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Anisotropic vortex lattice structures in the FeSe superconductor
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In the recent work by Song et al. [Science 332, 1410 (2011)], the scanning tunneling spectroscopy experiment
in the stoichiometric FeSe revealed evidence for nodal superconductivity and strong anisotropy. The nodal
structure can be explained with the extended s-wave pairing structure with the mixture of the sx2+y2 and sx2y2

pairing symmetries. We calculate the anisotropic vortex structure by using the self-consistent Bogoliubov–de
Gennes mean-field theory. In considering the absence of magnetic ordering in the FeSe at ambient pressure,
orbital ordering is introduced, which breaks the C4 lattice symmetry down to C2, to explain the anisotropy in the
vortex tunneling spectra.
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I. INTRODUCTION

Since the first iron-based layered superconductor
La(O1−xFx)FeAs had been discovered,1 the family of iron-
based superconductors has made a huge impact in the
condensed matter physics community. These novel materials
exhibit similar phase diagrams compared to high-Tc cuprates.
The parent compound LaOFeAs has an antiferromagnetic
spin-density wave order,2 and, upon doping, superconductivity
appears. Although correlation effects are weaker in iron-based
superconductors than those in high-Tc cuprates, novel features
arise from the multiorbital degree of freedom. The orbital band
structures play a fundamental role in determining the Fermi
surface configurations and pairing structures.

Understanding pairing symmetries is one of the most
important issues in the study of iron-based superconductors.
Based on various experimental3–5 and theoretical works,6–10

the nodeless sx2y2 wave pairing has been proposed. In
momentum space, the Fermi surfaces of many iron-based
superconductors consist of hole pockets around the � point,
and electron pockets around the two M points. The signs
of the pairing order parameters on electron and hole Fermi
surfaces are opposite. The nodal lines of the gap function
have no intersections with Fermi surfaces; thus, the sx2y2

pairing is nodeless. In the itinerant picture, the Fermi surface
nesting between the hole and the electron pockets facilitates the
antiferromagnetic fluctuations which favor the sx2y2 pairing.11

In real space, an intuitive picture of the sx2y2 wave pairing
is just the next-nearest-neighbor (NNN) spin-singlet pairing
with the s-wave symmetry.6 Because the anion locations are
above or below the centers of the iron-iron plaquettes, the
NNN antiferromagnetic exchange J2 is at the same order
of the nearest-neighbor (NN) one, J1. The NNN sx2y2 wave
pairing can be obtained from the decoupling of the J2 term.
On the other hand, various experimental results have shown
signatures of nodal pairing structures.12–14 In the framework
of the s-wave pairing, nodal pairing can be achieved through
the sx2+y2 pairing.15–17 The possibility for sx2+y2 wave pairing
in iron-based superconductors has also been shown in the
functional renormalization group calculation.18

Another important aspect of the iron-based superconductors
is the spontaneous anisotropy of both the lattice and the

electronic degrees of freedom, which reduces the fourfold
rotational symmetry to twofold. For example, LaOFeAs
undergoes a structural orthorhombic distortion and a long-
range spin-density wave (SDW) order at the wave vector
(π,0) or (0,π ).2 A similar phenomenon was also detected
in NdFeAsO by using polarized and unpolarized neutron-
diffraction measurements.19 One popular explanation of the
nematicity is the coupling between lattice and the stripelike
SDW order.20,21 The SDW ordering has also been observed in
the FeTe system but with a different ordering wave vector at
(π

2 , π
2 ).22,23

Very recently, the experimental results of the FeSe super-
conductor reported by Song et al.24 indicated a pronounced
nodal pairing structure in scanning-tunneling spectroscopy.
Strong electronic anisotropy is observed through the quasi-
particle interference of the tunneling spectra at much higher
energy than the superconducting gap. The low-energy tunnel-
ing spectra around the impurity and the vortex core also exhibit
the anisotropy. The shapes of the vortex cores are significantly
distorted along one lattice axis.

The anisotropy may arise from the structural transition from
tetragonal to orthorhombic phase at 90 K. However, the typical
orthorhombic lattice distortions in iron superconductors are
on the order of 0.012 Å, which is about half a percent
of the lattice constant and only leads to a tiny anisotropy
in electronic structures.24 In contrast, the anisotropic vortex
cores and impurity tunneling spectra observed by Song et al.
are clearly at the order of 1. Therefore, these anisotropies
should be mainly attributed to the electronic origin. The
antiferromagnetic long-range order in such a system may
be a possible reason for the anisotropy. For example, it has
been theoretically investigated that the stripelike SDW order
can induce strong anisotropy in the quasiparticle interference
of the STM tunneling spectroscopy.25 However, no evidence
of magnetic ordering has been found in FeSe at ambient
pressure;26 thus, this anisotropy should not be directly related
to the long-range magnetic ordering.

On the other hand, orbital ordering is another possibility
for nematicity in transition-metal oxides. For example, orbital
ordering serves as a possible mechanism for the nematic meta-
magnetic states observed in Sr3Ru2O7,27,28 and its detection
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through quasiparticle interference has been investigated.29,30

Orbital ordering has also been suggested to lift the degeneracy
between the dxz and dyz orbitals to explain the anisotropy in
iron-based superconductors.

In this paper, we study the effect of orbital ordering on the
vortex tunneling spectra in the FeSe superconductor. The rest
of the paper is organized as follows. In Sec. II, a two-band
model Hamiltonian and the relevant band parameters are
introduced. The Bogoliubov–de Gennes mean-field formalism
is described in Sec. III. In Sec. IV, we analyze the effects of
orbital ordering on the tunneling spectra of mixed pairing of the
NN sx2+y2 wave and the NNN sx2y2 wave in the homogeneous
systems. In Sec. V, the effects of orbital ordering on the
anisotropic vortex core tunneling spectra are investigated,
which are in good agreement with experiments. Discussions
and conclusions are given in Sec. VI.

II. MODEL HAMILTONIAN FOR THE BAND STRUCTURE

For simplicity, we use the two-band model involving the
dxz and dyz orbital bands in a square lattice with each lattice
site representing an iron atom, which was first proposed in
Ref. 31. This is the minimal model describing the iron-based
superconductors, which can also support orbital ordering. The
tight-binding band Hamiltonian reads

H0 =
∑
�r,σ

{
H NN

‖,σ + H NN
⊥,σ + H NNN

σ − μn�r
}
, (1)

where

H NN
‖,σ = tNN

‖ (d†
xz,σ,�rdxz,σ,�r+x̂ + d

†
yz,σ,�rdyz,σ,�r+ŷ),

H NN
⊥,σ = tNN

⊥ (d†
xz,σ,�rdxz,σ,�r+ŷ + d

†
yz,σ,�rdyz,σ,�r+x̂),

H NNN
σ = tNNN

1 (d†
xz,σ,�rdxz,σ,�r±x̂+ŷ + d

†
yz,σ,�rdyz,σ,�r±x̂+ŷ)

+ tNNN
2 (d†

xz,σ,�rdyz,σ,�r+x̂+ŷ + d
†
yz,σ,�rdxz,σ,�r+x̂+ŷ)

+ tNNN
3 (d†

xz,σ,�rdyz,σ,�r−x̂+ŷ + d
†
yz,σ,�rdxz,σ,�r−x̂+ŷ),

(2)

where d
†
a,σ,�r denotes the creation operator for an electron with

spin σ on the da orbital at site �r; da refers to dxz and dyz orbitals;
n�r = nxz,σ,�r + nyz,σ,�r , where na,σ,�r = d

†
a,σ,�rda,σ,�r denotes the

particle number operator; μ is the chemical potential; tNN
‖

and tNN
⊥ denote the longitudinal σ bonding and transverse π

bonding between NN sites, respectively; and the three NNN
hoppings can be expressed in terms of the NNN σ and π bond-
ings tNNN

‖ and tNNN
⊥ , respectively, as tNNN

1 = 1
2 (tNNN

‖ + tNNN
⊥ ),

tNNN
2 = 1

2 (tNNN
‖ − tNNN

⊥ ), and tNNN
3 = 1

2 (−tNNN
‖ + tNNN

⊥ ). We
depict the hopping schematic of the two-band tight-binding
model Eq. (1) in Fig. 1.

By introducing the spinor �(�k) = [ψxz,σ (�k),ψyz,σ (�k)]T and
performing the Fourier transformation, the Hamiltonian in
momentum space becomes

H0 =
∑

�k
�†

a,σ (�k){Hab(�k) + ε(�k) − μδab}�b,σ (�k), (3)

FIG. 1. (Color online) The hopping schematic of the two-band
tight-binding model Eq. (1) in a unit cell. Each solid black circle repre-
sents an Fe atom. The solid arrows denote NN longitudinal σ -bonding
(red) and transverse π -bonding (green) hoppings, respectively. The
NNN intraorbital hoppings tNNN

1 are indicated by blue dotted arrows
along the ±x̂ + ŷ directions. On the other hand, the NNN interorbital
hoppings, tNNN

2 and tNNN
3 , along the x̂ + ŷ and −x̂ + ŷ directions,

respectively, are indicated by dashed cyan and pink arrows.

where a,b refer to the band index; the matrix kernel Hab(�k) is
written as(

2tNN
‖ cos kx + 2tNN

⊥ cos ky 4tNNN
3 sin kx sin ky

H.c. 2tNN
‖ cos ky + 2tNN

⊥ cos kx

)
,

andε(�k) = 2 cos kx cos ky(tNNN
‖ + tNNN

⊥ ). This two-orbital
model has also been used to study impurity resonance
states,32,33 vortex core states,34,35 and quasiparticle scattering
inference.36

To fit the Fermi surface obtained from the local-density
approximation calculations,21 we use the parameter values
below in the following discussions as

tNN
‖ = 0.8,tNN

⊥ = −1.4,tNNN
⊥ = 1.8,tNNN

‖ = 0, (4)

all of which are in units of t = 1, which is roughly at an
energy scale around 100 meV. This set of hopping integrals
shows a similar band structure, as the one Raghu et al. used.
The bandwidth is about 14. In the following discussion, we use
μ = 1.15, which corresponds to slightly hole-doped regimes.
The unfolded Brillouin zone (UBZ) embraces a hole surface
around the � point [�k = (0,0)], four hole pockets around the
X point [�k = (±π, ± π )] and four electron pockets around the
M point [�k = (0, ± π ) or (±π,0)].11,37

Our main purpose is to study the anisotropy effects in FeSe
due to the orbital ordering. Orbital ordering has been proposed
in iron-based superconductors in previous studies.38–43 Such an
ordering may arise from the interplay between orbital, lattice,
and magnetic degrees of freedom in iron superconductors. In
this paper, we are not interested in the microscopic mechanism
of spontaneous orbital ordering, but rather assume its existence
to explain the vortex tunneling spectra observed in Ref. 24.
According to the experimental data,24 strong anisotropy has
already been observed at least at an energy scale of 10 meV,
which is much larger than the pairing gap value around
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FIG. 2. (Color online) Fermi surfaces in the UBZ for (a) δε = 0
and (b) δε = 0.2. The horizontal and vertical axes denote kx and ky ,
respectively. The parameter values used are tNN

‖ = 0.8, tNN
⊥ = −1.4,

tNNN
⊥ = 1.8, tNNN

‖ = 0, and μ = 1.15. Anisotropic hole and electron
pockets are shown in (b) at the � and M points, respectively.

2 meV. Thus, when studying superconductivity, we neglect the
fluctuations of the orbital ordering but treat it as an external
anisotropy. For this purpose, we add an extra anisotropy term
into the band structure Eq. (1) as

Horb = δε
∑
�r,σ

(d†
xz,σ,�rdxz,σ,�r − d

†
yz,σ,�rdyz,σ,�r ), (5)

which makes the dxz orbital energy higher than that of dyz.
For comparison, the Fermi surfaces without and with the
anisotropy term Eq. (5) are depicted in Figs. 2(a) and 2(b),
respectively. In Fig. 2(b), with the orbital term, the distortion
of the electron and hole pockets in the x and y directions of
the Fermi surfaces appears such that the anisotropy is derived
in the iron-based superconductors.

III. THE BOGOLIUBOV–DE GENNES FORMALISM

In this section, we present the self-consistent Bogoliubov–
de Gennes (BdG) formalism based on the band structure
described in Sec. II. In principle, for this multiorbital system,
the general pairing structure should contain a matrix structure
involving both the intra- and interorbital pairings. Here for
simplicity, we only keep the intraorbital pairing, which is
sufficient to describe the anisotropy observed in the experiment
by Song et al.24

The pairing interactions including the NN and NNN pairing
are defined as

Hint = −g1

2

∑
〈�r,�r ′〉

∑
a

	̂†
a(�r,�r ′)	̂a(�r,�r ′)

− g2

2

∑
〈〈�r,�r ′〉〉

∑
a

	̂†
a(�r,�r ′)	̂a(�r,�r ′), (6)

where a is the orbital index taking values of dxz and dyz;
〈�r,�r ′〉 represents the NN bonds and 〈〈�r,�r ′〉〉 represents the NNN
bonds; g1,2 denotes the pairing interaction strengths along the
NN and NNN bonds; and 	̂a(�r,�r ′) describes the spin singlet
intraorbital pairing operator across the bond defined as

	̂a(�r,�r ′) = da,↓,�rda,↑,�r ′ − da,↑,�rda,↓,�r ′ . (7)

where �r ′ = �r + �δ. For the sx2+y2 pairing along the NN bonds,
�δ = ax̂(ŷ), whereas for the sx2y2 pairing along the NNN bonds,

�δ = ±a(x̂ + ŷ), where a is the Fe-Fe bond length, defined as
the lattice constant. In the square lattice, these two pairings
belong to the same symmetry class; thus, they naturally coexist.
After the mean-field decomposition, the Hamiltonian becomes

HMF = H0 − g1

2

∑
〈�r,�r ′〉

∑
a

	∗
a(�r,�r ′)	̂a(�r,�r ′)

− g2

2

∑
〈〈�r,�r ′〉〉

∑
a

	∗
a(�r,�r ′)	̂a(�r,�r ′) + H.c., (8)

where 	∗
a(�r,�r ′) = 〈	̂†

a(�r,�r ′)〉 is the pairing order parameter
and 〈· · ·〉 denotes the expectation value over the ground state.

The mean-field BdG Hamiltonian Eq. (8) can be diagonal-
ized through the transformation as(

ca,↑(�r)

c
†
a,↓(�r)

)
=

∑
n

(
ua,n(�r) −v∗

a,n(�r)

va,n(�r) u∗
a,n(�r)

) (
γa,n

γ
†
a,n

)
. (9)

The eigenvectors associated with En of the above BdG equa-
tions are (ua,n(�r),va,n(�r))T and the pairing order parameters
can be further obtained self-consistently as

	a(�r,�r ′) =
∑

n

(un(�r)v∗
n(�r ′) + un(�r ′)v∗

n(�r)) tanh
bEn

2
, (10)

where b = 1/kBT . After the wave functions are obtained
self-consistently, the local density of states (LDOS), which
is proportional to the conductance (dI/dV ) in the scanning
tunneling microscopy, can be further measured by

ρ(�r,E) =
∑
n,a

{|ua,n(�r)|2L(E − En) + |va,n(�r)|2L(E + En)},

(11)

where L(x) is the Lorentzian as L(x) = γ /[π (x2 + γ 2)] and
γ are the energy-broadening parameters, usually set around
1 × 10−2.

When we study the vortex lattice structure problem, the
single-particle Hamiltonian Eq. (1) is modified by the magnetic
vector potential as

H ′
0 =

∑
�ri ,�rj ,σ,a,b

ti,j ;a,be
i π

�0

∫ �ri
�rj

�A(�r)·d�r
d
†
a,σ,�ri

db,σ,�rj
, (12)

where �0 = hc/2e is the quantized flux; a,b denote orbital
indices and σ denotes the spin index; and ti,j ;a,b represents
tNN
‖ , tNN

⊥ , or tNNN
1,2,3 , depending on the corresponding bonds and

orbitals. The vector potential �A(�r) is chosen as the Landau
gauge by (Ax,Ay) = (0,Bx).

Due to the magnetic translational symmetry, we can apply
the magnetic periodic boundary conditions to form Abrikosov
vortex lattices. Each magnetic unit cell carries a magnetic flux
of 2�0, so each magnetic unit cell contains two vortices. We
choose the size of the magnetic unit cell pa × qa with p = 2q,
and the number of unit cells Nx × Ny with Ny = 2Nx . The
corresponding magnetic field is B = 2�0/pqa2 = �0/(qa)2.
In the Abrikosov vortex lattice, the translation vector is
written as �V = (Xpa,Yqa), where X = 0, . . . ,Nx − 1 and
Y = 0, . . . ,Ny − 1 are integers. The coordinate of an arbitrary
lattice site can be expressed as �R = �r + �V, where �r = (xa,ya)
denotes the coordinate of the lattice site within a magnetic unit
cell (i.e., 1 � x � p and 1 � y � q).
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Under the magnetic periodic boundary conditions, the
eigenvectors of the BdG Eqs. (9) satisfy a periodic structure
written as(

ua,n(�r + pax̂)

va,n(�r + pax̂)

)
= eiKx

(
e

2πi
y

q ua,n(�r)

e
−2πi

y

q va,n(�r)

)
,

(
ua,n(�r + qaŷ)

va,n(�r + qaŷ)

)
= eiKy

(
ua,n(�r)

va,n(�r)

)
. (13)

Here Kx = 2πX
Nx

and Ky = 2πY
Ny

represent the magnetic Bloch

wave vector on the x and y components.44 With the relation,
we can simulate vortex lattices with sizes of (Nxpa) × (Nyqa)
but reduce the computational effort by diagonalizing NxNy

Hamiltonian matrices with dimensions of 4pq rather than
directly diagonalizing a 4NxNypq Hamiltonian matrix.

IV. THE NODAL VERSUS NODELESS PAIRINGS

In this section, we investigate the behavior of the su-
perconducting gaps in the homogeneous system. Due to
the translation symmetry, the pairing order parameters are
spatially uniform, and we define 	a(�δ) = 	a(�r,�r + �δ), where
a = dxz,dyz. We start with the case in the absence of orbital
ordering, i.e., δε = 0. Due to the fourfold rotational symmetry,
not all of the pairing order parameters are independent.
For the NN bond pairing, we have 	xz(x̂) = 	yz(ŷ) and
	xz(ŷ) = 	yz(x̂) due to the s-wave symmetry. As for the NNN
bonding, a similar analysis yields the relations 	xz(x̂ + ŷ) =
	yz(−x̂ + ŷ) and 	xz(x̂ − ŷ) = 	yz(x̂ + ŷ).

Due to the multiorbital structure, generally speaking, the
pairing order parameters have the matrix structure; thus, the
analysis of the pairing symmetry is slightly complicated.
However, before the detailed calculation, we perform a
simplified qualitative analysis by considering the trace of the
pairing matrix, defined as

	(�δ) = 1
2 (	xz(�δ) + 	yz(�δ)) (14)

for both of the NN and NNN bonds. These quantities play a
major role in determining the pairing symmetry. The angular
form factor of the Fourier transform of the NN s-wave pairing
is 	sx2+y2 (kx,ky) ∝ cos kx + cos ky , and that of the NNN s-
wave pairing is 	sx2y2 (kx,ky) ∝ cos kx cos ky . Naturally 	sx2+y2

and 	x2y2 have the same phase. Otherwise there would be a
large energy cost corresponding to the phase twist in a small
length scale of lattice constant. The nodal lines of 	sx2+y2

have intersections with the electron pockets, whereas the nodal
lines of 	x2y2 do not have intersections with Fermi surfaces.
Generally speaking, the NN and NNN s-wave pairings are
mixed due to the same symmetry representation with the lattice
group as

	s±(kx,ky) = 	1(cos kx + cos ky) + 	2 cos kx cos ky. (15)

It is well known that the gap function is nodal for the NN s-
wave pairing, while it is nodeless for the NNN s-wave pairing.
However, they can mix together. Recently this aspect was
supported by a variational Monte Carlo calculation,45 where
the authors discovered that the sx2y2 -wave and sx2+y2 -wave
states are energetically comparable. Our BdG calculations
show that, even for the case of g2 �= 0 and g1 = 0, the s-wave

NN pairing is still induced by the g2 term, and vice versa
for the s-wave NNN pairing, showing that they can naturally
coexist.

For the coexistence of the NN and NNN s-wave pairing,
the pairing gap function can be either nodal or nodeless. For
the pure NNN s-wave pairing, the nodal lines of the 	x2y2

are kx,y = ±π
2 , which have no intersections with any of the

hole and electron pockets; thus, the pairing is nodeless. For
the pure NN s-wave pairing, the nodal lines form a diamond
box with four vertices at the M points (±π,0) and (0, ± π ),
which intersects both electron pockets; thus, the pairing is
nodal. When the NN and NNN s-wave pairings coexist, if
the NN sx2+y2 -wave pairing is dominant, the nodal lines of
the pairing function are illustrated in Fig. S6(a) of Ref. 46.
The original diamond nodal box is deformed by pushing
the four vertices away from the M points in the direction
of the � point. If the deformation is small, the deformed
diamond still intersects with the electron pockets, and thus
the pairing remains nodal. Upon increasing the strength of the
NNN pairing, the deformation is enlarged and the intersections
disappear. Thus, the pairing is nodeless.

Figure 3 reveals the density of states (DOS) versus tunnel-
ing voltage for the mixed s-wave pairing state. The red open
squares are obtained using stronger NNN pairing strength [i.e.,
g1 = 0.8 and g2 = 1.2 in Eq. (8)], providing gapful behavior
which is similar to the pure sx2y2 -wave state. In this case,
	xz(x̂) = 	yz(ŷ) = 0.068, 	xz(ŷ) = 	yz(x̂) = −0.077, and
	xz,yz(±x̂ ± ŷ) = 0.085, showing stronger NNN sx2y2 -wave
pairing than NN sx2+y2 -wave pairing. On the other hand,
the black solid line (using g1 = 1.2 and g2 = 0.4) indicates
a gapless V shape, similar to the pure sx2+y2 -wave state.
Contrary to the former case, the NN pairing order parameters
	xz(x̂) = 	yz(ŷ) = 0.071, 	xz(ŷ) = 	yz(x̂) = −0.059 are
larger than the NNN sx2y2 -wave ones 	xz,yz(±x̂ ± ŷ) = 0.057.
This reveals that the competition between the gapful and
gapless modes can be adjusted by tuning the ratios between
NNN and NN pairing interactions.

FIG. 3. (Color online) DOS vs tunneling bias E for the mixed
s-wave pairing states at zero temperature. The red open squares
with the parameter depict nodeless pairing with the dominant NNN
pairing, and the black solid line depicts nodal pairing with the
dominant NN pairing. The parameter values are (g1 = 0.8,g2 = 1.2)
for the nodeless case and (g1 = 1.2,g2 = 0.4) for the nodal case,
respectively.
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FIG. 4. (Color online) (a) DOS vs tunneling voltage E for
extended s± wave without orbital anisotropy (δε = 0) and with
orbital anisotropy (δε = 0.2,0.3). Other parameter values are (g1 =
1.2,g2 = 0.4). At δε = 0 the coherent peaks are around E = ±0.18
and upon increasing δε = 0 the locations of the coherent peaks only
slightly move toward zero energy. (b) The temperature dependence
of the DOS vs E for the extended s± wave with orbital anisotropy
δε = 0.2 and the same parameters of g1,2 as in (a). At T = 0, the
coherent peaks are located at E = ±0.165.

The main goal of our paper is to determine the effect
from orbital ordering which is mimicked by Eq. (5). With
the anisotropy, the pairing structure changes from Eq. (15) to
the following:

	s± (kx,ky) = 	1(cos kx + λ cos ky) + 	2 cos kx cos ky, (16)

where λ is determined by the anisotropy. The anisotropic
nodal curve still intersects the electron pockets, as illustrated
in Fig. S6(b) in Ref. 46, and thus the superconducting gap
functions remain nodal. The calculated DOS versus energy
patterns are plotted in Fig. 4(a) with the parameter values
specified in the figure caption. Upon finite δε, the pairing order
parameters become anisotropic. For example, at δε = 0.2, we
have

	xz(x̂) = 0.059, 	yz(ŷ) = 0.070,

	xz(ŷ) = −0.050, 	yz(x̂) = −0.054,
(17)

	xz(x̂ + ŷ) = 	xz(−x̂ + ŷ) = 0.0503,

	yz(x̂ + ŷ) = 	yz(−x̂ + ŷ) = 0.0505,

and the gapless gap function and the V-shaped spectra remain
in the moderate anisotropy from orbital ordering.

We also check the temperature dependence of the DOS
with the orbital ordering as presented in Fig. 4(b) with
same parameter values of g1,2 as in Fig. 4(a). With orbital
anisotropy δε = 0.2, the coherence peaks at zero temperature
are approximately 	ch ≈ 0.165. At low finite temperatures,
say T = 0.05 ≈ 0.3	ch, the V-shaped DOS is still discernible.
However, upon increasing temperatures the V-shaped LDOS
patterns smear and eventually the coherent peaks disappear
at T = 0.1 ≈ 0.6	ch. In this case the system turns into the
normal state. This feature is qualitatively consistent with
the experimental observation of the differential conductance
spectra on FeSe in Ref. 24.

V. THE VORTEX STRUCTURE

In this section, we study the vortex tunneling spectra for
the extended s±-wave state. The size of the magnetic unit
cell is chosen as pa × qa = 20a × 40a, which contains two
vortices. The external magnetic field B = 2�0/pqa2. The
number of magnetic unit cells shown below is taken using
Nx × Ny = 20 × 10, which is equivalent to the system size of
400a × 400a. The BdG equations are solved self-consistently
with the tight-binding model Eq. (12) plus the mean-field
interaction Eq. (6). The vortex configurations are investigated
for both cases with and without orbital ordering in Secs. V A
and V B, respectively. The interaction parameters are g1 = 1.2
and g2 = 0.4, and the temperature is fixed at zero.

A. Vortex structure in the absence of orbital ordering

We start with the vortex configuration without orbital
ordering. The NN sx2+y2 -wave and NNN sx2y2 -wave pairing

FIG. 5. (Color online) The vortex structure for the mixed NN
sx2+y2 -wave and NNN sx2y2 -wave pairing without orbital ordering.
Spatial distribution of the (a) longitudinal and (b) transverse NN
pairings 	NN

L (�r) and 	NN
T (�r), respectively. (c) The NNN s-wave

pairing order parameters 	NNN(�r). (d) LDOS vs E at different
locations from the vortex core [at �r = (0,10a)] to outside along the x

axis. The distances of each site from the vortex core take the step of
one lattice constant. (e) The spatial LDOS distribution at the energy
of the vortex core resonance peak Ere ≈ 0.062.
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order parameters in real space are defined as follows. We define
the longitudinal and transverse NN s-wave pairings as

	NN
L (�r) = 1

4 {	xz(�r,�r + ax̂) + 	xz(�r,�r − ax̂)

+	yz(�r,�r + aŷ) + 	yz(�r,�r − aŷ)},
(18)

	NN
T (�r) = 1

4 {	yz(�r,�r + ax̂) + 	yz(�r,�r − ax̂)

+	xz(�r,�r + aŷ) + 	xz(�r,�r − aŷ)}.
For the NNN pairing related to site �r , we define

	NNN(�r) = 1

8

∑
a=xz,yz;�δ=±x̂±ŷ

	a(�r,�r + �δ). (19)

The pure NN sx2+y2 -wave vortex states were recently investi-
gated to describe the competition between the superconductiv-
ity and SDW in the hole-doped materials, Ba1−xKxFe2As2.47

A similar calculation for the pure NNN sx2y2 wave with SDW
has been used to study BaFe1−xCoxAs2 (Ref. 34) and the FeAs
stoichiometric compounds.35 In our case, these two s-wave
pairing order parameters mix together.

The real space profiles of the longitudinal and transverse
NN s-wave pairings 	NN

L (�r) and 	NN
T (�r) are depicted in

Figs. 5(a) and 5(b), respectively. The vortex cores are located
at �r = (0, ± 10a), where the pairing order parameters are
suppressed. Both of them exhibit the C4 symmetry. The NNN
s-wave pairing order parameters are depicted in Fig. 5(c)
and the vortices are diamond-shaped with the C4 rotational
symmetry. Note that the maximum magnitudes of the NNN
sx2y2 -wave pairing order parameters are smaller than those
of NN longitudinal and transverse sx2+y2 -wave pairing order
parameters, due to the stronger NN pairing strength (g1 = 1.2
and g2 = 0.4). The coherence length can be estimated as ξ ≈
4a ∼ 5a from the spatial distributions of order parameters.

The relations of LDOS versus the tunneling energy E are
presented in Fig. 5(d) at different locations from the vortex
core to outside along the x axis. The LDOS pattern along the
y axis is the same as Fig. 5(d) due to C4 symmetry. Note
that there exist fine oscillations in the LDOS pattern. This fine
oscillation structure may come from the Landau oscillation, in

FIG. 6. (Color online) The spatial distributions of the s-wave
pairing order parameters with the orbital anisotropy ε = 0.2. (a)
The longitudinal NN pairing 	NN

L (�r), (b) the transverse NN pairing
	NN

T (�r), and (c) the NNN sx2y2 -wave pairing order parameters
	NNN(�r). All of them show anisotropy.

FIG. 7. (Color online) The LDOS vs tunneling energy E at
different sites from the vortex core to outside along (a) the x axis
(short axis) and (b) the y axis (long axis). The distances of each
site from the vortex core take the step of one lattice constant. (c)
The spatial LDOS distributions at the vortex core resonant energy
Eer = 0.038.

which the oscillation period is related to the external magnetic
field.34 At the vortex core [�r = (0,10a)], the coherence peaks
at the bulk gap value of 	ch disappear. Instead, a resonance
peak appears at Ere ≈ 0.062. Away from the vortex core, the
resonance peak splits into the particle and hole branches with
energies which symmetrically distribute with respect to Ef .
As the distance increases, the peak intensities decrease, and
the energy separations between the particle and hole branches
of peaks increase. As the distance reaches around 6a, i.e.,
beyond the coherence length ξ , these peaks merge into the bulk
coherence peaks. Figure 5(e) presents the spatial distribution
of the LDOS at the vortex core resonance state energy Ere,
which exhibits the fourfold rotational symmetry. The vortex
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core state mainly distributes within one coherence length; thus,
it is closer to a bound state rather than a resonance state.

B. The vortex structures with orbital ordering

In this section, we consider the effect of orbital ordering on
the vortex lattice states. The band and interaction parameters
are the same as in Sec. V A, except that we add the anisotropy
term of Eq. (5) with δε = 0.2. Such a term breaks the
degeneracy between the dxz and dyz orbitals and reduces the
C4 symmetry down to C2.

Figures 6(a), 6(b), and 6(c) depict the spatial distributions of
the NN sx2+y2 pairing order parameters 	NN

L and 	NN
T , and the

NNN sx2y2 pairing order parameters in a magnetic unit cell,
respectively. All of them clearly exhibit the breaking of the
fourfold symmetry down to the twofold one. For the dominant
NN sx2+y2 pairings, the coherence lengths along the x and y

directions are no longer the same, which can be estimated as
ξx ≈ 3a and ξy ≈ 7a, respectively. From the Fermi surface
in Fig. 2(b), in the presence of orbital ordering, the electron
pocket in the y direction shrinks, which implies that Cooper
pairing superfluid stiffness is weaker along the y direction than
in the x direction. This picture agrees with the larger value of
ξy exhibited in Fig. 6.

Next we turn to study the LDOS patterns for the extended s±
wave with orbital ordering. In comparison with those without
orbital ordering depicted in Fig. 5(c), the LDOS patterns in
Figs. 7(a) and 7(b) exhibit significant anisotropy. At the vortex
core center, the resonance peak splits into two pieces inside
the gap. This feature is similar to the previous studies on the
sx2y2 -wave pairing with SDW in iron-based superconductors34

and the d-wave pairing with antiferromagnetic ordering in
cuprates.48 Away from the vortex center, however, the peaks
of the particle and hole branches along short (x) and long (y)
axes behave differently. The separation between the particle
and hole peaks disperses along the short axis much quicker
than along the long axis. The peak intensities along the short
axis are stronger than those along the long axis. These features
are in good agreement with recent experiment observations.24

The pronounced anisotropy also is exhibited in the spatial
variation of the LDOS at the energy Eer = 0.038 where the
resonance peak is located, presented in Fig. 7(c). Moreover,

with negative δε which loads particles in dxz prior to dyz, all
of the above pictures will have a π/2 rotation. Therefore, the
experimentally observed anisotropy agrees with the picture of
orbital ordering.

VI. DISCUSSIONS AND CONCLUSIONS

We have studied a minimal two-orbital model with orbital
ordering to interpret the recent STM observations in Ref. 24
including the nodal superconductivity and the anisotropy
vortex structure in FeSe superconductors. In considering the
absence of magnetic long-range order in FeSe at ambient
pressure, orbital ordering provides a natural formalism for
anisotropy. The NN sx+y2 wave and the NNN sx2y2 wave are
considered, which generally are mixed. When the NNN pairing
dominates, nodal pairing still exists even in the presence of
orbital ordering. We further performed the BdG calculation
for the vortex tunneling spectra in the presence of orbital
ordering, which breaks C4 rotational symmetry down to C2

and explicitly induces anisotropic vortex structures.
The microscopic mechanism of the origin of this sponta-

neous anisotropy remains an open question. It might be related
to the strong antiferromagnetic fluctuations. As shown in
Refs. 49, 21, and 20, before the onset of the antiferromagnetic
long-range order, the spin nematic order with a Z2 symmetry
breaking occurs. This nematic order corresponds to anisotropic
spin-spin correlation along the a and b axes, which can in turn
induce orbital ordering.

Note added. Near the completion of this manuscript, we
learned of the paper by Chowdhury et al.,50 which studied
the anisotropic vortex tunneling spectra in Ref. 24 through the
Ginzburg-Landau formalism.
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