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How superconductivity emerges in the vicinity of an antiferromagnetic insulating state is a long-standing issue
of strong correlation physics. We study the transition from an antiferromagnetic insulator to a superconductor
by hole doping based on a bilayer generalization of a Hubbard model. The projector quantum Monte Carlo
simulations are employed, which are sign problem free both at and away from half filling. An anisotropic Ising
antiferromagnetic Mott insulating phase occurs at half filling, which is weakened by hole doping. Below a critical
doping value, antiferromagnetism coexists with the singlet superconductivity, which is a pairing across each rung
with an extended s-wave symmetry. As doping further increases, the antiferromagnetic order vanishes, leaving
only a superconducting phase. These results provide important information on how superconductivity appears
upon doping the parent Mott-insulating state.

DOI: 10.1103/PhysRevB.106.054510

I. INTRODUCTION

The study on strongly correlated electron systems is a
central topic of condensed matter physics for exploring novel
states of matter. In the vicinity of the antiferromagnetic (AF)
insulating phase, unconventional superconducting (SC) states
appear by doping or applying pressure to systems of heavy-
fermion materials [1], high Tc cuprates [2], iron pnictides [3],
and organic superconductors [4]. In the past several decades,
the doped Mott insulators and the consequential competitions
among antiferromagnetism, superconductivity, and charge or-
derings have been extensively studied with significant efforts
from various different perspectives [5–13].

How superconductivity arises by doping Mott insulators
is an outstanding problem of condensed matter physics. Due
to its nonperturbative nature, sufficiently accurate numerical
methods are essential to resolve small energy differences
among competing orders [11–14]. Nevertheless, exact di-
agonalizations are limited to small system sizes due to
the exponential growth of the many-body Hilbert space
[15]. The density-matrix-renormalization group [16] and
tensor-network methods [17] have been successfully applied
to two-dimensional (2D) spin models [18] and quasi-one-
dimensional fermionic ladder systems [19,20]. However, their
applications to 2D fermionic systems are just beginning
[13,21]. The results of the variational Monte Carlo method de-
pend on the input trial wave functions [22]. The auxiliary field
quantum Monte Carlo (QMC) method [23,24] is unbiased,
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but it suffers from the notorious sign problem when doping
away from half filling [25]. Once the sign problem occurs,
the numeric errors grow exponentially as enlarging the sys-
tem size and lowering the temperature, which usually plagues
simulations, corresponding to a regime of maximal numerical
difficulty in computational science for decades [11].

Recently, progress has appeared to employ the auxiliary
field QMC method to study a spin-fermion model [26], which
describes the low energy hot-spot fermionic excitations and
yields the d-wave-like pairing symmetry [27]. This model
is designed to be sign-problem free based on the previ-
ously proved Kramers-invariant decomposition by one of
the authors and Zhang [28]. In such a decomposition, the
Hubbard-Stratonovich (HS) transformation to fermion inter-
actions is formulated in a Kramers invariant way, i.e., the
fermion matrix in any HS field configuration satisfying the
Kramers symmetry. Its determinant, working as the statis-
tical weight, is a product of complex-conjugate pairs and
thus positive definite. Developments along this line mainly
follow the hot-spot dominated pairing mechanism [29–31].
However, these models begin with a metallic normal state
far away from the Mott physics. For microscopic models
such as the Hubbard-like ones exhibiting Mott physics at half
filling, QMC simulations contribute significantly to the study
of pairing mechanisms [32,33]; nevertheless, they often suffer
from the notorious sign problem upon doping. It is desirable to
simulate the emergence of superconductivity by doping Mott
insulators through QMC simulations in a sign-problem free
way.

In this article, we investigate the competition between anti-
ferromagnetism and superconductivity by doping the parent
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FIG. 1. Generalized SZH model is defined on a bilayer square
lattice. Its parameters include the intra- and interlayer hoppings of
t‖ and t⊥, respectively, the on-site Hubbard interaction U , the in-
teractions between two sites along each rung with V in the charge
channel, and J⊥ and Jz of the AF superexchanges along the x(y) and
z directions, respectively.

2D Mott insulators. As an effective model, we employ the
Scalapino-Zhang-Hanke (SZH) model by generalizing it to
a bilayer version. It is a Hubbard-like model augmented by
charge and spin-exchange interactions across each rung con-
sisting of two sites. The explicit spin exchange favors both AF
and SC, and thus provides a platform to study their competi-
tion, reminicient of the t-J model. The advantage of the SZH
model is that, in a wide range of interaction parameters, it
satisfies the criterion of the Kramers invariant decomposition
for QMC simulations [28] and hence is sign-problem free
at arbitrary electron fillings. This enables the possibility to
study the transition from the AF insulating state to the SC
state in a numerically exact manner; that is, any accuracy
can be achieved within a polynomial time. At half filling, the
ground state is either an AF insulator in the case with the
Ising anisotropy or a rung-singlet Mott phase with the SU(2)
invariance. Upon hole doping, the AF ordering is weakened
and finally suppressed when the doping level x > xc ≈ 0.11.
Meanwhile, the extended s-wave SC order grows up away
from half filling and coexists with the AF order at 0 < x < xc.

II. MODEL AND QMC SIMULATIONS

The SZH model [34], originally defined for a two-leg lad-
der, is an extended Hubbard model for studying competing
orders. We further generalize it to a bilayer square lattice as
sketched in Fig. 1,
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where the electron annihilation operators in the upper and
lower layers are denoted as c and d , respectively. Equation (1)
consists of the intra- and interlayer nearest-neighboring hop-
ping terms of t‖ and t⊥, respectively, and t‖ is the energy unit
set as 1. The interaction terms include the on-site Hubbard
interaction U and the interactions between two sites along
each vertical rung: V is the charge channel interaction; J⊥ and
Jz are the transverse and longitudinal spin exchanges, respec-
tively. The in-plane AF correlation is intermediated through
the second order perturbation theory. For the isotropic case
with J⊥ = Jz, the system enters the rung singlet phase at half
filling when the superexchange interaction across each rung
is larger than the in-plane one which is perturbatively small.
We first consider the case with the Ising anisotropy by setting
Jz > J⊥, which stabilizes the AF long-range order along the z
direction at half filling. The AF parent insulating state is then
doped for achieving the SC phase.

We will use Eq. (1) for studying a hard-core strong corre-
lation problem in 2D on how superconductivity emerges by
doping Mott insulators. The major advantage is that such a
model will be later shown to be QMC sign-problem free in
a large parameter region; hence it can be studied in a numeri-
cally exact way. Furthermore, it can be mapped to a monolayer
two-orbital model [35,36] with the two orbitals equivalent to
the upper and lower layers, respectively. Multiorbital models
have been widely studied in strongly correlated systems such
as iron-based superconductors [37]. It can also be mapped
to a spin- 3

2 fermionic Hubbard model [28,38–40] by defining
ψi = [ci↑, ci↓, di↑, di↓]t ,

H = −t||
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where

ni = ψ
†
i ψi, na

i = 1
2ψ

†
i �aψi, (3)

and the five � matrices are the rank-2 Clifford algebra, sat-
isfying {�a, �b} = 2δab with 1 � a < b � 5, as defined in
Appendix 1 following the convention in Ref. [38]. The in-
teraction parameters in the two different representations of
Eq. (1) and Eq. (2) are related by

4gc = J⊥
2

+ Jz

4
− U − 3V,

g1,5 = J⊥
2

+ Jz

4
− U + V,

g2,3 = J⊥
2

− Jz

4
+ U − V,

g4 = −J⊥
2

+ 3Jz

4
+ U − V. (4)

In Eq. (2), all the interaction terms are expressed in Kramers
invariant operators ni and na

i , which satisfy

T niT −1 = ni, T na
i T −1 = na

i , (5)

and the Kramers transformation is defined as T = �1�3C
(C means complex conjugate). T is the usual time-reversal
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transformation followed by switching the upper and lower
layers.

When all the coupling constants gc and ga (1 � a � 5)
are non-negative, the HS decomposition can be performed
in a Kramers invariant way, such that the auxiliary field
QMC is free of the sign problem [28,38–40]. The discrete
HS decomposition for the four-fermion interaction is per-
formed in an exact way as shown in Appendix 2. Roughly
speaking, gc favors the charge-density-wave (CDW) order and
g1,5 favors the rung current or bond-wave order, respectively
[39], while g2,3,4 favors the AF order. For simplicity, we
set gc = g1 = g5 = 0 for studying the antiferromagnetism-
superconductivity transition. In practice, we have chosen
U = 5

2 , J⊥ = 1, Jz = 8, V = t⊥ = 0, corresponding to g4 =
8g2 = 8g3 = 8. Our QMC simulations employ the projector
scheme working at zero temperature with the projection time
β = 4L and the discrete imaginary time slice �τ = 0.1. The
results show convergences with respect to β and �τ as shown
in Appendix 3, respectively [41].

III. QMC RESULTS

We have performed QMC calculations on 2 × L × L lat-
tices with L up to 12. A larger size with L > 12 is technically
difficult because of the complicated matrix structures for the
general interaction parameters, which significantly reduces
the efficiency of the fast update algorithm [42], even though
our results show clearly a transition from the half filled AF
insulating phase to the singlet SC phase upon doping.

We first present the QMC simulation results of the struc-
ture factors, defined as the equal-time correlations, F (O) =
L2〈O†O〉, where O represents a physical observable. In the
magnetic channels, O is chosen as

Nz = 1

L2

∑
i

n4
i (−1)i, Nx(y) = 1

L2

∑
i

n2(3)
i (−1)i (6)

for the AF order along the z direction (AFz) and that along
the x(y) direction (AFx(y)), respectively. Their structure factors
FAFz and FAFx(y) are shown in Figs. 2(a) and 2(b), respectively.
The structure factors of AFz increase significantly versus L
at x < xc ≈ 0.11, indicating the tendency for ordering. In
contrast, those of AFx(y) nearly exhibit no size dependence,
showing the absence of long-range order. For the SC channel,
we have examined the extended s-wave singlet pairing order
defined as �(i) = 1√

2L2

∑
i(ci↑di↓ − ci↓di↑), i.e., the pairing

across each rung. Its structure factor FSC increases with en-
larging the sample size as shown in Fig. 2(c). If expressed
with the bonding and antibonding band operators, f e(o)

α (i) =
1√
2
[cα (i) ± dα (i)], this pairing order parameter exhibits oppo-

site signs on the f e,o bases as

�(i) = 1√
2

[ f e
↑ (i) f e

↓ (i) − f o
↑ (i) f o

↓ (i)]. (7)

Hence it is an extended s-wave pairing order parameter. We
have also measured the SC correlation within the layers, but
it is much (several orders) smaller than the interlayer one.
Hence, in the following, only the pairing across each rung
will be considered. The extended s-wave pairing symmetry is
among the promising candidates for the iron-based supercon-
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FIG. 2. QMC simulation results for the structure factors of (a)
AFz, (b) AFx(y), (c) SC, and (d) tPDW versus the doping x as varying
L. In the disordered phase for each order parameter, each structure
factor shows very small size dependence when L 
 ξ and converges
to a value proportional to the square of correlation length ξ 2, while,
in the ordered phase, it grows as L → ∞.

ductors [43]. In addition, a triplet pair-density wave (tPDW)
correlation is found, whose order parameter is defined as

OtPDW = 1√
2L2

∑
i

(ci↑di↓ + ci↓di↑)(−1)i. (8)

It tends to develop ordering at 0 < x < xc even though its
magnitudes are small, as shown in Fig. 2(d).

Next we perform the finite-size scaling for these structure
factors to extract the values of orderings in the thermodynamic
limit as shown in Fig. 3 [44]. It is based on the scaling hypoth-
esis F (L)/L2 = a + b/L + cξ 2/L2 [45], and such a scaling
method and its generalizations to general polynomials are
widely used in literature [46–48].

At half filling (x = 0), only the AFz order exhibits a long-
range ordering, while the SC order extrapolates to zero. At a
small doping level with x = 1

16 , the AFz order still survives
but its value is suppressed accompanied by the emerging of
the SC order. As the doping level x increases to 1

8 and above,
the AFz order vanishes, leaving a pure rung-singlet SC order.
The existences of the SC and AFz long-range orders are also
evidenced by checking the decay patterns of the two-point
correlation functions in real space as shown in Appendix 4. In
fact, their coexistence is widely seen experimentally such as in
various heavy fermion systems [49,50]. All the above results
are summarized in the phase diagram as shown in Fig. 4. The
AFz order exists in the region of 0 < x < xc with xc ≈ 0.11
and the SC order appears immediately upon doping starting
from zero.
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FIG. 3. Structure factors F/L2 vs 1/L for both the AFz and SC
orders. They are plotted at (a) x = 0, (b) x = 1

16 , (c) x = 1
8 , and (d)

x = 1
4 , respectively. The dashed lines are polynomial fittings to the

QMC data from L = 6 to L = 12.
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FIG. 4. (a) Extrapolation of F/L2 = 〈O†O〉 in the limit of L →
∞ versus x, where O represents operators for the AFz, and SC
order parameters. The AFz ordering is suppressed beyond a critical
doping xc ≈ 0.11 and the SC order coexists with the AFz one at small
dopings 0 < x < xc. (b) The single particle gap �1p at all doping
levels and the spin gap �AFz at x > xc.
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FIG. 5. QMC simulations for the SU(2) symmetric model. The
finite size scalings of the structure factors F/L2 of the AF and SC
orders, and the single-particle gap �1p at half filling (a) and the 1/16
doping (b). The scales for �1p are along the axes on the right side of
(a) and (b).

An interesting observation shown in Fig. 2(d) is that the
tPDW tends to develop within 0 < x < xc, where the AFz and
SC orders coexist. Based on the symmetry principle, there
exists a coupling among these three orders constructed as
Lt pdw = g(Nz�

†OtPDW + H.c.), where g is an effective cou-
pling constant. In the coexistence regime, where both Nz and
� are finite, they combine as an external field to induce
the tPDW order although its magnitude is too weak for an
accurate identification. Similar to the SO(5) theory [9], the
transition from the AFz ordering state to the SC state can be
unified by a hidden SO(3) algebra structure: the total particle
number N , OtPDW , and O†

tPDW form the generators of a pseu-
dospin SO(3) group. Recently, the pair-density wave, either
static or fluctuating, has received considerable attention due
to its potential relation to the CDW and nematic orders in the
pseudogap region of high Tc cuprates [10,51–54].

We next study the excitation gaps by calculating the
imaginary-time-displaced correlation functions

χ (τ ) = 〈Tτ O(τ )O†(0)〉, (9)

where Tτ means time ordering. The long-time behavior of
χ (τ ) is related to the excitation gap �O. As explained in
Appendix 5, we measure the mean gap defined as �O =
(EO + EO† − 2E0)/2, where E0 is the ground state energy
and EO (EO† ) gives the lowest energy excited by O(O†). This
gap can be extracted from χ (τ )χ (−τ ) ∼ e−2�Oτ for τ → ∞.
For the single-particle gap, O is chosen as ψα with α = 1–4,
which yields the diagonal terms of the single-particle Green’s
function Gαα (τ ). We use the averaged results of Gαα (τ ) to
yield the single-particle gap �1p as plotted in Fig. 4(b). In
the whole phase diagram, the single-particle excitations are
all gapped and �1p reaches the order of the band width in
the AF order dominated region, indicating the existence of a
Mott gap. We also calculate the spin gap �AFz associated with
O = Nz in the spin disordered region, which is also plotted in
Fig. 4(b). It grows up at x > xc consistent with the vanishing
of the AFz order.

We briefly discuss the consequence if the SU(2) symmetry
is preserved. The QMC simulations are performed by setting
g2,3,4 = 16

3 and also gc = g1,5 = 0, which corresponds to the
case of U = 4, J⊥ = Jz = 16

3 , V = t⊥ = 0. The finite-size
scalings of the AF and SC structure factors as well as the
single-particle gap �1p at half filling and at x = 1

16 are pre-
sented in Figs. 5(a) and 5(b), respectively. The ground state
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at half filling is a Mott insulator as shown in the nonzero
single-particle gap �1p and the vanishing AF ordering extrap-
olated to the thermodynamic limit. Quantum fluctuations are
stronger in the SU(2) case than in the previously studied Ising
anisotropic one; hence the system is a valence-bond-solid
phase without symmetry breaking, i.e., the rung-singlet state.
After doping, the SC long-range order is established in the
absence of the AF order, as shown in Fig. 5(b), which is the
same as the Ising case.

IV. SUMMARY

In summary, we have performed the projector QMC sim-
ulation based on the auxiliary field method on the bilayer
SZH model, which is free of the sign problem. A quantum
phase transition occurs from an Ising anisotropic AF insulat-
ing phase or an SU(2) invariant Mott insulating phase without
the AF ordering to a rung-singlet SC phase with an extended
s-wave symmetry driven by doping. In the coexistence regime
between the AFz and SC orders, their coupling leads to an
enhanced tPDW correlation as a consequence of the symmetry
principle. This work provides a reliable reference point for
studying superconductivity and other competing orders by
doping Mott insulators. Furthermore, the present study can be
generalized to other bilayer geometries such as honeycomb or
triangular lattices which may be relevant to certain materials
and are left as future works.
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APPENDIX

We present the detailed information about the model
Hamiltonian and the quantum Monte Carlo (QMC) method,
including the definition of � matrices, the projector QMC
algorithm, the scalings of �τ and β, the calculation of ex-
citation gaps, and the spatial correlations.

1. Definition of � matrices

Following the convention in Ref. [38], we define the five �

matrices as follows:

�1 =
(

0 −iI
iI 0

)
, �2,3,4 =

(
�σ 0
0 −�σ

)
,

�5 =
(

0 I
I 0

)
, (A1)

where I and �σ are the 2 × 2 unit and Pauli matrices. They
satisfy the anticommutation relation of

{�a, �b} = 2δab. (A2)

Their commutators give rise to the 10 generators of the Sp(4)
group as

�ab = − i

2
[�a, �b] (1 � a, b � 5). (A3)

The identity matrix, �a (1 � a � 5) and �ab(1 � a < b �
5) span the complete basis for the 16 bilinear operators in the
particle-hole channel for four-component fermions defined as

ni = ψ
†
i,αψi,α,

na
i = 1

2ψ
†
i,α�a

αβψi,β ,

Lab
i = − 1

2ψ
†
i,α�ab

αβψi,β . (A4)

In the context of the bilayer model in the main text, we have

ni = c†
iσ ciσ + d†

iσ diσ ,

n1
i = − i

2
(d†

iσ ciσ − H.c.),

n5
i = 1

2 (d†
iσ ciσ + H.c.),

n2,3,4
i = c†

i,α

( �σ
2

)
αβ

ciβ − d†
i,α

( �σ
2

)
αβ

diβ, (A5)

where ni is the total particle number on the rung, n1
i and

n5
i are the bond current and bond strength along the rung,

respectively, and n2,3,4 are the bond Néel order. We define the
Kramers symmetry as

T = �1�3C, (A6)

where C is the complex conjugate. Physically, T is the com-
bination of the usual time-reversal transformation and the
flipping of the upper and lower layers. It is easy to check that
the above six bilinear operators are even under this Kramers
operations.

The other 10 bilinear operators are odd under T , which can
be organized as

Re�πi = c†
iα

( �σ
2

)
αβ

diβ + H.c.,

Im�πi = −i

[
c†

iα

( �σ
2

)
αβ

diβ − H.c.

]
,

�Si = c†
i,α

( �σ
2

)
αβ

ciβ + d†
i,α

( �σ
2

)
αβ

diβ,

Qi = 1
2 (c†

iσ ciσ − d†
iσ diσ ), (A7)

where Re�πi is the spin-channel bonding strength, Im�πi is the
spin current along the rung, �Si is the total spin of the rung, and
Qi is the charge-density-wave order of the rung.

2. Projector QMC algorithm

We adopt the projector determinant QMC method [42] to
study the model Hamiltonian shown in Eq. (1) in the main
text. The basic idea is to apply the projection operator e−βH/2

on a trial wave function |T 〉. If 〈G|T 〉 �= 0 and there exists
a nonzero gap between |G〉 and the first excited state, |G〉
is arrived at as the projection time β → ∞,

|G〉 = lim
β→∞

e−βH/2|T 〉, (A8)
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where the projection time β can be divided into M slices
with β = M�τ , and the trial wave function can be written
by filling Ne electrons,

|T 〉 =
∏

i

Ne∑
j=1

c†
j Pji|0〉. (A9)

Here i, j contains both site and flavor indices and |0〉 la-
bels the fermion vacuum. In practice, |T 〉 can be chosen as
the ground state of a free fermion Hamiltonian. The scatter-
ing matrix 〈T |e−βH |T 〉 is obtained by integrating out the
fermionic degrees of freedom,

〈T |e−βH |T 〉 =
∑
{σ }

[∏
i

γi(σi )

]
det(P†BLBL−1 . . . B1P),

(A10)

where σi labels the auxiliary discrete boson field (see below).
The scattering matrix Eq. (A10), which plays the role of the
partition function, serves as the basis of the projector deter-
minant QMC algorithm. The {σi} fields are then sampled by
using the standard Monte Carlo technique.

In order to obtain Eq. (A10), two preliminary steps are
needed. The second order Suzuki-Trotter decomposition

e−�τ (K+V ) = e−�τK/2e−�τV e−�τK/2 + o[(�τ )3] (A11)

is first used to separate the kinetic (K) and interaction (V )
terms in each time slice, and then the e−�τV term is decoupled
by using the discrete Hubbard-Stratonovich transformation,

egX 2 =
∑

σ=±1,...,±Imax

γ (σ )eλ(σ )X , (A12)

where σ is the discrete Hubbard-Stratonovich field. If eigen-
values eig(X ) = {0,±1}, the maximal value of σ , Imax can be
set as 1 [23] along with the choices of γ (σ ) and λ(σ ) as

γ (±1) = 1
2 , λ(±1) = ± cosh−1(eg). (A13)

If eig(X ) = {0,±1,±2,±3}, we need to set Imax = 2 and
choose

γ (±1) = −a(3 + a2) + d

4d
,

γ (±2) = a(3 + a2) + d

4d
,

η(±1) = ± cosh−1

{
a + 2a3 + a5 + (a2 − 1)d

4

}
,

η(±2) = ± cosh−1

{
a + 2a3 + a5 − (a2 − 1)d

4

}
,

(A14)

where a = eg and d =
√

8 + a2(3 + a2)2 [55]. In our case,
X = ψ†�2,3,4ψ , whose eigenvalues are among 0,±1,±2;
hence the latter Hubbard-Stratonovich transformation is ap-
plied.

3. �τ and β scalings

In the projector QMC algorithm, the systematic error
mainly comes from two origins: the finite time step �τ and

FIG. 6. �τ dependence of the structure factors for various order
parameters for x = 0 (a) and x = 1

4 (b) with L = 4 (solid lines) and
L = 6 (dashed lines). AFz and AFx(y) represent the antiferromagnetic
order along the z direction and that along the x or y direction, respec-
tively, and SC represents the superconducting order. The interacting
parameter values are U = 2.5, V = t⊥ = 0, J⊥ = 1, and Jz = 8.

the finite projection time β. In the following, we perform
the error analysis on both �τ and β. In this section, we
employ the parameter values for U = 2.5, J⊥ = 1, Jz = 8,
V = t⊥ = 0 for simulations below.

For the Suzuki-Trotter decomposition defined in Eq. (A11),
detailed calculation shows that its error is at the order of
max{tg2

i , t2gi}(�τ )3. In Fig. 6, scalings of the antiferromag-
netic structure factors along the z, x(y) directions and the
superconductivity structure factor vs �τ are plotted for x = 0
in (a) and x = 1

4 in (b). The slopes of these scaling lines are
nearly independent on the lattice size L for all three orders.
Therefore, we only need to check the small lattice size. Due
to the convergence of the finite �τ scaling, we use the value
of �τ = 0.1 in all the simulations.

We further check the effect of the finite projection time
β. In Fig. 7, the scalings of the antiferromagnetic structure
factors along the z and x(y) directions and the supercon-
ducting structure factor vs β are presented. For each curve,
βc is defined as the convergence projection time after which
the structural factors converge. It is shown that the antifer-
romagnetic order parameter along the x(y) direction and the
superconducting order parameter converge very quickly for
both x = 0 and x = 1/4. The corresponding βc is found to be

FIG. 7. β dependence of structure factors of various order param-
eters for x = 0 (a) and x = 1

4 (b) with L = 4 (solid lines) and L = 6
(dashed lines). The symbols and the interacting parameter values are
the same as those presented in Fig. 6.
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FIG. 8. Spatial correlation functions at different doping levels
with system size L = 4, 6, and 8. The correlation functions for the
AFz and SC orders at x = 0 are plotted in (a) and (b), respectively;
those at x = 1/16 are plotted in (c) and (d) (x = 1/18 for the case
of L = 6), respectively; those at x = 1/4 are plotted in (e) and (f),
respectively. The squares of the order parameters obtained by the
finite size scaling on the structure factors in the main text are plotted
with dashed lines for comparison.

around 8. For the antiferromagnetic order along the z direc-
tion, we set βc = 16, which should be enough for L = 4, and
βc = 24 for L = 6 as well. This indicates that βc(L) = 4L is
safe for convergence, which is taken for all the simulations
presented in the main text for accurate numeric results.

Simulations in the main text are performed on 20 cores for
each group of parameters with 500 warm-up steps and more
than 1000 steps of measurements.

4. Spatial correlations

To demonstrate the SC long-range order after doping and
its coexistence with the AFz order, we examine their spatial
correlations 〈O(0, 0)O†(r, r)〉 [56]. The results are presented
in Fig. 8 at three typical doping levels, i.e., x = 0, 1/16, and
1/4, which correspond to the cases with only the AFz order,
the coexistence of the AFz and SC orders, and only the SC
order, respectively. For the system size with L = 6, x = 1/18
is used instead due to its commensurability with the system.

For all of these doping levels, the spatial correlations satu-
rate at large distances. As L increases, the farthest correlation

FIG. 9. Imaginary time Green’s functions. G(τ ) is plotted at dif-
ferent dopings. Due to the particle-hole symmetry at half filling, the
relation of G(τ ) = −G(−τ ) is satisfied, while this symmetry is not
held away from half filling. We employ [−G(τ )G(−τ )] to extract the
mean single particle gap, plotted in (b), which shows very weak size
dependence.

functions approach the values obtained via the finite-size scal-
ings on the corresponding structure factors in the main text.
The consistency between two approaches demonstrates that
the long-range orderings of the AFz and SC are reliable.

5. Calculation of excitation gaps

As explained in the main text, we calculate the spectra
gap functions through the imaginary-time displaced correla-
tion functions χ (τ ) = Tτ 〈O(τ )O†(0)〉. Since our QMC works
in the canonical ensemble, we can only obtain the energy
difference directly through χ (τ ) ∼ e−(EO† −E0 )τ for τ → ∞
and χ (τ ) ∼ e(EO−E0 )τ for τ → −∞, where E0 is the ground
state energy and EO(EO† ) gives the lowest energy excited by
O(O†). On the other hand, the physical gap should take the
chemical potential into account, i.e., �O = EO − E0 − μNO,
where NO is the particle number of the excited states. Nev-
ertheless, the relation between particle number N and μ is
generally complicated, especially for an interacting model.
We use the average of �O and �O† as the excitation gap, in
which μ does not appear explicitly.

In Fig. 9(a), we plot the single-particle Green’s function
G(τ ) as an example to clarify our points. Only at half fill-
ing does G(τ ) show the particle-hole symmetry, i.e., G(τ ) =
−G(−τ ). Away from the half filling, the particle-hole symme-
try is broken. If we directly take the slope of log[G(τ )] versus
τ as the excitation gap, we even obtain a negative value, for
example, at x = 1/4. According to the above discussions, we
extract the mean gaps from log[−G(τ )G(−τ )], as shown in
Fig. 9(b), which show very small size dependences.
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