as shown in Fig. 2 is topologically nontrivial with
the Pontryagin index ±1, which periodically flips the sign with
time and the spatial coordinate along the propagating direction.
It can be considered as a topological zero sound.

VI. CONCLUSIONS

To summarize, we have presented a systematic study on
the Fermi liquid theory with the magnetic dipolar interaction,
emphasizing its intrinsic spin-orbit coupled nature. Although
this spin-orbit coupling does not exhibit at the single-particle
level, it manifests in various interaction properties. The Landau
interaction function is calculated at the Hartree-Fock level and
is diagonalized by the total angular momentum and parity
quantum numbers. The Pomeranchuk instabilities occur at
the strong magnetic dipolar interaction strength generating
effective spin-orbit coupling in the single-particle spectrum.

We have also investigated novel collective excitations in the
magnetic dipolar Fermi liquid theory. The Boltzmann transport
equations are decoupled in the spin-orbit coupled channels. We
have found an exotic collective excitation, which exhibits spin-
orbit coupled Fermi surface oscillations with a topologically
nontrivial spin configuration, which can be considered as a
topological zero-sound-like mode.
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