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Stable Fulde-Ferrell-Larkin-Ovchinnikov pairing states in two-dimensional
and three-dimensional optical lattices
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We present the study of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing states in the p-orbital bands in
both two- and three-dimensional optical lattices. Due to the quasi-one-dimensional band structure which arises
from the unidirectional hopping of the orthogonal p orbitals, the pairing phase space is not affected by spin
imbalance. Furthermore, interactions build up high-dimensional phase coherence which stabilizes the FFLO
states in 2D and 3D optical lattices in a large parameter regime in the phase diagram. These FFLO phases are
stable with the imposition of the inhomogeneous trapping potential. Their entropies are comparable to the normal
states at finite temperatures.
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The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases
are a class of exotic Cooper pairing states exhibiting
nonzero center-of-mass momenta [1–4], which occur in
spin imbalanced systems with mismatched Fermi surfaces.
However, such states are difficult to realize in solid-state
systems. The strong orbital effects of external magnetic
fields often suppress Cooper pairing before sizable spin
polarizations are reached. Moreover, because only small
fractions of the mismatched Fermi surfaces can participate
pairing, the FFLO states are usually fragile in 2D and 3D
systems. In spite of indirect evidence in various heavy fermion
compounds and organic superconductors [e.g., CeCoIn5 [5]
and λ-(bis(ethylenedithio)tetraselenafulalene)2FeCl4 [6]], the
FFLO states remain elusive.

In the cold atom community, the search for the FFLO
pairing states has been attracting considerable interest [7–27].
Spin imbalanced two-component fermion systems have been
prepared free of the orbital effects of magnetic fields.
However, the problem of the limited pairing phase space
remains; thus, phase separations are observed experimentally
instead of the FFLO pairing in 3D traps [26,28]. This
difficulty is avoided in 1D systems whose Fermi surfaces
are points; thus, spin imbalance does not affect the pair-
ing phase space. Considerable progress has been made
in quasi-1D systems of coupled optical tubes in Hulet’s
group [7], in which the partially polarized central regions
in the tubes are observed in agreement with the prediction
of the Bethe ansatz solution. However, due to the intrin-
sic strong quantum fluctuations in 1D, the pairing density
waves, which are the smoking gun evidence for the FFLO
states, cannot be long-range ordered and thus are difficult to
observe.

On the other hand, orbital physics with cold atoms in optical
lattices has received considerable attention, which gives rise
to a variety of new states of matter with both cold bosons and
fermions [29–34]. In particular, it has been recently shown
that the px,y-orbital band in the honeycomb lattice exhibits
different properties from its pz-orbital counterpart of graphene.
These include the strong correlation effects in the flat bands
(e.g., Wigner crystallization [35] and ferromagnetism [36]),

quantum anomalous Hall states [37], and the heavily frustrated
orbital exchange physics [38,39].

In this article, we combine the realization of the FFLO states
and the study of orbital physics with cold atoms together.
The FFLO states can be stabilized in the p-orbital bands
in both 2D square and 3D cubic optical lattices. Different
from the metastable p-orbital boson systems [29,34], the
p-orbital systems filled with fermions with the fully filled
s band are stable due to Pauli’s exclusion principle. This work
is a natural high-dimensional generalization of the current
experiments in Hulet’s group [7]. The px(py,pz)-orbital bands
behave like orthogonally crossed quasi-1D arrays due to
their highly unidirectional hoppings. The onsite negative
Hubbard interactions further build up high-dimensional phase
coherence over the entire lattice. Our system combines the
advantages of the large pairing phase space of quasi-1D
systems and the high-dimensional phase coherence.

The anisotropic p-orbital bands possess the quasi-1D-like
structures with perfect nesting at general fillings and spin
imbalance. For simplicity, we start with the 2D case. Similar
physics applies to the 3D cubic lattice as well. We present the
p-band Hamiltonian as

H0 = t‖
∑

�r,α
{p†

x,α(�r)px,α(�r + êx) + p†
y,α(�r)py,α(�r + êy)}

−µ
∑

�r,α
nα(�r) − h

2

∑

�r
{n↑(�r) − n↓(�r)}, (1)

where α refers to spin index, h controls spin imbalance,
and nα(�r) = p

†
x,α(�r)px,α(�r) + p

†
y,α(�r)py,α(�r) is the particle

number of spin α. Only the longitudinal σ -bonding (t‖) term is
kept which describes the hopping between p orbitals along the
bond direction as depicted in Fig. 1(a). t‖ is positive because of
the odd parity of the p orbitals. The transverse π -bonding term
with the hopping integral t⊥ is neglected, which describes the
hopping between p orbitals perpendicular to the bond direction
as depicted in Fig. 1(b).

In spite of the 2D lattice structure, the p-orbital band
structure of Eq. (1) remains quasi-1D-like as depicted in
Fig. 2(a). The px(py)-orbital band disperses along the x(y)
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FIG. 1. (Color online) (a) and (b) describe the longitudinal
hopping t‖ term and the transverse t⊥ term of the the p orbitals,
respectively. (c) Pairing hopping term in Eq. (2) locks the phases of
two onsite intraorbital pairings in the px and py orbitals.

direction, respectively, but does not along the y(x) direction.
The Fermi surfaces are vertical (px) and horizontal (py)
lines across the entire Brillouin zone. For the arbitrary filling
and spin imbalance, the Fermi surfaces of spin-up and -
down fermions have the perfect nesting. Consequentially, spin
imbalance does not suppress the pairing phase volume. The
high-dimensional p-orbital systems have the same advantage
as that in 1D systems.

The important feature of the 2D p-orbital systems for the
FFLO states is that the onsite negative Hubbard interactions
build up the 2D phase coherence. The interactions are
represented in the standard two-orbital Hubbard model as

Hint =
∑

�r
U [nx↑(�r)nx↓(�r) + ny↑(�r)ny↓(�r)]

−
∑

�r
J [�Sx(�r) · �Sy(�r) − 1

4
nx(�r)ny(�r)]

+
∑

�r
�[p†

x↑(�r)p†
x↓(�r)py↓(�r)py↑(�r) + H.c.], (2)

where U = g
∫

dr|ψpx,y
(�r)|4 < 0 and g is the contact interac-

tion in the s-wave scattering approximation. J and � satisfy
J = 2U

3 < 0 and � = U
3 < 0 [36]. The negative U term gives

kx

ky

f1k

f2k

−π π−π

π

−Q

Q

Q

(a)

FIG. 2. (Color online) (a) Nesting of the p-orbital Fermi surfaces
ensures that all of the Fermi surfaces are paired at a general filling
and spin imbalance. The Fermi surfaces of the px (py) orbitals are
vertical (horizontal) lines; those of the majority (minority) spins are
marked red (blue). Fermi surfaces marked with solid (dashed) lines
are paired with the center-of-mass momentum ± �Q, respectively. The
red and blue arrows represents the Fermi wave vectors of spin-up
and -down fermions participating in Cooper pairing. (b) 2D phase
diagram from the B-de G solution as chemical potential µ and the
magnetic field h with U/t‖ = −1.5.

rise to the dominant intraorbital singlet pairings in the px and
py orbitals, defined as

�x(�r) = 〈G|px↑(�r)px↓(�r)|G〉,
(3)

�y(�r) = 〈G|py↑(�r)py↓(�r)|G〉,
where |G〉 is the mean-field pairing ground states. The J term
induces the interorbital singlet pairing between px and py

orbitals. However, because the Fermi surfaces of px and py

orbitals are orthogonal, the interorbital pairing is unfavorable.
The pair hopping � term in Eq. (2) can be considered as

the internal Josephson coupling to lock the phases of two
intraorbital pairings �x and �y . As a result, the motion
of Cooper pairs are 2D-like in spite of the quasi-1D-like
single fermion hopping. To clarify the pairing symmetry, we
first consider two fermions on the same site to gain some
intuition. The s-wave Feshbach resonances forbid a spin
triplet channel and induce a spin singlet pairing. In the spin
singlet channel, their orbital wave functions are symmetric as
p2

x + p2
y , p2

x − p2
y , and pxpy , respectively. The first one has

energy U + � = 4U/3, while the later two are degenerate
with energy U − � = J = 2U/3. From this simple analysis,
we can see that the system favors pairing with p2

x + p2
y orbital

symmetry [as shown in Fig. 1(c)], while pairing with the other
two symmetries are suppressed, which can be verified by the
numerical results below.

We have performed calculations based on the self-
consistent Bogoliubov-de Gennes (B-deG) solution to study
the competition among the FFLO state, the BCS state, and
the normal state as presented in Fig. 2(b). To synchronize the
phases of �x(�r) and �y(�r) on each site, their center-of-mass
wave vectors in the FFLO states have to be the same. This
can be achieved by choosing the pair density wave vectors
along the diagonal direction ± �Q defined as �Q = (δkf ,δkf ),
where δkf = kf1 − kf2 , and kf1,2 are Fermi wave vectors of
the majority and minority spins, respectively, as indicated
in Fig. 2(a). By the symmetry of the square lattice, �Q′ =
±(δkf , − δkf ) is another possible choice of the pair density
wave vector. We consider the simplest Larkin-Ovchinnikov
(LO) states with one pair of Cooper pair momenta ± �Q, with
the sinusoidal order parameter configuration as

�x(�r) = �y(�r) = |�| cos( �Q · �r). (4)

The LO state breaks both translational and the fourfold lattice
rotational symmetries. We have performed unbiased real-space
B-de G calculations without specifying the FFLO momentum
in the initial conditions but rather starting from a configuration
with uniform pairing. The FFLO momentum Q in the above
analysis is obtained when the numerical convergence has
arrived. Compared with the phase diagram of spin-imbalanced
fermions in the s-orbital band, the FFLO phase in our p-orbital
band system exists in a much larger regime in the phase
diagram sandwiched between the fully paired BCS phase and
the fully polarized normal phase.

Next, we study a more realistic situation: the effects of
the soft confining potential on the p-orbital FFLO states,
by performing self-consistent real-space B-de G calculations.
We consider a 30 × 30 lattice with the harmonic trapping
potential Vex = A(r/a)2 where A/t‖ = 5 × 10−3, r is the
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FIG. 3. (Color online) B-de G solution of the p-orbital FFLO state
in a 30 × 30 lattice with a weak confining trap. (a) Order parameter
distribution of �x(�r) oscillates along the [1̄1] direction. (b) Spin
density distribution Sz(�r) peaks around the gap nodes.

distance from the trap center, and a is the lattice constant. The
real-space distribution of order parameter �x(�r) is shown in
Fig. 3(a) with the parameters chosen as h/t‖ = 3, U/t‖ = −3,
and µ = 0. Clearly �x oscillates along the [1̄1] direction in
agreement with the previous analysis. To verify Eq. (4), we
further calculate the difference between the pairing orders in
different orbitals. In the bulk, the relation that �x(�r) = �y(�r)
is well satisfied. The difference between �x(�r) and �y(�r) is
only important at the boundary which breaks the symmetry
between the px and py orbitals. The spin-density distribution
sz(�r) = n↑(�r) − n↓(�r) is depicted in Fig. 3(b). It peaks around
the gap nodes, which is consistent with the fact that spin
polarization suppresses Cooper pairing.

Next we discuss the effect of the small π -bonding t⊥, which
has been neglected above but always exists in realistic systems.
The t⊥ term restores the 2D nature of the Fermi surfaces and
suppresses the perfect nesting; therefore, it is harmful to the
FFLO states. Our numerical result indicates that the FFLO state
remains stable at small values of t⊥. For example, with U/t‖ =
−3, h/t‖ = 3, and µ = 0, the FFLO state survives until t⊥/t‖
reaches 0.12. Beyond this value, it changes to the normal
state through a first-order phase transition. As calculated in
Ref. [30], with the optical potential depth V0/ER ≈ 15, t‖
is at the order of 0.1ER and t⊥/t‖ ≈ 5%. Increasing optical
potential depth further suppresses t⊥; thus, there is a large
parameter regime to stabilize the FFLO states.

The physics of the FFLO states in the p-orbital bands
in the 3D cubic optical lattices is similar. The 3D p-orbital
Hamiltonian is similar to Eqs. (1) and. (2), and further
augmented by a new orbital pz. The pair density wave vectors
are along the body diagonal directions, i.e., the ±[111] or other
equivalent directions. Similar to the Eq. (4), the FFLO state in
the 3D cubic optical lattice is characterized by the sinusoidal
order parameter configuration as

�x(�r) = �y(�r) = �z(�r) = |�| cos( �Q · �r). (5)

where �Q = (±δkf , ± δkf , ± δkf ) are along the body-
diagonal directions.

In the 3D p-orbital bands, the long-range ordered BCS
and FFLO states survive at finite temperatures, and mean-
field theory works qualitatively well. We present the finite
temperature phase diagram of the competing orders at U/t‖ =
−2.4 and µ = 0 in Fig. 4(a). The FFLO state can also survive
to finite critical temperatures at the same order of Tc. We
further present the entropy S vs h for different competing

(a)

(b)

FIG. 4. (Color online) (a) Finite temperature phase diagram for
the 3D p-orbital bands with U/t‖ = −2.4 and µ = 0. Tc/t‖ = 0.84 is
the critical temperature for the BCS state. (b) Entropy density S/kB

vs h/t‖ at a finite temperature of T/t‖ = 0.4 with parameters µ = 0
and U/t‖ = −2.4.

orders at a fixed temperature T/t‖ = 0.4 in Fig. 4(b). The
FFLO state has a large value of entropy density due to the
extra unpaired majority fermions, which interpolate between
the BCS and the fully polarized normal state. This greatly
increases the accessibility of the FFLO state in the cold atom
optical lattices. The transition between the BCS and the FFLO
states is of the first order as indicated by the discontinuity of
entropy in Fig. 4(b).

At last, we discuss experimental realizations and detections.
The p-band fermion systems can be realized by first preparing
a large enough number of atoms to fully fill the s-orbital band;
thus, the extra particles will fill the p bands. The attractive
interaction can be achieved through Feshbach resonances in
lattices [7,40], whose strength can be tuned to a value that is
comparable to the band width of 4t‖ ≈ 0.5ER at V0/ER ≈ 15
[30], but is still small compared to band gaps which are around
several ER . Our work predicts a large stable parameter regime
for the FFLO states. These states can be detected by many
methods [21,23,24], such as the direct imaging of the density
profile oscillations of each of the fermion components, the rf
spectroscopy measurement on the collective modes, converting
Cooper pairs into molecules and measuring their momenta, the
shot-noise correlation of the Fermi momenta between �k and
−�k ± �Q, etc. In particular, the recent development of the in
situ imaging methods with the single site resolution [41,42]
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can be used to accurately determine the spatial oscillation of
the FFLO states.

In summary, we have studied the competing orders among
the FFLO, the BCS, and the normal states in the spin
imbalanced p-orbital band systems in both 2D and 3D. The
FFLO states are stabilized by the combined effects of the
quasi-1D Fermi surfaces and the high-dimensional phase
coherence built up by the interorbital interactions. The pairing
density wave vectors are along the diagonal directions to
facilitate the maximal interorbital pairing phase coherence.

The FFLO states are robust with many realistic experimental
effects including the confining trap, the small transverse π

bonding, and finite temperatures. It would be nice to realize
the 2D and 3D stable FFLO phases in the p-orbital bands in
optical lattices which have not been identified in solid-state
systems yet.
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