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When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their
multicomponent electronic structures are often described in terms of effective large-spin fermion models.
Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper
pairings for spin- 1

2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for
a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model
with effective spin- 3

2 fermions and are characterized by band inversion. Recent experiments provide evidence
to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically
study topological pairing structures in spin- 3

2 systems with the cubic group symmetries and calculate the surface
Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry
of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference
patterns of tunneling spectroscopy are studied, which can be tested in future experiments.
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I. INTRODUCTION

Topological superconductivity and paired superfluidity
have been attracting intense research interests in recent
years [1–3]. The nontrivial topology manifests itself in the
Andreev-Majorana zero modes on boundaries and topological
defects like vortices [4–7]. Such Andreev-Majorana modes
are of particular interests since they are potentially useful for
topological quantum computations [8–10]. Early topological
classifications mostly focus on the fully gapped superconduct-
ing systems [11–13], including the two-dimensional px + ipy

superconductor [5] and the three-dimensional 3He-B phase
with the isotropic p-wave triplet pairing [3,14,15]. Recently,
gapped topological superconductivity has also been proposed
for high Tc cuprates in the very underdoped regime [16].

Gapless, or nodal, superconductors/pairing superfluids
often exhibit unconventional pairing symmetries, such as
the d-wave superconductors of high Tc cuprates [17], the
three-dimensional 3He-A phase with the px + ipy triplet
pairing [5,18], the pz-triplet pairing phase of electric dipolar
fermions [19], and spin-orbit coupled p-wave pairing with
total angular momentum J = 1 induced by magnetic dipolar
interactions [20]. For these examples, their gap functions
exhibit spherical or spin-orbit coupled harmonic symmetries.
In contrast, the doped magnetic Weyl semimetals can sup-
port monopole harmonic pairing [21], which is a class of
topological superconducting states characterized by nontrivial
monopole structures. Their pairing phases cannot be globally
well defined on Fermi surfaces.

The gapless superconducting systems also exhibit inter-
esting topological structures [22,23], which are typically
weaker than those in the gapped cases in the sense that
only suitably oriented surfaces can support the zero energy
Andreev-Majorana states. These surfaces are with particular
orientations such that a relative sign change occurs between the
gap functions along the incident and reflected wave vectors.
There do not exist well-defined global topological numbers
for a gapless system. However, a topological number can

be defined for each momentum within the surface Brillouin
zone, as the winding number of the effective one-dimensional
system perpendicular to the surface with the fixed in-surface
momentum. This topological number is related to the existence
of zero energy Andreev-Majorana modes through the bulk-
edge correspondence principle [24,25].

The noncentrosymmetric superconductors add to the di-
versity of gapless superconductivity [24–28]. In their normal
state band structures, the spin degeneracy is lifted by spin-orbit
coupling, and pairing gap functions typically show mixed
parity due to the breaking of inversion symmetry. Depending
on the pairing symmetry and the nodal structure, there appear
Majorana flat bands and zero energy arcs on the surfaces with
suitable orientations [25–27,29]. The experimental signatures
include zero-energy peaks in the tunneling spectra [30,31] and
certain patterns in the quasiparticle interference (QPI) [32].
The instability of the Majorana flat bands has been studied
with respect to the spontaneous time-reversal (TR) symmetry
breaking effects arising from the Majorana fermion-superfluid
phase interaction [33], or, the magnetic interactions [34], and
also by the self-consistent mean field theory [35].

The superconducting pairing symmetries can be greatly
enriched in multicomponent fermion/electron systems. In ul-
tracold fermion systems, many fermions carry large-hyperfine-
spin S larger than 1

2 . In solid state systems, electrons can
be effectively multicomponent due to orbital degeneracy and
spin-orbit splitting, such as the effective spin- 3

2 Luttinger-
Kohn model for the hole band of semiconductors. The spin of
their Cooper pairing can take values from 0 to 2S beyond the
conventional singlet and triplet scenarios [36–40]. For exam-
ple, the spin quintet pairing (the spin of Cooper pair S = 2) has
been found to support the non-Abelian Cheshire charge in the
presence of half-quantum vortex loop [39]. Recently, the 3He-
B-type isotropic topological pairing has been generalized to
multicomponent fermion systems [40]. For the simplest case of
spin-3/2 systems, both the p-wave triplet and the f -wave septet
pairings are nontrivial, possessing topological index 4 and 2,
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respectively. They support surface spectra with multiple linear
and cubic Dirac-Majorana cones [40,41]. The interaction-
induced TR symmetry breaking effects are investigated in
Ref. [42]. The topological nature of this class of pairings is
most clearly seen in the helicity basis, and thus it also applies
to spin-orbit coupled multiorbital solid state band systems.

Recently, the half-Heusler compound YPtBi has attracted
considerable attention [43,44]. The band structure can be
described by the effective spin-orbit coupled spin- 3

2 Kohn-
Luttinger Hamiltonian with parity symmetry breaking terms.
The chemical potential lies close to the � point of the p-like
�8 band [43] as shown in the angular-resolved-photoemission-
spectroscopy. Experiment evidence to unconventional super-
conductivity has been found in the half-Heusler compound
YPtBi [44]. A mixed parity pairing immune to pair breaking
effect has been proposed for YPtBi [45], with a small fraction
of an s-wave singlet component superposed on the p-wave
septet pairing.

Motivated by the advancements in noncentrosymmetric
superconductors, we systematically study the Majorana sur-
face states of topological superconductors based on the spin- 3

2
Luttinger-Kohn model subject to the cubic symmetries. For the
Td point group symmetry, we show that the double degeneracy
along the [0 0 1] direction and its equivalent ones are protected
by the little group SD16, i.e., the semidihedral group of order
16. The pairing patterns in noncentrosymmetric systems are
in general of mixed-parity nature as discussed under concrete
cubic symmetry groups. For the YPtBi, the proposed mixed
s-wave singlet and p-wave septet pairing exhibits line nodes on
one of the spin split Fermi surfaces as shown in Ref. [45], and
the six nodal loops centering around [0 0 1] and its equivalent
directions are topological. We show that for the [1 1 1] surface,
the Majorana zero modes appear in regions enclosed by the
projections of the nodal loops to the surface Brillouin zone
but disappear in the overlapping regions. The QPI patterns are
calculated on the [1 1 1] surface due to the scattering with a
single impurity in the Born approximation. For a nonmagnetic
impurity, the chiral symmetry forbids the scatterings between
Majorana islands with the same chiral index, while for a
magnetic impurity, the scatterings between Majorana islands
with opposite chiral indices are forbidden. The structures of
the QPI patterns of a magnetic impurity are richer than those
of a nonmagnetic impurity under the C3v group, which is the
symmetry group of the [1 1 1] surface. Experiments on the QPI
patterns will provide tests to the proposed pairing symmetries
of YPtBi.

The rest of this paper is organized as follows. In Sec. II,
the Luttinger-Kohn Hamiltonian and the band inversion are
reviewed. The inversion breaking terms with the cubic sym-
metries are classified, and the protected double degeneracy
of the Td group along the [0 0 1] direction is proved. In
Sec. III, the noncentrosymmetric Copper pairings with the
cubic symmetries are discussed. The Majorana surface modes
are solved in Sec. IV. The QPI patterns are calculated in Sec. V.

II. NONCENTROSYMMETRIC SPIN- 3
2 SYSTEMS

WITH THE CUBIC SYMMETRIES

In this section, we first discuss the Luttinger-Kohn Hamil-
tonian in spin-orbit coupled systems and classify the inversion

breaking terms according to the cubic point groups. We
then show that for the Td group, there exits a protected
double degeneracy along [0 0 1] and its equivalent directions.
Finally the band structure properties of the YPtBi material are
reviewed.

A. The Luttinger-Kohn Hamiltonian and band inversion

Although electrons carry spin- 1
2 , the effective spin- 3

2
systems are not rare in solid state materials due to spin-orbit
coupling. Examples include the half-Heusler compounds,
where spin-orbit coupling recombines the outer-shell s and
p orbitals into s 1

2
(�6), p 1

2
(�7), and p 3

2
(�8) orbitals, with

the subscripts denoting the spin-orbit coupled total angular
momentum. The p 1

2
band is denoted the “spin-split” band,

which is far from the Fermi energy, and will be neglected
below. The s 1

2
and p 3

2
bands are active, and typically the

s 1
2

band energy is higher. The gap between them is tunable
by varying the spin-orbit coupling strength, which can be
realized in experiments by substituting the heavy atom with
other atomic elements. The gap vanishes at a critical spin-
orbit coupling strength, and then becomes negative, i.e., the
energy of the s 1

2
band becomes lower, which is termed as

“band inversion.” The p 3
2

band further splits due to spin-orbit
coupling according to the helicity quantum number, i.e., the
spin projection on the momentum direction. The heavy hole
band is of the helicity quantum numbers ± 3

2 , and the light
hole one is of the helicity numbers ± 1

2 . The heavy and light
hole bands touch at the � point, as protected by the cubic
group symmetry. All bands are doubly degenerate when TR
and inversion symmetries are present.

At the critical spin-orbit coupling strength, where the s 1
2

and p 3
2

bands touch at the � point, the dispersions of s 1
2

and
light hole bands become linear, while the heavy hole band
remains parabolic. After the band inversion, the curvature of
the dispersion of s 1

2
band becomes negative, while that of the

light hole actually is positive. A schematic plot of the band
structure after band inversion is shown in Fig. 1.

FIG. 1. Schematic plots of the p 3
2

bands (�8), p 1
2

bands (�7),
and s 1

2
bands (�6). The abbreviations of “h. h.” and “l. h.” within the

p 3
2

bands represent the heavy and light hole bands, respectively. The
Fermi level crosses the heavy hole bands. Each pair of bands exhibit
spin splitting due to the presence of the inversion symmetry breaking
term δ

kf
A(�k) in Eq. (6).
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The process of band inversion can be understood by a k · p

analysis as follows. Consider systems with the full spin-orbit
coupled SO(3) symmetry for simplicity. The k · p basis for s 1

2

and p 3
2

bands are chosen as

|s; ↑〉, |s; ↓〉, (1)

and

|px + ipy ; ↑〉,
1√
3

(|px + ipy ; ↓〉 +
√

2|pz; ↑〉),

1√
3

(| − px + ipy ; ↑〉 +
√

2|pz; ↓〉),

| − px + ipy ; ↓〉, (2)

which are the eigenbasis of Sz = Lz + 1
2σz with eigenvalues in

a descending order. The three basis at the � point with positive
eigenvalues of Sz are s 1

2
, |px + ipy ↑〉, 1√

3
(|px + ipy ↓〉 +√

2|pz ↑〉), and the other ones with negative Sz can be obtained
from them by the TR operation. Apart from an overall constant
the Hamiltonian at the � point in the positive Sz sector is given
by

H+(�) =
⎛
⎝m

−m

−m

⎞
⎠, (3)

in which m is half of the band gap. To obtain the Hamiltonian
away from the � point, it is sufficient to consider the z direction
due to the rotation invariance. The little group along this
direction is the U (1) group e−iSzφ , hence, hybridizations only
occur between states with the same Sz. The k · p Hamiltonian
in the positive Sz sector up to the linear order in kz is

H+(kz) =
⎛
⎝ m λkz

−m

λ∗kz −m

⎞
⎠, (4)

in which m > 0 and < 0 correspond to before and after band
inversion, respectively. The Hamiltonian H− in the negative Sz

sector can be obtained by applying the TR operation to Eq. (4).
The k · p Hamiltonian in the basis of Eqs. (1) and (2) along
a general direction of �k can be constructed by performing the
rotation operation U = e−iSzφk e−iSyθk on H+(kz) + H−(kz),
where θk and φk are the polar and azimuthal angles of �k,
respectively. At the critical point m = 0, the s 1

2
and light hole

band dispersions become linear with the velocity ±|λ|
h̄

.
Consider the case with band inversion as illustrated in Fig. 1,

where the Fermi energy lies close to the � point of the p 3
2

bands. Only the p 3
2

bands are taken into account with the k · p

basis chosen as the four states in Eq. (2), and the band structure
is captured by the Luttinger-Kohn Hamiltonian

HL(�k) =
(

λ1 + 5

2
λ2

)
k2 − 2λ2(�k · �S)2

+ λ3

∑
i �=j

kikjSiSj , (5)

in which �S = (Sx Sy Sz) are the spin- 3
2 operators. The λ3 term

breaks the full spin-orbit coupled SO(3) rotational symmetry

but is allowed for the cubic symmetry group. When λ3 = 0, the
mass of helicity ± 3

2 bands is h̄2

2(λ1−2λ2) , and that of the helicity

± 1
2 bands is h̄2

2(λ1+2λ2) . For the band inverted case, we need
−2λ2 < λ1 < 2λ2 to ensure the opposite signs of the light and
heavy hole masses.

B. Noncentrosymmetric spin-orbit couplings
with the cubic symmetries

We classify all the TR and cubic symmetry allowed k · p

terms up to the quadratic order in k. The Hamiltonian Eq. (5)
includes all the inversion invariant terms up to the k2 apart
from an overall constant. Inversion breaking terms are allowed
for the three cubic groups O,Td,T . The corresponding band
Hamiltonian becomes

H0(�k) = HL(�k) + δ

kf

A(�k), (6)

in which A(�k) = −A(−�k) breaks inversion symmetry, kf is the
Fermi wave vector, and δ parameterizes the inversion breaking
strength. To the lowest order in momentum, the TR invariant
A(�k) takes the form

Td : ki · (Si+1SiSi+1 − Si+2SiSi+2),

O : ki · Si + a1ki · S3
i ,

T : ki · Si + b1ki · S3
i + b2ki · (Si+1SiSi+1 − Si+2SiSi+2),

(7)

in which a1, b1, b2 are numerical factors, and the indices i, i +
1 are defined cyclicly for x,y,z and the summation over i is
assumed. Detailed discussions are included in Appendix A.

C. Protected degeneracy along the [0 0 1] direction
with the Td symmetry

The band structure of Eq. (6) does not exhibit double
degeneracy in general due to the breaking of inversion
symmetry. Interestingly, for the Td group, there is a protected
non-Kramers degeneracy along [0 0 1] and its equivalent
directions explained as follows.

The illustration of the Td symmetry in terms of a decorated
cube is shown in Fig. 2. Its little group along the [0 0 1]
direction contains two mirror reflections along the diagonal
directions y = ±x denoted as x ′ and y ′, respectively. The

FIG. 2. The decorated cube with the Td symmetry.
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corresponding operations are denoted as Mx
′ and My

′ , respec-
tively. Since Mx

′ My
′ = R(ẑ,π ), where R(n̂,φ) denotes the

rotation around the n̂ axis at the angle of φ, the little group L0

of Td along the [0 0 1] direction is

L0 = {1,Mx
′ ,My

′ ,R(ẑ,π )}, (8)

which is isomorphic to the dihedral group D2. In half-odd
integer spin representations, the 2π rotation equals −1, and
hence L0 is doubled as

L1 = {1,Mx
′ ,My

′ ,R(ẑ,π ),

1̄,1̄Mx
′ ,1̄My

′ ,1̄R(ẑ,π )}, (9)

in which 1̄ denotes the 2π rotation. As discussed in
Appendix B, L1 is in fact isomorphic to the quaternion
group Q8. Different from D2,Q8 is non-Abelian and has
four 1D irreducible representations and one 2D irreducible
representation. The half-odd integer spin representations do
not contain the 1D representation of Q8 shown as follows:

Mx
′ My

′ = −My
′ Mx

′ (10)

for half-odd integer spins, since (Mx
′ My

′ )2 = R2(ẑ,π ) = 1̄.
This anticommutativity protects the double degeneracy along
the [0 0 1] direction.

There is another mechanism of the degeneracy protection
based on an antiunitary symmetry S. It is constructed based
on the Td group and the TR operation T as

S = R

(
ẑ,

π

2

)
I · T , (11)

where I is the inversion operator which flips the momentum
direction and acts as the identity operator in spin space, and T

is the Kramers TR operation satisfying T 2 = −1. S leaves the
[0 0 1] direction invariant. It is easy to verify that S’s quartic
power is −1, i.e.,

S4 = −1. (12)

Nevertheless, unlike the Kramers operation, S2 = −R(z,π )
which remains an operator instead of a constant. Still S
ensures the double degeneracy of electron states with �k ‖ ẑ

[46], which can be proved by contradiction. If there was no
degeneracy, each Bloch wave state |ψk〉 must be a simultaneous
eigenstate of both the Hamiltonian and the operator S, then
S|ψ〉 = λ|ψ〉, where λ is a complex number of unit norm. This
implies that S2|ψ〉 = |λ|2|ψ〉 due to the antiunitarity of S, and
then S4|ψ〉 = |ψ〉 which is in contradiction with the property
S4 = −1.

Including the antiunitary operation S, the little group along
the [0 0 1] direction is extended from the double group L1 to
SD16, the semidihedral group of order 16. Detailed discussions
about SD16 are included in Appendix B.

Both degeneracy protection mechanisms are general be-
yond the k · p approximation. The degeneracy is held for any
band Hamiltonian with the Td and TR symmetries realized
by half-integer fermions. It even applies to the Bogoliubov
excitation spectra in the superconducting states which maintain
these symmetries.

D. The YPtBi material

We briefly review the YPtBi material and its band structure.
It is a half-Heusler compound with band inversion. The active
atomic orbitals are the 6s and 6p orbitals from the Bi atom.
The Pt and Bi atoms form a zinc-blende sublattice, and the
Y atoms fill in the lattice such that the Pt and Y atoms form
another zinc-blende sublattice [47–49]. The system has the TR
and Td point group symmetries but is not inversion symmetric.

The charge carrier density of YPtBi is very low around
2×1018 cm−3 as revealed by the Shubnikov-de Hass (SdH)
oscillation experiments [44]. The corresponding Fermi energy
is on the order of 102 K with the Fermi wave vector one
order smaller than the Brillouin zone boundary, such that
the k · p description around the � point is applicable. The
k · p Hamiltonian H0(�k) of effective spin- 3

2 particles has been
proposed for YPtBi [45] as a combination of the Luttinger-
Kohn Hamiltonian in Eq. (5) and an inversion breaking term
given corresponding to the Td group in Eq. (7). The inversion
breaking term breaks the double degeneracy except along
[0 0 1] directions and leads to the spin-split Fermi surfaces
with the energy splitting on the order of 10 K. The distortion
of the Fermi surfaces away from the perfect sphere induced
by the λ3 term in Eq. (5) is shown to be a small effect as
revealed by the SdH oscillation experiments [44], which will
be neglected in later calculations.

III. NONCENTROSYMMETRIC SPIN- 3
2

COOPER PAIRINGS

In this section, we first discuss the noncentrosymmetric
Cooper pairings under cubic group symmetries. Then the
possible pairing symmetries of YPtBi are briefly reviewed.

A. Noncentrosymmetric Cooper pairings with cubic symmetries

We discuss the Cooper pairings in noncentrosymmetric
systems with the TR and cubic group symmetries, which can
be viewed as analogues of the 3He-B pairing in the lattice.
The generalization of the 3He-B pairing to the large spin and
high partial-wave channels in continuum has been studied in
Ref. [40].

The Bogoliubov-de Gennes (B-deG) Hamiltonian of a spin-
3
2 superconductor is

HB-deG =
′∑
�k

(c†(�k),c(−�k)T )H (�k)

(
c(�k)

c†(−�k)

)
, (13)

in which
∑′

�k denotes summing over half of momentum space,

and c(�k) = (c3/2(�k),c1/2(�k),c−1/2(�k),c−3/2(�k))T . The matrix
kernel H (�k) is represented as

H (�k) =
(

H0(�k) − μ 
(�k)


†(�k) −(H0(−�k) − μ)T

)
, (14)

in which H0(�k) is the band structure given by Eq. (6), and μ is
the chemical potential measured from the � point of the p3/2

bands. The pairing term 
(�k) is given as


(�k) = K(�k)R, (15)
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in which K(�k) denotes the pairing kernel, and R is the charge
conjugation matrix defined as Rαβ = (−)α+ 1

2 δα,−β with α spin
indices [38]. For noncentrosymmetric systems, the breaking of
the inversion symmetry mixes pairings with different parities.
The pairing kernel K(�k) has been proposed to take the
form [50]

K(�k) = 
s + 
p

kf

A(�k), (16)

in which A(�k) is given by Eq. (7) for the cubic groups
O,Td,T ; 
s and 
p parameterize the strength of the s and
p-wave components, respectively. Such pairing avoids the pair
breaking effect induced by the inversion breaking term δ

kf
A(�k)

in the band structure [50] and thus is conceivably energetically
favorable. The pairing only takes place between electrons from
the same spin-split Fermi surface. Nevertheless, we would like
to emphasize that the actual superconducting gap symmetry of
the YPtBi material is still undetermined, and this is only one
possibility that needs to be tested in future experiments.

B. The superconducting properties of the YPtBi material

In this part we give a brief review of the superconducting
properties of the YPtBi material, particularly its topological
nodal line structure in the gap function. Its transition temper-
ature is Tc = 0.78 K. Its London penetration depth exhibits a
linear temperature dependence [44], which is a strong evidence
for a gap function with nodal lines.

Let us first consider the band eigenstates of H0 defined in
Eq. (6) with A defined as

A(�k) =
∑

i=x,y,z

ki(Si+1SiSi+1 − Si+2SiSi+2), (17)

which maintains the TR and Td symmetries. At |δ| � |μ|, the
main effect of the inversion symmetry breaking term is within
the heavy hole band and the light hole one to split the double
degeneracy. The mixing between heavy and light hole bands
is small and will be neglected. Since the Fermi surface cuts
the heavy hole band, we project the 4 × 4 matrix kernel A(�k)
into the heavy hole bands. Then A(�k) becomes a 2 × 2 matrix
�(�k) · �τ where �τ is the Pauli matrices under the basis with
helicities ± 3

2 , and

x(�k) = −9k

8
sin 2θk cos 2φk,

y(�k) = 9k

16
(3 + cos 2θk) sin θk sin 2φk,

z(�k) = 0, (18)

with θk and φk the polar and azimuthal angles of �k, respec-
tively. Then the heavy hole energies exhibit the splitting of
δ/kf |(�k)| which becomes zero along the [0 0 1] and its
equivalent directions.

It has been proposed for YPtBi that its pairing symmetry
is likely of the mixed s-wave singlet and p-wave septet [45].
The B-deG Hamiltonian is given by Eq. (14), which maintains
the TR and Td symmetries. The Bogoliubov quasiparticle
spectrum exhibits line nodes centering around [0 0 1] direc-
tions when 
s/
p �= 0 [45]. Based on a similar basis as

FIG. 3. Nodal loops of the superconducting gap function on the
larger spin-split Fermi surface for (a) 
s/
p = 0.3 and (b) 
s/
p =
0.7 and projections of the nodal loops to the (1 1 1) surface for
(c) 
s/
p = 0.3 and (d) 
s/
p = 0.7. In (c) the topological
numbers are +1 and −1 in the regions enclosed by the red loops
and the blue loops, respectively, and are zero outside the loops. In
(d) the situation is similar except that the topological numbers are
zero in the overlapping regions of the loops. The three axes in (a) and
(b) and the two axes in (c) and (d) are momenta in the bulk Brillouin
zone and surface Brillouin zone, respectively, in which the momenta
are measured in the units of

√
2kf . The Luttinger parameters are

taken as λ1 = 0 and λ2 = |μ|/(2k2
f ).

above, when projected into the two spin-split Fermi surfaces
belonging to the heavy holes, the diagonalized gap functions
becomes 
s ± 
p| �(�k)|. Hence, the gap function becomes
nodal on one of the spin-split Fermi surfaces at | �(�k)| =

s/
p, and the node lines form closed loops centering
around [0 0 1] and its equivalent directions. The plots of the
nodal loops on the corresponding Fermi surface are shown in
Figs. 3(a) and 3(b) for two representative ratios between 
s

and 
p, for which the nodal loops do not cross, or, cross,
respectively.

The nodal loops centering around [0 0 1] and its equivalent
directions are topologically nontrivial [24,44]. An integer-
valued index can be assigned to each nodal loop as the
topological number of a closed loop in momentum space linked
with the nodal one on the Fermi surface [24]. For a nontrivial
nodal loop, the gap functions located inside and outside the
nodal loop on the Fermi surface are with opposite signs. Now
consider a 2D surface and the associated surface Brillouin
zone; the projection of the nodal loop in the 2D Brillouin
zone becomes a 2D planar loop. For each momentum in the
surface Brillouin zone, it represents an effective 1D system
perpendicular to the surface. Hence, a topological number can
be defined for each 2D surface momentum except that on the
nodes [24]. The gap functions of the incident wave and the
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reflection wave perpendicular to the surface change sign if
their common 2D momentum is inside the planar projection
loop. Hence, for the surface states, their topological numbers
are nontrivial for those inside the 2D projection loop but trivial
for those outside. But for those in the overlapping regions
between two projection loops, they become trivial again. The
schematic plot for the case of the [1 1 1] surface is taken as an
example for illustration, as shown in Figs. 3(c) and 3(d) for two
representative ratios between 
s and 
p. Detailed discussions
of the topological properties of the nodal loops are included in
Appendix D.

IV. MAJORANA SURFACE STATES

In this section, we first derive the equation solving the
Majorana surface states for the spin- 3

2 systems. The corre-
sponding calculations were performed for the fully gapped
isotropic p-wave triplet and f -wave septet for the continuum
model before [40]. Here we consider the gapless mixed parity
pairing state explained in the last section. For simplicity, we
set λ3 = 0 in the band Hamiltonian and consider the limit
of 
s,
p � δ � |μ|. This limit is justified in YPtBi, since

s,
p ∼ 1 K, δ ∼ 10 K, and μ ∼ 102 K. The equation is then
applied to obtain the Majorana surface modes for systems with
TR and Td symmetries and also for those with the T , or, O

symmetry.

A. The methodology

Consider a surface with the normal direction along n̂ =
(sin θn cos φn, sin θn sin φn, cos θn). To simplify calculations,
we rotate n̂ into the z axis. The bulk of the system lies at z < 0,
and the side of z > 0 is vacuum. The boundary condition is
that the wave function vanishes at z = 0 and exponentially
decays to zero when z → −∞. Within the rotated coordinates,
the Luttinger Hamiltonian, the inversion breaking term in
band structure, and the pairing Hamiltonian are expressed as
follows,

HL(−i �∇) = −
(

λ1 + 5

2
λ2

)
∇2 − 2λ2(Rn(−i �∇) · �S)2 − μ,

HA(−i �∇) = δ

kf

A(Rn(−i �∇)),


(−i �∇) = K(Rn(−i �∇))R, (19)

where Rn = R(ẑ,φn)R(ŷ,θn) is the rotation operation trans-
forming ẑ to n̂, Rn(−i �∇) represents the rotation of the vector
operator −�i∇, i.e.,

Rn,a(−i �∇) = −iRn,ab∇b, (20)

where a = x,y,z, and Rn,ab is the 3×3 rotation matrix. The
momenta kx and ky parallel to the surface plane remain
conserved.

We use the trial plane wave function as

�(�r) =
∑

l

Cl�le
i�kl ·�r , (21)

where �l is an eight-dimensional column vector with four spin
components of both particle and hole degrees of freedom. Plug

Eq. (21) into the eigenequation, we obtain(
H0(Ra

�kl) − μ 
(Ra
�kl)


†(Ra
�kl) −(H0(−Ra

�kl) − μ)T

)
�l = Es�l, (22)

where �kl = (kx ky kzl), and Es is the surface state energy. The
boundary condition requires that Imkzl < 0, and there are eight
solutions of kzl satisfying this condition, i.e., 1 � l � 8: Four
come from the sector of helicity eigenvalues ± 3

2 and the other
four from helicity eigenvalues ± 1

2 . Furthermore, the boundary
conditions require that

8∑
l=1

Cl�l = 0. (23)

In order to have nontrivial solutions of Cl , the determinant
composed of the eight column vectors needs to be zero, i.e.,

det({�l}1�l�8) = 0, (24)

which determines the surface state eigenenergies. The explicit
forms of the eight column vectors �l’s in the limit of 
s,
p �
δ � |μ| are derived in Appendix E.

B. Majorana zero modes under the Td symmetry

In this part, we solve for the zero energy Majorana surface
modes. Let us consider the (0 0 1) and (1 1 0) surfaces. From
the gap nodal loop configurations shown in Fig. 3, the nodal
loop projections fully overlap with each other, such that all the
momentum-dependent topological numbers are trivial. Hence
we will only consider the (1 1 1) surface. Throughout the
calculations the Luttinger parameters are taken as λ1 = 0,

λ2 = |μ|/(2k2
f ), and λ3 = 0.

The results of Majorana spectra on the (1 1 1) surface
are presented in Fig. 4. Figure 4(a) shows the case that the
projections of the gap nodal loops do not overlap, and the
surface zero Majorana modes appear inside the projection

FIG. 4. Distribution of Majorana zero modes in the surface
Brillouin zone in the (1 1 1) surface for (a) 
s/
p = 0.3 and
(b) 
s/
p = 0.7. The white circle denotes the boundary of the
projection of the Fermi surface. Majorana zero modes exist in the
bright regions. The chiral index is marked for each island of the
Majorana flat band, where “e” and “o” represent “even” and “odd”
with the chiral eigenvalue ±1, respectively. The horizontal and
vertical axes are momenta in the surface Brillouin zone measured
in the unit of

√
2kf . The Luttinger parameters are taken as λ1 = 0

and λ2 = |μ|/(2k2
f ). The numerical computations are carried out for

a 200×200 lattice in momentum space.
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loops. In Fig. 4(b), the projections overlap, and the zero
Majorana modes in the overlap region disappear. The former
corresponds to a smaller value of 
s/
p = 0.3, and the
latter is with a larger one 
s/
p = 0.7. Since each nontrivial
momentum dependent topological index equals either 1 or
−1 as shown in Fig. 3, these surface zero Majorana modes
are nondegenerate. The surface spectra solved from matching
boundary conditions are consistent with the previous analysis
based on bulk topological number. This can be seen as a
verification of the bulk-edge correspondence principle in the
spin-3/2 situation.

We then analyze the symmetry properties of the Majorana
surface states. Based on the Td and the TR symmetry, the sym-
metry subgroup for the (1 1 1) surface is C3v × {1,T }, where
T is the TR operation defined as T c†(�k)T −1 = c†(�k)R · K ,
with K the complex conjugate operation. The surface spectra
in Fig. 4 exhibit the C3v symmetry. The TR operation reverses
the momentum direction, and the spectra are also invariant
under the TR operation. Consider the particle-hole operation
PH defined as PHc†α(�k)P −1

H = cα(�k)K . PH anticommutes with
B-deG Hamiltonian Eq. (14) and transforms a state to another
state with the opposite energy. Since Majorana surface modes
are at zero energy, they are particle-hole symmetric.

We can also define a chiral operator as

Cch = iT PH . (25)

It is Hermitian in half-odd integer spin spaces: C
†
ch =

−iP
†
HT † = Cch, sinceT † = T −1 = −T (asT 2 = −1), P †

H =
PH , and [T ,PH ] = 0. Both TR and particle-hole operations
reverse the sign of the momentum, hence, Cch maintains
momentum invariant. This implies that each Majorana zero
mode solved above can be chosen as a chiral eigenstate with a
chiral index of ±1. Since Cch commutes with the C3v group,
the islands related by the C3v group carry the same chiral
index, while the two islands related by TR operation carry
opposite chiral indices, because Cch anticommutes with the
TR operator.

C. The T and O groups

In this part we briefly present the surface spectra calculation
of the p-wave triplet pairing for point groups O and T .
While the situation of the p-wave triplet pairing with band
inversion and the Fermi energy tuned to cross the heavy hole
bands has been sketched based on physical intuitions [41],
here, we perform a detailed calculation. The band structure
and the Cooper pairing are given by Eq. (6) and Eq. (15),
respectively, in which A(�k) takes the corresponding form for
O and T groups in Eq. (7). Here we consider the p-wave
triplet dominant pairing, i.e., A(�k) = ki · Si . Unlike the case
of p-wave septet pairing under the Td symmetry, the p-wave
triplet pairing under the T and O point groups is SO(3)
invariant under the combined orbital and spin rotations. Hence,
the quasiparticle spectrum is fully gapped on the Fermi surface.
For small enough parameters a1, b1, b2 in Eq. (7) and the ratio

s/
p in Eq. (16), they can be set to zero without affecting
topological properties since the pairing is fully gapped. In
this case, the B-deG Hamiltonians for the T and O point
group symmetries are the same. The system belongs to the

FIG. 5. Surface spectrum of p-wave triplet pairing along radial
direction. The horizontal axis is the momentum measured in the unit
of ku = √

2kf , and the vertical axis is the surface energy measured
in the unit of 
p .

DIII class due to the TR and particle-hole symmetries. The
bulk topological number is 3 as a sum of those from the
helicity ± 3

2 bands [40]. Figure 5 shows the surface spectrum
along the radial direction in the polar coordinate within the
surface Brillouin zone. The full spectrum can be obtained by
performing a rotation around the normal direction. The overall
surface spectrum exhibit the cubic Dirac dispersions [40,41],
which is consistent with the bulk topological number.

V. QUASIPARTICLE INTERFERENCE PATTERNS

The scanning tunneling spectroscopy measures the local
density of states (LDOS) on the sample surface. In the presence
of an impurity, the LDOS exhibits an interference pattern due
to the scattering of electrons by impurities. The quasiparticle
interference (QPI) patterns provide information to the pairing
symmetry of high-Tc superconductors [51], orbital ordering
in 2D materials [52], surface states of topological insulators
[53], and semimetals [54]. The QPI patterns have also been
discussed for various spin-1/2 noncentrosymmetric supercon-
ductors [32].

In this section, we use the wave functions of the surface
states solved from Sec. IV B to compute the QPI patterns
of a single impurity on the surface of the spin- 3

2 topological
superconductor with the TR and Td symmetries. Experiments
on QPI patterns provide a test to the proposed pairing form
in Eq. (16).

A. Spin-resolved local density of states

The impurity can be either magnetic or nonmagnetic, and
the tunneling spectroscopy can be either spin-resolved or
non-spin-resolved. In consideration of these, the LDOS tensor
ρμν is defined with μ,ν = 0,1,2,3,4, whose (μ,ν) element
is the spin-resolved LDOS for spin in the μ direction with
impurity spin polarized in the ν direction. The cases of μ = 0
and ν = 0 correspond to non-spin-resolved and nonmagnetic
impurity, respectively. To facilitate the symmetry analysis,
we rotate the coordinate frame to x̂

′ = 1√
6
(1,1, − 2), ŷ

′ =
1√
2
(−1,1,0), ẑ

′ = 1√
3
(1,1,1), The little group of Td along the

(1 1 1) direction is C3v . The threefold rotation axis in C3v is the
ẑ

′
axis, and the three vertical reflection planes are the x

′
z

′
plane
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and the ± 2π
3 rotations of the x

′
z

′
plane around the z

′
axis. To

simplify notation, below we still use x,y,z to represent x ′, y ′,
and z′, i.e., to suppress the ′ symbol, and use the Greek index
ν = 1,2,3 to represent them, respectively.

Let us comment on the modeling of the impurity potential in
calculations below. For simplicity, the nonmagnetic impurity
potential Vimp is used as an example, which can be straightfor-
wardly extended to the magnetic impurity potential. Typically,
it is taken a short range δ potential in real space. However,
due to the open boundary condition, the surface state wave
functions vanish on the surface. If the impurity is located
exactly on the surface, then it will not cause any scattering.
This artifact can be cured by using a more realistic model to
take into account the finite range of the impurity potential.
Hence, we assume the following form of Vimp,

Vimp(�r) = NaV0e
−z/a0δ(x)δ(y), (26)

in which V0 parameterizes the potential strength and Na is
a normalization factor. Although the detailed distribution of
QPI patterns depends on the explicit form of Vimp, the overall
characteristic features should not be sensitive on the choice of
Vimp.

For an impurity whose spin is polarized in the ν direction
with potential Vimp(�r), or, a nonmagnetic impurity for ν = 0,
the retarded Green’s function Gν

R(ω,�r) of the frequency ω at
the position �r is defined by

Gν
R(ω,�r) = 〈�r| 1

ω − (
H + Hν

imp

) + iε
|�r〉, (27)

in which |�r〉 represents the coordinate eigenstate located at
�r . In principle, Gν

R exhibits a matrix structure with respect to
all the spin, Nambu, coordinate, and frequency indices. For
Gν

R(ω,�r), it takes the diagonal elements in terms of coordinate
and frequency, and leave the spin and Nambu indices general.
H is the matrix kernel of the B-deG Hamiltonian without
impurity in Eq. (14) expressed in the coordinate representation.
Hν

imp is the impurity potential in the Nambu representation,
defined as

Hν
imp = Vimp(�r)�ν, (28)

where �ν = τ3 ⊗ Sν for ν = 0,1,3, and �2 = τ0 ⊗ S2. τ3 is
the Pauli matrix and τ0 is the identity matrix acting in Nambu
space, and S0 is the identity matrix acting in spin space.

We define the 3D local density of states (LDOS) tensor as

ρμν(ω,�r) = − 1

2π
ImTr

(
(1 + τ3)�μGν

R(ω,�r)
)
, (29)

in which 1 + τ3 is the abbreviation of (I2 + τ3) ⊗ I4. ρμν(ω,�r)
refers to the density distribution in the presence of the magnetic
or nonmagnetic impurity for μ = 0, and the spin-density
distribution at polarization μ at μ �= 0. Then the surface LDOS
tensor ρ

μν

sf (ω, �r‖) for the position �r‖ on the surface is defined by

ρ
μν

sf (ω,�r‖) =
∫

d�rF(�r − �rc)ρμν(ω,�r), (30)

where �rc = (�r‖,0) is the 3D coordinate, and F(�r − �rc) is an
envelop function describing the sensitivity of the STM tip to
the local density of state distribution along the z axis. Here, we
do not use the δ function along the z direction either, due to the

open boundary condition used for the calculation of surface
states. Instead, a Gaussian distribution envelop function is used

F(�r) = Nbe
−( z

b0
)2

δ(x)δ(y), (31)

in which Nb is the normalization factor. The characteristic
features of the LDOS should not be sensitive to the detailed
form of the function F .

Subtracting the background contribution in the absence
of the impurity from ρ

μν

sf (ω,�r‖), we extract the impurity
contribution to the LDOS defined as


ρ
μν

sf (ω,�r‖) = − 1

2πi

∫ 0

−∞
dzF(z)Tr

[
(1 + τ3)�μ

× (

Gν

R(ω,�r‖,z) − 
Gν∗
R (ω,�r‖,z)

)]
, (32)

where


Gν
R(ω,�r) = Gν

R(ω,�r) − G(0)
R (ω,�r), (33)

with

G(0)
R (ω,�r) = 〈�r| 1

ω − H + iε
|�r〉. (34)

The QPI pattern in momentum space 
ρ
αβ

sf (ω,�q) is defined to

be the Fourier transform of 
ρ
αβ

sf (ω,�r‖) with respect to �r‖, as


ρ
μν

sf (ω,�q) = − 1

2πi

∫ 0

−∞
dzF(z)(μν(ω,�q,z)

−μν∗(ω, − �q,z)), (35)

in which μν(ω,�q,z) is the Fourier transform of Tr[(1 +
τ3)�μ
Gν

R(ω,�r‖,z)].

B. The T -matrix formalism and Born approximation

The retarded Green’s function GR(ω,�r‖,z) can be evaluated
using the T -matrix formalism. Define the operator GR(ω) as

GR(ω) = 1

ω − H − Himp + iε
(36)

and that in the absence of impurity G(0)
R (ω) as

G(0)
R (ω) = 1

ω − H + iε
. (37)

GR(ω) can be solved through

GR(ω) = G(0)
R (ω) + G(0)

R (ω)T (ω)G(0)
R (ω), (38)

in which the T -matrix operator T (ω) satisfies the equation

T (ω) = Himp + HimpG(0)
R (ω)T (ω). (39)

The Born approximation will be performed to solve the T

matrix.
Now we outline the procedure of calculating 
ρ

μν

sf based
on Eq. (35). First, 
Gν

R(ω,�q,z) can be evaluated by inserting
the complete basis to both the left and right hand sides of
T (ω) in Eq. (38). A general eigenstate of the Hamiltonian
H is of the form 1

L
ei�k‖·�r‖��k‖,α(z), where L stands for the

average interimpurity distance, and the index α labels the
states with fixed in-surface momentum �k‖, which can be
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either scattering state or surface state. ��k‖,α(z) is the eight-
component normalized wave function in the z direction. After
carrying out the Fourier transform, we obtain

μν(ω,�q,z) = Na

L2

∑
�k‖α,�k′

‖β

δ�k‖−�k′
‖,�q

1

ω − E�k‖,α + iε

×〈��k‖,α|Hν
imp,z|��k′

‖,β
〉 1

ω − E�k′
‖,β

+ iε

× Tr
[
(1 + τ3)�μ��k‖,α(z)�†

�k′
‖,β

(z)
]
, (40)

in which E�k‖,α is the energy of the wave function ��k‖,α(z),
Hν

imp,z(z) is the impurity potential in the z direction defined
as Hν

imp,z(z) = �νV0e
−z/a0 , and 〈��k‖,α|Hν

imp,z|��k′
‖,β

〉 represents∫ 0
−∞ dz V0e

−z/a0�
†
�k‖,α

(z)�ν��k′
‖,β

(z). In Eq. (40), the expres-

sion of ��k‖,α(z)�†
�k′
‖,β

(z) represents a 8 × 8 matrix structure in

the combined spin and Nambu space.
We consider the QPI patterns at the frequency less than

the gap energy. Since the density of states is singular at zero
energy arising from the surface flat bands, only the Majorana
zero modes are kept in the summation over states. With this
approximation, Eq. (40) becomes

μν(ω,�q,z) = Na

N

∑
�k‖,�k′

‖

δ�k‖−�k′
‖,�q

(
1

ω + iε

)2〈
�M

�k‖

∣∣Hν
imp,z

∣∣�M
�k′
‖

〉

× Tr
[
(1 + τ3)�μ�M

�k‖
(z)�M†

�k′
‖

(z)
]
, (41)

in which �M
�k‖

(z) represents the wave function of the Majorana

state with the in-plane momentum �k‖.
The surface Majorana modes exhibit flat-band structure

at zero energy. In the case of the dilute limit, in which the
single impurity scattering can be justified, the scattering matrix
element scales as V0/L

2, thus the scattering occurs nearly at
zero energy. Below, we set ω at the order of ε, which can be
viewed as the inverse lifetime of the Majorana states.

Before presenting the detailed QPI patterns, there is
a general property of 
ρμν(ω,�q). Since both the density
and spin-density distributions are real fields, their Fourier
transforms satisfy


ρμν(ω,�q) = 
ρμν,∗(ω, − �q). (42)

In other words, Re
ρμν(ω,�q) and Im
ρμν(ω,�q) are even and
odd with respect to �q. This symmetry has been clearly shown
in all of Figs. 6–9, which present the Fourier transforms of

ρ

μν

sf (ω,�q) at ω = ε in the (1 1 1) surface.

C. The QPI pattern for a nonmagnetic impurity

In this section, the QPI patterns for nonmagnetic impurities
are presented. 
ρ

μ0
sf (ω,�q) vanishes when μ �= 0 due to TR

symmetry, hence, only the results of 
ρ00
sf (ω,�q) are displayed.

Figures 6 and 7 present 
ρ00
sf (ω,�q) at two representative pair-

ing ratios 
s/
p. Both figures exhibit the C3v symmetry with
three vertical reflection planes. For a nonmagnetic impurity,
the Hamiltonian remains odd under the chiral operation defined
in Eq. (25), which imposes strong restrictions on the QPI

FIG. 6. (a) Re
ρ00
sf (ε,�q) and (b) Im
ρ00

sf (ε,�q) in the (1 1 1)
surface for 
s/
p = 0.3 under the Born approximation. The
background contribution in the absence of impurity is subtracted.
The numerical computations are carried out for a 60×60 lattice
in momentum space. The tip resolution b0 in Eq. (31) is set to be
b0 = 1/(

√
2kf ), and the impurity range a0 in Eq. (26) is taken as

a0 = 1/(
√

2kf ), both of which are at the order of Fermi wavelength.
The impurity potential strength is taken as V0 = g
0, where g

is a scaling factor satisfying g � 1 to justify the Born approxi-
mation. Other parameters are λ1 = 0,λ2 = |μ|/(2k2

f ), and λ3 = 0.


0 = 0.02|μ|, Na = 1
2k2

f

, Nb = √
2kf . ε = 2×10−5|μ|, which is the

inverse of the Majorana life time. The color bar is in the units of

g

√
2kf

800π2|μ| .

patterns. It can only couple the Majorana zero modes with
opposite chiral indices as shown in Figs. 4(a) and 4(b). In
Fig. 4(a), four representative scattering wave vectors between
Majorana islands are drawn in red arrowed lines, among which
“0” represents the intraisland scattering, and “1,” “2,” and “3”
represent interisland scatterings. The scatterings “1” and “3”
are between islands with opposite chiral indices, hence are
allowed in the Born approximation, as shown in Fig. 6. In
contrast, the scatterings of “0” and “2” connect islands with
the same chiral index and hence are forbidden. For example,
the QPI spectra vanish near q = 0, which is the consequence
of the absence of intraisland scatterings.

While both scatterings “1” and “3” appear in the QPI
patterns, the QPI spectral magnitudes of “3” are much weaker
than that of “1,” which is a consequence of TR symmetry. The
impurity matrix element vanishes between two Majorana states
with in-plane momenta �k2d and �k′

2d with �k′
2d = −�k2d , forming

a Kramers pair with T 2 = −1. Nevertheless, the TR symmetry
does not completely forbid the scattering from �k2d to �k′

2d in the
neighbourhood of −�k2d , although these kind of scatterings

FIG. 7. (a) Re
ρ00
sf (ε,�q) and (b) Im
ρ00

sf (ε,�q) in the (1 1 1)
surface with the parameter 
s/
p = 0.7. The other parameters are
the same as in Fig. 6.
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are weakened. Hence, unlike the case of chiral symmetry
which completely forbids scatterings between islands with
the same chiral index, the TR symmetry only reduces while
not strictly forbidding the scatterings between TR related
Majorana islands. For the case of a large pairing ratio 
s/
p as
shown in Fig. 7, the phase space for non-TR related Majorana
states scatterings for interisland scattering “3” is much larger
than the case shown in Fig. 6.

D. The QPI for a magnetic impurity

In this part, the QPI patterns for the magnetic impurity
are presented, corresponding to 
ρ

μν

sf (ω,�q) with ν �= 0. The
magnetic impurity may also trap the Yu-Shiba bound states
[55–57]. The number of such states are finite, and their
spatial distributions are only localized around the magnetic
impurities. They exhibit sharp resonance peaks in the LDOS
in the STM spectra around the impurity. However, the QPI

spectra are the Fourier transform of LDOS over a large area,
which are mostly related to the scattering states. Hence, the
Yu-Shiba states can be neglected in calculating the QPI spectra
without affecting any characteristic features. Nevertheless,
their possible existence is certainly an interesting question
worthwhile for a future investigation.

The magnetic impurity is assumed to be in the classical
limit without fluctuations. Although in principle, a magnetic
impurity could also induce the density response, it is a
high order effect not showing up at the level of the second
order Born approximation. Only μ,ν �= 0 are displayed here.
For simplicity, we will use Latin indices to refer spin
directions 1,2,3.

Figures 8 and 9 show the real and imaginary parts of

ρ

ij

sf (ε,�q), respectively. The magnetic impurity Hamiltonian

H
j
imp (j = 1,2,3) is even under the chiral operation, hence, it

only induces scatterings between Majorana islands with the

FIG. 8. Re
ρ
ij

sf (ε,�q) with ij equal to (a) 11, (b) 12, (c) 13, (d) 21, (e) 22, (f) 23, (g) 31, (h) 32, (i) 33, for 
s/
p = 0.3 in the (1 1 1)
surface. The background contribution in the absence of impurity is subtracted. The numerical computations are carried out for a 60 × 60 lattice
in momentum space. The parameters are taken the same as Fig. 6.
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FIG. 9. Im
ρ
ij

sf (ε,�q) with ij equal to (a) 11, (b) 12, (c) 13, (d) 21, (e) 22, (f) 23, (g) 31, (h) 32, (i) 33. The parameters are the same as those
in Fig. 6.

same chiral index denoted as scatterings “0” and “2” in Fig. 4.
For example, these two classes of scatterings are marked in
the QPI patterns of 
ρ11

sf (ω,�q) shown in Figs. 8(a) and 9(a).
The consequences of the point group symmetry are more

complicated. Let us first consider the magnetic impurity with
spin oriented along the z direction; the impurity Hamiltonian
still preserves the C3 symmetry. Hence, the QPI patterns of

ρ33(ε,�q) explicitly exhibit the C3 symmetry as shown in
Figs. 8(i) and 9(i). As for 
ρ13(ε,�q) and 
ρ23(ε,�q), their
symmetry properties under the C3 rotation


ρi3(ε,R�q) = Rij
ρj3(ε,�q), (43)

where Rij refers to the 2×2 rotation matrix of a C3 rotation.
For example, for the rotation R(ẑ, 2π

3 ), 
ρij satisfies(

ρ13(ε,�q)


ρ23(ε,�q)

)
= 1

2

( −1
√

3
−√

3 −1

)(

ρ13(ε,�q ′)

ρ23(ε,�q ′)

)
, (44)

where q ′ = R(ẑ, 2π
3 )�q, and this property has been checked for

Figs. 8(c) and 8(f) and Figs. 9(c) and 9(f). On the other hand,

the vertical reflection symmetry with respect to the xz plane
is broken, nevertheless, it can be restored by combining with
TR operation. Sz and Sx are odd for this operation, while Sy

is even, hence,


ρi3(ε,�q) = ±
ρi3(ε,�q ′), (45)

where + applies for i = x,z and − applies for i = y; �q ′ is the
image of �q after the reflection. Similar transformations can be
derived for other planes equivalent to the xz plane by the C3

rotations. It is easy to check that all of Figs. 8(c), 8(f) and 8(i)
and 9(c), 9(f) and 9(i) satisfy these properties.

Now we consider the case of the impurity spin orientation
along the x direction. Then the C3 rotation symmetry is no
longer kept. The symmetry of the combined reflection followed
by TR operation is still valid, nevertheless, the reflection plane
can only be the xz plane. Hence, we have


ρi1(ε,�q) = ±
ρi1(ε,�q ′), (46)
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where + applies for i = x,z, and − applies for i = y. Again
this can be checked by examining Figs. 8(a), 8(d) and 8(g) and
Figs. 9(a), 9(d) and 9(g). At last, we examine the case of the
impurity spin orientation along the y direction. Again the C3

rotation symmetry is lost, while the refection symmetry with
respect to the xz plane is maintained.


ρi2(ε,�q) = ∓
ρi2(ε,�q ′), (47)

where − applies for i = x,z, and + applies for i = y. Clearly
this symmetry is respected in Figs. 8(b), 8(e) and 8(h) and
Figs. 9(b), 9(e) and 9(h).

VI. SUMMARY

In summary, the noncentrosymmetric effective spin- 3
2 sys-

tems with cubic group symmetries are discussed. The emphasis
is put on the Td group, which is relevant to the YPtBi material.
The double degeneracy along [0 0 1] and equivalent directions
for systems with Td symmetry is shown to be protected by the
little group SD16. Majorana surface states are calculated for
the proposed mixed s-wave singlet and p-wave septet pairing
of the Td case in the (1 1 1) surface. Two representative values
of the ratio between s- and p-wave pairing components are
taken as examples for calculations. The Majorana states form
flat bands within the regions enclosed by the projections of
the nodal loops in gap functions on the surface Brillouin
zone but disappear in the overlapping regions. The results are
consistent with the bulk-edge correspondence principle. The
QPI patterns are computed for the surface states with a single
impurity in Born approximation. Chiral symmetry forbids
scatterings between Majorana islands of same (opposite) chiral
index for the nonmagnetic (magnetic) impurities. There are
richer structures in the QPI patterns under the transformation
of C3v group for the case of magnetic impurity than the
case of nonmagnetic impurity. Experimental signatures on
the QPI patterns can test the possible mixed s,p pairing for
the half-Heusler compound YPtBi.

Note added. Recently, we learned of the recent works on
superconductivity on the half-Heusler material [58–60].
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APPENDIX A: INVARIANTS OF THE CUBIC GROUPS

In this appendix, we briefly describe the five cubic point
groups Oh,O, Td, Th, T , then classify the spherical harmonics
of momentum and spin tensors up to the third rank according
to their irreducible representations. All cubic-group-symmetry
invariants up to the third rank of momentum and spin tensors
are presented.

Let us recall some group theory knowledge. The Oh group
is the symmetry group of the cube, containing 48 elements,
hence, is the largest one among the five cubic groups. The
other four are its subgroups, which are the symmetry groups

TABLE I. List of 24 group elements of point group O. In
accordance with the notations in Fig. 2, OM represents the vector
pointing from the center of the cube (i.e., the point O) to the vertex
or the direction M , where M is one of A, A′, B, B ′, C,C ′, D, D′

when it is a vertex of the cube and is one of X, Y, Z, X′, Y ′, Z′ when
it represents a direction. X, Y,Z represent the positive directions of
the three axes x, y, z, and X′, Y ′ Z′ represent the negative directions
of the three axes. The symbol [MN ] represents the line passing
through the point that bisects the edge MN ′ and the point that bisects
M ′N , where M,N, M ′, N ′ are all vertices of the cube.

E 1 (x,y,z) identity

3C2 2 (x, − y, − z) R(OX,π )

3 (−x,y, − z) R(OY,π )

4 (−x, − y,z) R(OZ,π )

6C4 5 (x,z, − y) R
(
OX,π

2

)
6 (x, − z,y) R

(
OX′, π

2

)
7 (−z,y,x) R

(
OY,π

2

)
8 (z,y, − x) R

(
OY ′, π

2

)
9 (y, − x,z) R

(
OZ,π

2

)
10 (−y,x,z) R

(
OZ′, π

2

)
6C

′
2 11 (y,x, − z) R([AC],π )

12 (−y, − x, − z) R([BD],π )

13 (z, − y,x) R([AB],π )

14 (−z,y, − x) R([CD],π )

15 (−x,z,y) R([AD],π )

16 (−x, − z, − y) R([BC],π )

8C3 17 (y,z,x) R
(
OA, 2π

3

)
18 (z,x,y) R(OA′, 2π

3

)
19 (−y, − z,x) R

(
OB, 2π

3

)
20 (z, − x, − y) R

(
OB ′, 2π

3

)
21 (y, − z, − x) R

(
OC, 2π

3

)
22 (−z,x, − y) R

(
OC ′, 2π

3

)
23 (−y,z, − x) R

(
OD, 2π

3

)
24 (−z, − x,y) R

(
OD′, 2π

3

)

of decorated cubes in different ways. Figure 2 shows the case
of the Td group. In the designated coordinate system, O is at
the origin. Among the eight vertices, A,B,C,D are located at
(−1,−1,−1),(1,−1,1),(1,1,−1), and (−1,1,1), respectively,
and A′,B ′,C ′,D′ are their inversion symmetric partners,
respectively. We use I to denote the inversion operation and
R(n̂,θ ) the rotation around the direction n̂ by the angle θ .
The group Oh has 24 proper elements, which correspond to
rotations, and their conjugation classes E, 3C2, 6C4, 6C

′
2, and

8C3 are listed in Table I. The other 24 elements are improper
operations corresponding to combinations of rotation and
inversion. Their conjugation classes are i, 3σh, 6S4, 6σd , and
8S6 by applying the inversion operation to E, 3C2, 6C4, 6C

′
2,

and 8C3, respectively. For simplicity, they are not listed. The
other four cubic groups are subgroups of Oh represented by
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TABLE II. Classifications of the momentum spherical harmonics
up to the cubic order according to irreducible representations of
the five cubic point groups. The subscripts i,i + 1,i + 2 are defined
cyclically in x,y,z.

Oh O Td Th T

{ki}1�i�3 T1u T1 T2 Tu T

k2
x + k2

y + k2
z A1g A1 A1 Ag A{(

k2
x + k2

y − 2k2
z

)
/
√

2,k2
x − k2

y

}
Eg E E Eg E

{kiki+1}1�i�3 T2g T2 T2 Tg T

kxkykz A2u A2 A1 Au A{
k3

i

}
1�i�3

T1u T1 T2 Tu T{
ki

(
k2

i+1 + k2
i+2

)}
1�i�3

T1u T1 T2 Tu T{
ki

(
k2

i+1 − k2
i+2

)}
1�i�3

T2u T2 T1 Tu T

the conjugation classes as

O = {E,3C2,6C4,6C ′
2,8C3},

Td = {E,3C2,8C3,6S4,6σd},
Th = {E,3C2,8C3,i,3σh,8S6},
T = {E,3C2,8C3}. (A1)

In Table II, we list all the momentum harmonics up to
the third rank. There are three, six, and ten harmonics for
rank-1, -2, and -3, respectively. The decompositions to cubic
groups are rank-1 = T , rank-2 = A ⊕ E ⊕ T , and rank-3 =
A ⊕ T ⊕ T ⊕ T . For different groups, A and T can be further
classified to A1,2, and T1,2, respectively. For groups containing
inversion operation, the subindex g and u mean representations
of even and odd parities, respectively. The spherical spin
tensors are presented in Table III. Since

∑
i S

2
i = S(S + 1),

there are only five and seven independent spin tensors at
rank-2 and -3, respectively. Since spin operators are parity
even, all the corresponding representations are of the g

type.
Here we list all spin-orbit coupled invariants up to the third

order in momentum for three inversion-breaking cubic groups

TABLE III. Classifications of spin tensors up to the third rank
according to the irreducible representations of the five cubic groups.
The symbol “Sym” represents symmetrization as a sum of all
permutations of the objects inside the symbol. The subscripts
i,i + 1,i + 2 are defined cyclically in x,y,z.

Oh O Td Th T

{Si}1�i�3 T1g T1 T1 Tg T{(
S2

x + S2
y − 2S2

z

)
/
√

2,S2
x − S2

y

}
Eg E E Eg E

{SiSi+1 + Si+1Si}1�i�3 T2g T2 T2 Tg T

Sym(SxSySz) A2g A2 A2 Ag A{
S3

i

}
1�i�3

T1g T1 T1 Tg T

{Si+1SiSi+1 − Si+2SiSi+2}1�i�3 T2g T2 T2 Tg T

TABLE IV. The TR and rotation-invariant combinations of
momentum and spin tensors up to the third rank. The second rank
combinations preserving the inversion symmetry are not shown
since they have been already included in the Luttinger-Kohn
Hamiltonian.“·” represents the inner product as a summation of i

from 1 to 3.

Oh O Td Th T

kxkykz · Sym(SxSySz) A1u A1 A2 Au A

ki · Si A1u A1 A2 Au A

ki · S3
i A1u A1 A2 Au A

ki · (Si+1SiSi+1 − Si+2SiSi+2) A2g A2 A1 Au A

k3
i · Si A1u A1 A2 Au A

k3
i · S3

i A1u A1 A2 Au A

k3
i · (Si+1SiSi+1 − Si+2SiSi+2) A2g A2 A1 Au A

ki

(
k2

i+1 + k2
i+2

) · Si A1u A1 A2 Au A

ki

(
k2

i+1 + k2
i+2

) · S3
i A1u A1 A2 Au A

ki

(
k2

i+1 + k2
i+2

) · (Si+1SiSi+1 − Si+2SiSi+2) A2g A2 A1 Au A

ki

(
k2

i+1 − k2
i+2

) · Si A2u A2 A1 Au A

ki

(
k2

i+1 − k2
i+2

) · S3
i A2u A2 A1 Au A

ki

(
k2

i+1 − k2
i+2

) · (Si+1SiSi+1 − Si+2SiSi+2) A1u A1 A2 Au A

O,Td,T . For the point group O, the invariants are

ki · Si, ki · S3
i ,

kxkykzSym(SxSySz),

k3
i · Si, k3

i · S3
i ,

ki

(
k2
i+1 + k2

i+2

) · Si, ki

(
k2
i+1 + k2

i+2

) · S3
i ,

ki

(
k2
i+1 − k2

i+2

) · (Si+1SiSi+1 − Si+2SiSi+2). (A2)

The Td invariants are

ki · (Si+1SiSi+1 − Si+2SiSi+2),

k3
i · (Si+1SiSi+1 − Si+2SiSi+2),

ki

(
k2
i+1 − k2

i+2

) · Si, ki

(
k2
i+1 − k2

i+2

) · S3
i ,

ki

(
k2
i+1 + k2

i+2

) · (Si+1SiSi+1 − Si+2SiSi+2). (A3)

For T , all the invariants of O and Td are allowed. In these
expressions, the dot “·” represents an inner product between the
two 3-vectors, in which “i” runs over x,y,z and a summation∑

i=x,y,x is taken. Inversion symmetry is explicitly broken by
all the terms, hence the double degeneracy in the heavy hole
and light hole bands is in general absent.

The TR symmetry requires that the homogeneity of the
combinations be even. The inversion-preserving combinations
have already been included in the Luttinger-Kohn Hamiltonian
Eq. (5). There are 17 inversion breaking combinations which
are listed in Table IV. All of these combinations belong to A

representations of the cubic groups. Whether they are A1, A2,
or Ag,Au of a particular cubic group can be obtained from the
information in Tables II and III and the multiplication rules of
the representations.
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APPENDIX B: THE SEMIDIHEDRAL GROUP SD16

In this appendix, we discuss the little group structure along
the [0 0 1] and its equivalent directions of the lattice system
with the Td symmetry augmented by spinor representations
and TR symmetry. This little group is isomorphic to the
semidihedral group (also called the quasidihedral group) SD16,
where the subscript “16” represents the order of the group.

With the Td group, its little group L0 along the [0 0 1]
direction is

L0 = {1,Mx ′ ,My ′ ,R(�z,π )}, (B1)

in which 1 is the identity element, and the directions of x ′ and
y ′ are given in Fig. 2. The reflection Mx ′ can be decomposed as
Mx ′ = IR(x̂ ′,π ). L0 is isomorphic to D2, the dihedral group
of order 4, which is Abelian and only has 1D irreducible
representations.

For half-spin fermions, L0 needs to be doubled to L1 by
adding 1̄ = R(�n,2π ), then L1 is represented by

L1 = {1,Mx ′ ,My ′ ,R(�z,π ),

1̄,1̄Mx ′ ,1̄My ′ ,1̄R(�z,π )}. (B2)

1̄ commutes with every element in the group, which takes
−1 for half-integer spin representations. Since the inversion
operator I commutes with all O(3) elements and acts as
identity operator in spin space, we can explicitly check that

M2
x ′ = R(x̂ ′,2π ) = 1̄,

Mx ′My ′ = R(�z,π ) = −My ′Mx ′ , (B3)

hence L1 is non-Abelian. We can explicitly work out the
multiplication rules of L1, which shows that it is isomorphic
to the quaternion group,

Q8 = {±1, ± i, ± j, ± k}, (B4)

through the identifications 1 = 1, 1̄ = −1,Mx ′ = i,My ′ = j ,
and R(�z,π ) = k. The multiplication rules of Q8 are given by

i2 = j 2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j. (B5)

Q8 and hence L1 has one 2D irreducible representation up to
isomorphism in which 1 and 1̄ take the value of 1 and −1,
respectively, and four 1D irreducible representations in which
1 and 1̄ are identical.

Now we extend Td to its magnetic group and identify its
little group along the [0 0 1] direction. The antiunitary operator
S defined in Eq. (11) as S = R(ẑ, π

2 )T ′ is an element of
this little group, where T ′ = IT . T ′ leaves the momentum
direction [0 0 1] direction unchanged, and T ′2 = 1 or −1
depending on whether the spin is integer or half-odd integer. In
the case of T ′2 = 1, the magnetic little group is denoted as L2

L2 = {1,Mx ′ ,My ′ ,R(�z,π ),

S,Mx ′S,My ′S,R(�z,π )S}. (B6)

Defining r = R(ẑ, π
2 )T ′, s = Mx ′ , L2 can be rewritten as

L2 = {1,r,r2,r3,s,sr,sr2,sr3}, (B7)

which is isomorphic to D4, the dihedral group of order 4, with
the relations of r4 = s2 = 1, srs−1 = r−1.

Finally we consider the case of T ′2 = −1. We define r ′ as
the spinor version of r and s ′ = r ′Mx ′ . Then the magnetic little
group L3 for the [0 0 1] direction can be represented in terms
of r ′ and s ′ as

L3 = {1,r ′,r ′2,r ′3,

r ′4,r ′5,r ′6,r ′7,

s ′,s ′r ′,s ′r ′2,s ′r ′3,

s ′r ′4,s ′r ′5,s ′r ′6,s ′r ′7}. (B8)

This is in fact isomorphic to the semidihedral group
SD16 of order 16 defined in terms of generators and
relations as

SD16 = 〈r ′,s ′|r ′8 = s ′2 = 1,s ′r ′s ′−1 = r ′3〉. (B9)

Here we show that s ′r ′s ′−1 = r3 as follows,

s ′r ′s ′−1 = Mx ′r ′M−1
x ′ T ′

= R(x̂ ′,π )R

(
ẑ,

π

2

)
R(x̂ ′,π )−1T ′

= R

(
ẑ,

7

2
π

)
T ′ = 1̄R

(
ẑ,

π

2
π

)
T ′

= R

(
ẑ,

3

2
π

)
T ′3 = r ′3, (B10)

in which in the second to last line R(ẑ,2π ) = 1̄ is used. We
further note that SD16 has both Q8 and D4 as subgroups. The
Q8 subgroup is generated by {r ′2,r ′s ′}, while the D4 subgroup
is generated by {r ′2,s ′}.

APPENDIX C: THE ANTIUNITARY OPERATOR
S WITH S4 = −1

In this appendix, we will give the explicit form of the
operator S and its action on the two doubly degenerate
subspaces along [0 0 1] directions. Since I acts as identity
operator in the spin space, the antiunitary operation S is
given by

S = e−iSz(−π/2)R · K, (C1)

in which K is the complex conjugate operation. Then S is
computed as S = MK , where

M =

⎛
⎜⎜⎝

0 0 0 ei 3π
4

0 0 −ei π
4 0

0 e−i π
4 0 0

−e−i 3π
4 0 0 0

⎞
⎟⎟⎠. (C2)

It is straightforward to verify thatS2 = diag{i, − i,i, − i}, and
S4 = −1.

Up to an overall factor, the Hamiltonian Eq. (6) along the
[0 0 1] direction is

Hz = S2
z + δ(SxSzSx − SySzSy), (C3)

in which |δ| � 1 for the case of small inversion breaking
strength. Since the Hamiltonian Eq. (C3) changes the Sz

eigenvalue by 0 or 2, the helicity 3
2 component will mix

with the helicity − 1
2 component, and similarly, the helicity

1
2 -component mixes with the helicity − 3

2 component.
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As proved in Sec. II C, the spectra of Eq. (C3) are
doubly degenerate. The two eigenvectors v1,2 corresponding to
Ev = 1

4 (5 + 2
√

4 + 3δ2) are

v1 = 1

N

(
1,0,

2√
3δ

(√
1 + 3

4
δ2 − 1

)
,0

)T

,

v2 = 1

N

(
0, − 2√

3δ

(√
1 + 3

4
δ2 − 1

)
,0,1

)T

, (C4)

in which N is the normalization factor. The two eigenvectors
w1,2 of Ew = 1

4 (5 − 2
√

4 + 3δ2) are

w1 = 1

N

(
0,1,0,

2√
3δ

(√
1 + 3

4
δ2 − 1

))T

,

w2 = 1

N

(
− 2√

3δ

(√
1 + 3

4
δ2 − 1

)
,0,1,0

)T

. (C5)

The antiunitary operation S is diagonal blocked. Its off-
diagonal elements between the two subspaces spanned by v1,2

and w1,2 are zero. In the subspace spanned by v1,2 and that by
w1,2, it has matrix structure as

S =
(

0 ei± π
4

−e−i∓ π
4 0

)
K, (C6)

in which the upper sign is for subspace v1,2 and lower sign for
w1,2.

APPENDIX D: TOPOLOGICAL INDEX
FOR NODAL-LINE SUPERCONDUCTORS

In this appendix, we first review the definition of the
path-dependent topological number for the TR invariant nodal
topological superconductors [24], then apply it to the spin-3/2
case of the current interest. The pairing strengths of s- and
p-wave components are parametrized as 
s = Cs
0 and

p = Cp
0.

In the presence of TR symmetry, the combined operation
C = PhT , dubbed as chiral operator, anticommutes with the
B-deG Hamiltonian. As a result, H�k can be transformed into a
block-off-diagonal form as

WH�kW
† =

(
0 D

†
�k

D�k 0

)
. (D1)

The matrix D�k can be decomposed into D�k = U�k�kV�k via
singular-value decomposition, in which �k is a diagonal
matrix with non-negative eigenvalues, and U�k,V�k are unitary
matrices. Consider a closed path L in momentum space. If
the gap does not vanish along the path L, then �k on L can
be deformed into the identity matrix, and then D�k becomes a
unitary matrix denoted as Q�k . The topological number of the
path L is defined by the formula [24],

NL = 1

2πi

∫
L

dkl Tr[Q†
�k∂kl

Q�k]. (D2)

Next we carry out the calculation of the topological number
in Eq. (D2) for the Hamiltonian Eq. (14) with the Td

symmetry. The chiral operator C = τ1 ⊗ R is diagonalized

by the following matrix W ,

W = 1√
2

(
I4 iR

−iR I4

)
, (D3)

in which I4 is the 4×4 identity matrix. The Hamiltonian H�k
can be brought into a block off-diagonal form as

WH�kW
† =

(
0 D�k

D
†
�k 0

)
, (D4)

in which

D�k = HL(�k) + δA(�k) − μ + i
0(Cs + CpA(�k)). (D5)

Treating the inversion breaking term δ
kf

A(�k) at the level of the
first order degenerate perturbation theory, the band energies
ε

(1/2)
± (�k) and ε

(3/2)
± (�k) of the spin-split light hole and heavy

hole bands are given, respectively, by

ε
1/2
± (�k) = (2λ2 + λ1)k2 ± δ|(1/2)(�k)| − μ,

ε
3/2
± (�k) = (2λ2 − λ1)k2 ± δ|(3/2)(�k)| − μ. (D6)

Up to the first order in δ/|μ| and 
0/|μ|, the matrix D�k is
diagonalized via a unitary transformation U�k as

D�k = U�kdiag(ε(α)
ν (�k) + i
(α)

ν (�k))U †
�k , (D7)

in which α= 3
2 , 1

2 , ν=±, and 
(α)
ν (�k)=
0(Cs+νCp| �(α)(�k)|).

Then Q�k is derived as

Q�k = U�kdiag(eiθ (α)
ν (�k))U †

�k , (D8)

in which tan θ (α)
ν (�k) = 
(α)

ν (�k)/ε(α)
ν (�k). Plugging Q�k in

Eq. (D2), we arrive at the topological index NL as

NL = 1

2π

∑
α,ν

∫
L

dkl ∂kl
θ (α)
ν (�kl). (D9)

The bands of helicity ± 1
2 lie above the Fermi energy at the

energy of the order of |μ|, hence, they will not give rise to
nontrivial contribution to NL. For the bands of helicity ±3/2,
the formula for NL can be simplified to [24]

NL = −1

2

∑
ν

∑
�kF

sgn(∂�kl
ε(3/2)
ν (�kF )) · sgn(
(3/2)

ν (�kF )), (D10)

where �kF ’s are the wave vectors at which the path L crosses
the Fermi surfaces. The equations ε

(3/2)
± (�k) = 0 determine the

smaller (larger) Fermi surface. These two Fermi surfaces touch
along the [0 0 1] directions protected by the little group SD16

as analyzed in Sec. II C. Assuming 
s,
p > 0, then the gap
function 


(3/2)
+ (�kF ) on the smaller Fermi surface is positive

definite. A closed path L always crosses the Fermi surface
even times, and the sign of (∂�kl

ε
(3/2)
ν ( �kF )) for crossing the

Fermi surface from the inner to outer direction is opposite to
that from the opposite directions, hence, the smaller Fermi
surface does not contribute the NL as well. Then the formula
is simplified to

NL = −1

2

∑
�kF

sgn(∂�kl
ε

(3/2)
− ( �kF )) · sgn(
(3/2)

− (�kF )), (D11)

in which only the larger Fermi surface contributes.
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For the Hamiltonian Eq. (14) with Td symmetry, the sign
of the pairing 


(3/2)
− (�kF ) inside the nodal loop is opposite to

that outside the loop. Hence from Eq. (D11) the topological
number for a closed path that encloses the nodal loop once is
±1, where the sign of NL depends on the direction that the
path is traversed.

The physical meaning of Eq. (D11) can be related to
the sign structure of the gap functions along the incident
and reflected wave vectors [24]. Let �k‖ be an in-plane wave
vector within the surface of interest. The infinite vertical line
passing through �k‖ crosses the larger Fermi surface at two
wave vectors with vertical components k⊥1 and k⊥2. Now we
can enclose the infinite line with a semi-infinite circle and
consider the topological number of the combined path L0.
From Eq. (D11), NL0 is related to the sign difference between



(3/2)
− (k⊥1) and 


(3/2)
− (k⊥2). On the other hand, NL0 does not

change by continuously deforming the path as long as the
nodal circles are not touched. If after such a deformation
no nodal loop is enclosed, the pairings of the incident and
reflected wave vectors are of the same sign, corresponding to a
topologically trivial situation. If two nodal loops are enclosed
and the topological numbers from the two loops cancel, which
is a topologically trivial situation again. In contrast, if only one
nodal loop is enclosed, the topological number NL0 = ±1, for
which the Majorana zero modes appear.

APPENDIX E: THE METHOD FOR SOLVING
SURFACE STATES

In this appendix, the equation determining surface state
is derived in the limit 
0 � δ � |μ|. We first obtain the
eight pairs of {�kl,�l} from Eq. (22) as functions of Es ,
then plug them in det({�l}1�l�8) = 0 to solve for Es . The
pairing strengths and the surface energy are parametrized as

s = Cs
0,
p = Cp
0 and Es = ε
0.

Due to the translation symmetry in the xy plane, (kx,ky)
remain good quantum numbers. The momentum kz solving
Eq. (22) can be expanded as kz = ±k0z + ζ δ − iξ
0, in which
k0z is the magnitude of the zth component of the Fermi wave
vector determined by the Luttinger-Kohn Hamiltonian, ζ δ

originates from the splitting of Fermi surfaces due to the
inversion breaking term in the band structure, and −iξ
0

is from the superconducting pairing. Denote k
(3/2)
0z and k

(1/2)
0z

to be the above mentioned k0z for the heavy and light hole
bands, respectively. Since the Fermi energy crosses the heavy
hole bands, k

(3/2)
0z is real, while k

(1/2)
0z is purely imaginary. The

expressions of k
(3/2)
0z and k

(1/2)
0z are

k
(3/2)
0z =

√
|μ|/(2λ2 − λ1) − k2

x − k2
y,

k
(1/2)
0z = −i

√
|μ|/(2λ2 + λ1) + k2

x + k2
y. (E1)

We also denote k
(3/2)
0 and k

(1/2)
0 as

k
(3/2)
0 =

√
|μ|/(2λ2 − λ1),

k
(1/2)
0 = −i

√
|μ|/(2λ2 + λ1). (E2)

We will discuss the heavy and light hole bands separately and
first consider the heavy hole bands. The superscript “3/2” on

momentum will be dropped for simplicity. Denote â to be
the unit vector normal to the surface. Let �k0η = (kx,ky,ηk0z)
(η = ±1) and define U (3/2)(�k0η) as

U (3/2)(�k0η)

=
(

U (â) 0
0 U (â)T ,−1

)(
U (k̂0η) 0

0 U (k̂0η)T ,−1

)
, (E3)

in which U (â) = e−iSzφa e−iSyθa and U (�k0η) = e−iSzφηe−iSyθη ,
where θa and φa are the polar and azimuthal angles of â, and
θη and φη are those of the vector �k0η. U (3/2)(�k0η) corresponds
to the helicity basis at momentum �k0η. Plug kz = ηk0z + ζ δ −
iξ
0 (η = ±1) into the Hamiltonian in Eq. (14), perform the
transformation U (3/2)(�k0η)−1H (�k)U (3/2)(�k0η), and project into
the heavy hole bands. Then by keeping the leading order terms
in the expansion over δ and 
0, the HL and HA terms in Eq. (14)
become

H ′
L − μ = (ζ δ − iξ
0)

(
2

(
λ1 + 5

2
λ2

)
ηk0z

− 2λ2k0P3/2{Sz,U (�k0η)−1SzU (�k0η)}P3/2

)
,

H ′
A = δ

kf

P3/2U (�k0η)−1U (â)−1A(Ra
�k0η)

·U (â)U (�k0η)P3/2, (E4)

in which P3/2 is the projection operator to the heavy hole bands,
the superscript of prime denotes the terms after the transfor-
mation and the projection, {,} represents the anticommutator
of two matrices, and k0 is k

(3/2)
0 with the superscript “3/2”

omitted. H ′
L and H ′

A are 2 × 2 matrices after the projection to
the heavy hole bands. H ′

A is traceless, hence can be expanded
in terms of Pauli matrices as

H ′
A = δ �(�k0η) · �σ , (E5)

in which �(�k0η) is a three-component vector. Let D(�k0η) be
the transformation that diagonalizes H ′

A. The eigenvalues of
H ′

A are ±δ| �(�k0η)|, which leads to Fermi surface splitting.
The correction of the Fermi wave vector due to the splitting is
given by ζ δ, and there are two values of ζ corresponding to
the two eigenvalues of H ′

A. In the following, for simplicity, we
will term the basis after the transformation of D(�k0η) as band
structure basis.

Next we consider the effect of the superconducting pairing.
Since 
0 � δ, as long as H ′

A does not vanish, we can project
the superconducting pairing onto the eigenbases of the band
Hamiltonian, and the corrections from the mixing between
different spin-split bands are of higher orders in 
0/δ. Let
Pν (ν = ±1) be the projection operator to one of the two

band structure basis with eigenvalue νδ

√
�(�k0η)2 of H ′

A. Plug
kz = ηk0z + ζ δ − iξ
0 into Eq. (22), and set kz to be ηk0z in
the pairing Hamiltonian with corrections of high orders. Then
Eq. (22) becomes a two-component eigenequation, as(

iξγ (�k0η) − ε (−)
1−ν

2 χν(�k0η)

(−)
1−ν

2 χν(�k0η)∗ −iξγ (�k0) − ε

)
�′ = 0, (E6)
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in which

γ (�k0η) = −2
(
λ1 + 5

2λ2
)
ηk0z

+ 2λ2k0PνP3/2{Sz,U (�k0η)−1SzU (�k0η)}P3/2Pν,

χν(�k0η) = PνD(�k0η)−1P3/2U (�k0η)−1U (â)−1K(Ra
�k0η)

·U (â)U (�k0η)P3/2D(�k0η)Pν. (E7)

The γ (�k0η) term corresponds to the O(
0) correction to the
diagonal block in Eq. (22) from −iξ
0 in kz = ηk0z + ζ δ −
iξ
0, and the χν(�k0η) term is the projection to band structure
basis of the superconducting pairing. The solutions of ξ and
�′ are given by

ξ (3/2)(�k0η; ν) =
√

|χν(k0η)|2 − ε2

γ (�k0η)2
,

�′(3/2)(�k0η; ν) =
(

−(−)
1−ν

2 χν(�k0η)

iξ (�k0η,ν)γ (�k0η) − ε

)
, (E8)

in which ξ is chosen to be positive to match the boundary
condition at z → −∞. The eigenvector � can be obtained
from �′ by performing the transformations D(�k0η), U (�k0η),
and U (â) back in sequence.

Now we turn to the light hole bands. Again the su-
perscript “1/2” will be dropped in the following ex-
pressions for simplicity. The momentum in the z di-
rection is in general kz = k0z + ζ δ − iξ
0, where k0z =
−i

√
|μ|/(2λ2 + λ1) + k2

x + k2
y . Im(k0z) is chosen to be neg-

ative so as to match the boundary condition at z → −∞. Let
�k0 = (kx,ky,k0z) and define

U (1/2)( �k0) =
(

U (â) 0
0 U (â)T ,−1

)(
U (k̂0) 0

0 U (k̂0)T ,−1

)
,

(E9)

in which U (�k0) = e−iSzφe−iSyθ , where φ = arctan(ky/kx) and
θ = arccos(k0z/k0). Unlike the heavy hole bands, here θ is
purely imaginary since |k0z| > |k0|. Plug kz = k0z + ζ δ −
iξ
0 into the Hamiltonian in Eq. (14), perform the transfor-
mation U (1/2)(�k0)−1H (�k)U (1/2)(�k0), and project into the light
hole bands. Then by keeping the leading order terms in the
expansion over δ and 
0, the HL and HA terms become

H ′
L − μ = (ζ δ − iξ
0)

(
2

(
λ1 + 5

2
λ2

)
k0z

− 2λ2k0P1/2{Sz,U (�k0)−1SzU (�k0)}P1/2

)
,

H ′
A = δ

kf

P1/2U (�k0)−1U (â)−1A(Ra
�k0)

·U (â)U (�k0)P1/2, (E10)

in which P1/2 is the projection operator to the helicity ±1/2
bands, and the superscript of prime denotes the terms after
the transformation and the projection. The eigenvalues of H ′

A

are ±
√ �2(�k0). H ′

A introduces the correction of ζ δ into the

Fermi wave vectors. Let D(�k0) be the transformation that
diagonalizes H ′

A. It defines the band structure basis for the
case of the light hole bands.

Let Pν (ν = ±1) be the projection operator to one of two
band structure basis with eigenvalue ν

√ �2(�k0) of H ′
A. For the

treatment of the superconducting pairing, again by assuming

0 � δ, the projection to the band structure basis can be
performed, and the eigenequation determining ξ and � is(

iξγ (�k0) − ε −(−)
1−ν

2 χν(�k0)

−(−)
1−ν

2 χ̃ν(�k0) −iξγ (�k0) − ε

)
�′ = 0, (E11)

in which

γ (�k0) = −2
(
λ1 + 5

2λ2
)
k0z

+ 2λ2k0PνP1/2{Sz,U (�k0)−1SzU (�k0)}P1/2Pν,

χν(�k0) = PνD
−1(�k0)P1/2U (�k0)−1U (â)−1K(Ra

�k0)

·U (â)U (�k0)P1/2D(�k0)Pν,

χ̃ν(�k0) = PνD
†(�k0)P1/2U (�k0)†U (â)−1K(Ra

�k∗
0 )

·U (â)U (�k0)†,−1P1/2D(�k0)†,−1Pν. (E12)

Then ξ and �′ are solved as

ξ (1/2)(�k0; ν,ι) = ι

√
χν(�k0)χ̃∗

ν (�k0) − ε2

γ (�k0)2
,

�
′(1/2)(�k0; ν,ι) =

(
(−)(1−ν)/2χν(�k0)

iξ (�k0; ν,ι)γ (�k0) − ε

)
, (E13)

in which ι = ±1. The eigenvector � can be obtained from
�′ by performing the transformations D(�k0), U (�k0), and U (â)
back in sequence.

Plugging these expressions into the boundary condition at
z = 0, we obtain the equation determining the energy of the
surface states,

det
({

�(1/2)
(�k(1/2)

0 ; ν,ι
)}

ν,ι=±,
{
�(3/2)

(�k(1/2)
0η ; ν

)}
η,ν=±

) = 0,

(E14)

in which

�(1/2)
(�k(1/2)

0 ; ν,ι
) = U (1/2)(�k0)D̄(1/2)(�k0)�′(1/2)(�k0; ν,ι),

�(3/2)
(�k(3/2)

0η ; ν
) = U (3/2)(�k0η)D̄(3/2)(�k0η)�′(3/2)(�k0η; ν),

(E15)

where D̄ = diag(D,DT,−1) is the extension of the matrix D

to the particle-hole space. In Eq. (E15), all of the terms are in
the eight-dimensional space. For those originally defined not
to be eight dimensional, we need to appropriately embed them
into the eight-dimensional space. Equation (E15) is the general
equation for solving surface state energy, without restriction
on the form of the inversion breaking term, nor on the form of
the pairing Hamiltonian.

We further note that for the present case in which the Fermi
energy only crosses the heavy hole bands, the 8×8 matrix
in Eq. (E15) can be reduced to a 4×4 one when solving
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Majorana zero modes. The boundary condition requires that
the eight vectors �

(α)
i (α = 3/2,1/2, 1 � i � 4) are linearly

dependent. At zero energy, the four vectors �
(1/2)′
i in the light

hole space in Eq. (E13) are linearly independent. Hence they
must also be so at least in a neighborhood of ε = 0. The vectors
�

(1/2)
i are obtained from �

(1/2)′
i by the same transformation

D(1/2). This means that �
(1/2)
i are also linearly independent

in a neighborhood of ε = 0. Thus the boundary condition
can be simplified to det{P�

(3/2)
i }1�i�4 = 0, where P is the

projection operator into the linear subspace orthogonal to the
space spanned by {�(1/2)

i }1�i�4.
Although the original boundary condition matrix in

Eq. (E14) can be reduced to the heavy hole space, the light
hole space cannot be neglected since they touch with the heavy
hole bands at the � point. If the two sets of bands are separated
by a band gap Eg much greater than the value of the chemical
potential, then the light hole bands are inert up to leading order
of |μ|/Eg . In the current situation, they enter into the reduced
4 × 4 boundary condition matrix, which is a reflection of the
spin-3/2 nature of the system.

APPENDIX F: SYMMETRY PROPERTIES
IN QPI PATTERNS

We discuss in this section the implications of particle-hole,
TR, chiral, and C3v symmetries on the QPI patterns for the
(1 1 1) surface.

1. Particle-hole symmetry

In this part, we discuss the consequence of particle-hole
symmetry in QPI patterns. First consider the nonmagnetic
impurity. Let Psf be the projection operator to the subspace
of the surface states. In Born approximation and only taking
into account the contribution from Majorana zero modes,

ρ(00)(ω,�r) can be expressed as


ρ(00)(ω,�r) = − 1

2π
ImTr

[
(1 + τ3)〈�r|Psf

1

ω − H + iε

Psf HimpPsf

1

ω − H + iε
Psf |�r〉

]
,

= − 1

2π
Im

[(
1

ω + iε

)2

Tr((1 + τ3)

〈�r|Psf VimpPsf |�r〉)
]
, (F1)

in which Vimp is a scalar potential. Particle-hole symmetry
leads to

〈�r|Psf HimpPsf |�r〉 = −τ1〈�r|Psf VimpPsf |�r〉∗τ1. (F2)

Since 〈�r|Psf HimpPsf |�r〉 is hermitian, Tr〈�r|Psf HimpPsf |�r〉 van-
ishes due to Eq. (F2). Thus


ρ(00)(ω,�r) = − 1

2π
Im

(
1

ω + iε

)2

Tr[τ3〈�r|Psf HimpPsf |�r〉].

(F3)

Next consider the magnetic impurity. In the same approxima-
tions, we have


ρij (ω,�r) = − 1

2π
ImTr

[(
1

ω + iε

)2

(1 + τ3)

�i〈�r|Psf �jVimpPsf |�r〉
]
. (F4)

Particle-hole symmetry implies that

〈�r|Psf �jHimpPsf |�r〉 = −τ1〈�r|Psf �jHimpPsf |�r〉∗τ1. (F5)

Combining with τ1�
iτ1 = −�i∗, we obtain

Tr(τ3�
i〈�r|Psf �jVimpPsf |�r〉) = 0, and


ρij (ω,�r) = − 1

2π
Im

[(
1

ω + iε

)2

Tr
(
�i〈�r|Psf �jVimpPsf |�r〉

)]
. (F6)

2. Time reversal symmetry

In addition to the suppression of scatterings between TR
related Majorana islands, TR symmetry also requires that

ρμ0 = 0, and 
ρ0ν = 0 in Born approximation, where
μ,ν �= 0. We show these properties in this part.

It can be proved that in Born approximation, TR symmetry
leads to


ρμν(ω,�r) = − 1

2π
ImTr〈�r|(1 + τ3)(T −1�μT )

1

ω − H + iε

·Vimp(T −1�νT )
1

ω − H + iε
|�r〉. (F7)

Since �0 is invariant under TR operation and �i (i = 1,2,3)
changes sign under TR operation, it is clear that 
ρμν vanishes
when μ = 0, ν �= 0 or μ �= 0, ν = 0.

3. Chiral symmetry

TR operation reverses the sign of �ν when ν = 1,2,3 and
keeps it invariant when ν = 0. Particle-hole operation reverses
the sign of �ν for all ν = 0,1,2,3. Chiral operation is the
composition of TR and particle-hole operations. Hence the
selection rule of chiral symmetry is that Hν

imp couples Majorana
islands with opposite chiral indices when ν = 0 and those with
the same chiral index when ν = 1,2,3.

4. C3v symmetry

The little group of the (1 1 1) surface within the Td group is
C3v . In this part, we analyze the consequence of C3v symmetry
on the QPI patterns in Born approximation. Since 
ρ00

sf (ω,�q)
is invariant under C3v , and 
ρ

μν

sf (ω,�q) = 0 if one of {μ,ν} is
zero, here we consider μ,ν �= 0.

In Born approximation


ρμν(ω,�r) = − 1

2π
ImTr

[
(1 + τ3)�μ〈�r| 1

ω − H + iε

Vimp(�r)�ν 1

ω − H + iε
|r〉

]
. (F8)
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Since C3v is the symmetry group of the system, for C ∈ C3v,
ρμν(ω,�r) can also be written as


ρμν(ω,�r) = − 1

2π
ImTr

[
(1 + τ3)C�μC−1〈C�r| 1

ω − H + iε
· Vimp(�r)C�νC−1 1

ω − H + iε
|C�r〉

]
, (F9)

in which C is the corresponding 3×3 rotation matrix. Using C�μC−1 = �αCαμ, 
ρμν(ω,�r) satisfies


ρμν(ω,�r) = 
ραβ(ω,C�r)CαμCβν
, (F10)

for any C ∈ C3v .
For fixed ω,�q, define 
ρsf (ω,�q) as the 3×3 matrix whose μν element is 
ρ

μν

sf (ω,�q). The above analysis shows that


ρsf (ω,C �q) = C
ρsf (ω,�q)CT , (F11)

for any C ∈ C3v . This is the relation that 
ρsf (ω,�q) must satisfy due to the C3v symmetry.
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