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Abstract
Dirac materials, starting with graphene, have drawn tremendous research interest in the past decade. Instead of
focusing on the pz orbital as in graphene, we move a step further and study orbital-active Dirac materials, where the
orbital degrees of freedom transform as a two-dimensional irreducible representation of the lattice point group.
Examples of orbital-active Dirac materials occur in a broad class of systems, including transition-metal-oxide
heterostructures, transition-metal dichalcogenide monolayers, germanene, stanene, and optical lattices. Different
systems are unified based on symmetry principles. The band structure of orbital-active Dirac materials features Dirac
cones at K (K ′) and quadratic band touching points at �, regardless of the origin of the orbital degrees of freedom. In
the strong anisotropy limit, i.e., when the π -bonding can be neglected, flat bands appear due to the destructive
interference. These features make orbital-active Dirac materials an even wider playground for searching for exotic
states of matter, such as the Dirac semi-metal, ferromagnetism, Wigner crystallization, quantum spin Hall state, and
quantum anomalous Hall state.
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1 Introduction
Graphene opened up a new era of topological materials,
followed by the discovery of topological insulators, topo-
logical superconductors, and semi-metals in both two and
three dimensions (see reviews [1–3]). Since then, the inter-
play between topology and correlation has been the pri-
mary focus of condensed matter research. Graphene and
its variants, due to its excellent electronic and mechani-
cal properties [4, 5], have become wonderful platforms for
hosting exotic phases of matter and also find themselves
widely applicable in electric device engineering and mate-
rial science. The characteristic feature of graphene is the
appearance of Dirac cones in the spectrum, tied to the
symmetry of the underlying honeycomb lattice. Two sub-
lattices (A and B) of the honeycomb lattice transform into
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each other under the simplest non-abelian point group
C3v, which contains 3-fold rotations and in-plane reflec-
tions. At the K(K ′) point of the Brillouin zone, the wave-
functions of A and B sublattices form the two-dimensional
(E) irreducible representations (irrep) of the C3v, enforc-
ing the Dirac cones. Once there, the Dirac cones are stable
as long as time-reversal and inversion symmetries are pre-
served.

The on-site pz orbital of graphene transforms trivially (it
belongs to the A1 irrep) under the site symmetry group
C3v. It is natural to ask what happens if the on-site orbitals
form the E-irrep of the point group. The E-irrep features
the double degeneracy and anisotropy, which is expected
to bring rich orbital physics in graphene-like Dirac ma-
terials. Such a situation arises in many distinct systems.
It was initially studied in optical lattices, where the two-
dimension irrep is realized by the px and py orbitals in
the harmonic trap [6, 7]. In transition-metal-oxide het-
erostructures [8–11] and transition-metal-dichalcogenide
monolayers [12], the d-orbitals decompose based on the
C3v-symmetry and are active near the Fermi surface. In
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the hexagonal monolayers of heavy elements, such as Ger-
manene, Stanene, and Bismuthene, the (px, py) doublets
realize the orbital degrees of freedom. Due to the en-
riched orbital structure of the Dirac cone, the gap opening,
which turns out to be topologically non-trivial, equals to
the atomic spin-orbit coupling, hence, it can be very large
reaching the order of 1eV [13–18].

Even in simple carbon systems, orbital physics can
be realized via lattice engineering, for example, organic
framework [19, 20] and graphene-kagome lattice [21]. Re-
markably, recently experiments [22–24] on twisted bilayer
graphene revealed Mott insulator and superconductivity
phases, and it is proposed that the low-lying degrees of
freedom are compatible with two orbitals on the honey-
comb lattice as well [25–30]. Furthermore, the orbital de-
grees of freedom do not have to be electronic and can man-
ifest themselves as the polarization modes of polaritons in
photonic lattices [31, 32] and phonons in graphene and
mechanical structures [33–36].

Given all these interconnected systems and the increas-
ing realizations of orbital-active Dirac materials, this work
aims to bridge all the different systems through the sym-
metry principle. Despite the vastly different origins, the
orbital degrees of freedom can be understood as the ir-
reducible representations of the site symmetry of the lat-
tice, which leads to universal properties. We show that the
symmetry alone enforces the Dirac cone at K(K ′) point
and the quadratic band touching at the � point. Various
gap opening mechanisms and interaction effects are dis-
cussed, which lead to the quantum spin Hall effect and
quantum anomalous Hall effect. In particular, when the
Eg doublets realize orbital degrees of freedom, the result-
ing topological insulator states carry octupole order. Fi-
nally, the method employed here for studying the doubly-
degenerate orbitals in the honeycomb lattice can be read-
ily generalized to orbital degrees of freedom arising from
larger lattice point groups.

The rest of the paper is organized as follows. In Sect. 2,
the symmetry of the honeycomb lattice and the orbital
realization of the on-site irreducible representations are
studied by focusing on the d-orbitals. In Sect. 4, the band
structure of the orbital-active honeycomb lattice systems
is derived from a simple tight-binding model. In Sect. 5,
we go beyond the simple tight-binding model and demon-
strate that many interesting features of the band structure
are solely protected by the lattice symmetry. In Sect. 6, var-
ious band gap opening mechanisms are stuided. In Sect. 7,
the interplay between band structure and the interaction
effects is discussed. Section 8 is left for summary and out-
look.

2 The honeycomb lattice and orbital symmetries
We start with reviewing the symmetry of the planar hon-
eycomb lattice. The planar honeycomb lattice, sketched in

Figure 1 (a) The standard honeycomb lattice with C6v point
symmetry group. (b) The buckled honeycomb lattice with the
symmetry group is downgraded to D3d

Fig. 1(a), consists of two sublattices A (blue) and B (red).
The three nearest neighbor vectors are labeled as ê1 ∼ ê3.
The symmetry of the lattice is described by the space group
P6mm, a direct product of the point group C6v and the
translation symmetry of the triangular Bravis lattice.1 The
maximal point group C6v is realized at the centers of the
hexagons. On the other hand, the point group symmetry
acting on a lattice site, called site symmetry, is a subgroup
of the maximal point group. The site symmetry group is
important because it affects the orbital part of the wave-
function of the degrees of freedom living on lattice sites
(such as electrons, phonons, etc.) The site symmetry of
the honeycomb lattice is C3v generated by a 3-fold rotation
axis and three vertical reflection planes (e.g., the yz-plane
and its symmetry counterparts by rotations of ±120◦). In
contrast, the reflection with respect to the xz-plane and its
symmetry counterparts by rotations of ±120◦ interchange
the A and B sublattices and are not included in the site
symmetry.

The orbital of the onsite degrees of freedom is classi-
fied by the irreducible representations of the site symme-
try group. The C3v group has three irreducible represen-
tations (irrep), including two 1d irreps A1,2 and a 2d irrep
E as explained in Appendix A. The irreps fully determine
the symmetry structure of the onsite degrees of freedom,
regardless of their microscopic origins. In this article, we
focus on electron atomic orbitals. Taking z axis perpen-
dicular to the lattice plane, the s and pz orbitals realize the
A1-irrep and lead to the remarkable electronic structure of
graphene. In contrast, the px and py-orbitals realize the two
dimensional E-irrep. This doublet can also be organized
into the complex basis px ± ipy which are eigenstates of
the orbital angular momentum Lz with eigenvalues ±1, re-
spectively. As to the 5-fold d-orbitals, the dr2–3z2 falls into
the A1 irrep. The remaining four form two E irreps: the
(dxz, dyz) doublet and the (dxy, dx2–y2 ) doublet. The complex

1If one also considers the mirror symmetry taking z to –z, the point group is D6h
and the space group is P6/mmm.
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orbitals dxz ± idyz , and dxy ± dx2–y2 carry orbital angular
momentum numbers ±1 and ∓2, respectively. Since the
site symmetry group only has one 2d irrep, the three dou-
blets, (px, py), (dxz, dyz) and (dxy, dx2–y2 ) are equivalent as
far as the symmetry is concerned. One can explicitly check
that the group elements of the site symmetry C3v have the
same matrix representation of the E-irrep.

A closely related lattice structure sketched in Fig. 1(b) is
dubbed buckled honeycomb lattice, which can be viewed
as a bilayer of sites taken from a cubic lattice in the (1, 1, 1)
direction. The blue and red dots form a honeycomb lattice
when projecting into the (1, 1, 1) plane. Compared to the
planner honeycomb lattice, the point group symmetry of
the buckled lattice downgrades from d6h to d3d , where the
six-fold rotation becomes a rotoreflection. On the other
hand, the site symmetry remains the same, described by
C3v. As a result, based on previous analysis, the realiza-
tions of the E-irrep in the buckled lattice must be equiva-
lent to the (px, py) doublet in the planar case. Here we fo-
cus on the d-orbitals and establish this equivalence. The
buckled honeycomb lattice originates from the cubic lat-
tice. Taking the z-axis along the (0, 0, 1)-direction, the 5-
fold d-orbitals split into a T2g triplet (dyz, dzx, dxy) and an
Eg doublet (dx2–y2 , dr2–3z2 ), which are irreps of the Oh point
group. The site symmetry of the buckled lattice C3v is a
subgroup of Oh. The Eg doublet falls into the only 2d irrep
E of C3v, while the T2g triplet further splits into the 1d irrep
A1 and the 2d irrep E.

To make the connection between the Eg doublet and the
orbital realization of the E irrep in the planar case more ex-
plicit, we rotate the frame of the buckled lattice so that the
z-axis is along the 3-fold axis (1, 1, 1). Then the Eg doublet
becomes

dx2–y2 → 1√
3

(dxy +
√

2dxz),

dr2–3z2 → 1√
3

(dx2–y2 +
√

2dyz).
(1)

Hence, the Eg orbitals are a superposition of two E dou-
blets (dxy, dx2–y2 ) and (dxz, dyz) in the planar case. There-
fore, as far as the site symmetry C3v is concerned, the eg
doublet is equivalent to the (px, py) doublet in the planar
case. In fact, the mapping can be made explicit as

dx2–y2 ↔ px, dr2–3z2 ↔ py. (2)

For completeness, the decomposition of the five d-
orbitals into two E irreps and one A1 irrep of the C3v group
is presented as follows,

⎧
⎪⎨

⎪⎩

(dx2–y2 , dr2–3z2 ) E,
( 1√

2 (dyz – dzx), 1√
6

(dyz + dzx – 2dxy)) E,
1√
3 (dxy + dyz + dzx) A1,

(3)

choosing (1, 1, 1) as the rotation axis. In addition to the
Eg orbitals which become an E-representation, the T2g -
orbitals split into one E irrep and one A1 irrep. In princi-
ple, the two E-representations froming the Eg and T2g or-
bitals can mix. In transition-metal-oxides where the buck-
led lattice is relevant, there is often an oxygen octahedron
around each transition metal ion. The octahedron intro-
duces a large crystal field that splits the Eg and T2g orbitals.
Hence, the mixing between the E irrep of C3v derived from
the Eg orbitals and that from the T2g orbitals is weak.

3 Magnetic octupole moment of the Eg doublet
Although all realizations of E-irrep of C3v are equivalent
from the symmetry consideration. The Eg orbitals are spe-
cial physically and worth special attention. The key differ-
ence lies in the angular momentum of the complex combi-
nation of the doublets. In the case of (px, py), the complex
combination px ± ipy takes the form exp(±iθ ), and thus
carries angular momentum ±1 along the rotating axis.
The same applies to the (dxz, dyz) doublet. In the case of
(dxy, dx2–y2 ), the complex combination dxy ± idx2–y2 takes
the form exp(∓i2θ ) and thus carries angular momentum
∓2. In contrast, the angular momentum of the complex
combination of the Eg orbitals dx2–y2 ± dr2–3z2 vanishes.
From Eq. (1), the complex combination of Eg doublet can
be viewed as the weighted superposition of the complex
combinations of the (dxz, dyz) and (dxy, dx2–y2 ). The angular
momentum of the two doublets cancel each other, leading
to the zero angular momentum of the Eg doublet.

Instead of the angular momentum, the complex Eg or-
bitals carry higher rank magnetic moment, measured by
spherical tensor operators Ylm. A list of spherical tensor
operators constructed from the angular momentum oper-
ator 	L in the d orbital space can be found in Appendix B.
Going through all the higher rank tensor operators, we find
that the leading non-vanishing spherical tensor operators
projecting into Eg orbital is

PEg Y3,±2PEg = ∓3
√

5
2

iσ2, (4)

where PEg is the projection operator. Two non-vanishing
components of the rank-3 spherical tensor operators can
be grouped into a single cubic harmonic tensor f̂xyz =

i√
2 (Y2,–2 – Y2,2). It is projected into Eg orbital space as

PEg f̂xyzPEg = –3
√

5σ2, (5)

where f̂xyz corresponds to the octupole magnetic moment.
Therefore, the complex combinations of the Eg orbital,
instead of carrying angular momentum, carry octupole
magnetic moment, which was proposed to be the “hid-
den order” in certain strongly-correlated electronic sys-
tems [37–41].
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4 The band structure of the orbital active
honeycomb lattice

In this section, we study the band structure of the or-
bital active honeycomb lattice, including the planer and
the buckled ones. To be concrete, we first introduce a sim-
ple nearest neighboring tight-binding model before pre-
senting more general scenarios in the next section.

4.1 Constructing the tight-binding model
In the orbital active honeycomb lattice, the hopping be-
tween neighboring sites occurs between different compo-
nents of the E-irrep and thus is more complicated than
the orbital inactive case. There are two kinds of hopping
processes allowed by symmetry on a bond. In terms of the
chemistry convention, the amplitude of the σ -bonding is
much larger than that of the π-bonding. The difference in
the hopping amplitude arises from the anisotropy of the
orbital wavefunction. The bonding direction of the σ (π )-
bond is along the direction of the maximal (minimal) an-
gular distribution of orbital wavefunctions. The σ -bond
and the π-bond for all orbital realizations of the E-irrep
are shown in Fig. 2 for one of nearest neighboring bond
ê3. In the planar case, the σ -bonding orbital is py, dyz or
dx2–y2 , and in the buckled case, the σ bonding orbital is
dr2–3z2 . The σ bonding orbitals along other nearest neigh-
boring bonds are linear combinations of the two orbitals
in the E irrep, obtained from applying 3-fold rotation on
py, dyz , dx2–y2 or dr2–3z2 .

Since all the different doublets form the same irrep of
the C3v group, they transform in the same way under ro-
tation. To unify the notation, we use γx,y to represent the
two states in the E irrep for different orbital realizations,
where γx stands for px, dxy or dx2–y2 , and γy stands for py,
dx2–y2 or dr2–3z2 , correspondingly. γ1, γ2, γ3 are defined to
be the σ -bonding orbitals along the three nearest neigh-
boring bonds ê1, ê2, ê3, respectively,

γ1 =
√

3
2

γx +
1
2
γy, γ2 = –

√
3

2
γx +

1
2
γy,

γ3 = –γy.
(6)

Since the σ bonding is much stronger than the π bond-
ing, we neglect the π bonding and construct the single par-

Figure 2 The orbital configuration of the σ -bonding on the ê3 bond
for (a) (px ,py ) doublet; (b) (dxy ,dx2–y2 ) doublet; (c) Eg doublets

ticle Hamiltonian of the nearest neighboring σ bonding.
Using γ1 ∼ γ3, the Hamiltonian can be conveniently writ-
ten as

H0 = t‖
∑

	r∈A,j=1,2,3

{
γ

†
j (	r + êj)γj(	r) + h.c.

}
, (7)

where the summation over 	r is only on the A sublattice and
ê1 ∼ ê3 are the unit vectors pointing from A site to its three
nearest neighboring B sites on the planar honeycomb lat-
tice

ê1 =
√

3
2

êx +
1
2

êy, ê2 = –
√

3
2

êx +
1
2

êy,

ê3 = –êy.
(8)

The nearest neighboring distance is set to 1. In the case
of the buckled honeycomb lattice, the three nearest neigh-
boring vectors are the same as in the planar case when the
coordinates are projected onto the (1, 1, 1) plane.

The Hamiltonian has the same form for different realiza-
tions of the E-irrep of the site symmetry C3v for both the
planar and buckled honeycomb lattice. This demonstrates
the power and elegance of the symmetry principle.

4.2 The spectra and wavefunctions
The Hamiltonian Eq. (7) is ready to be diagonalized in mo-
mentum space, in which a 4-component spinor ψ(	k) is de-
fined as

ψ(	k) =
(
γx,A(	k),γy,A(	k),γx,B(	k),γy,B(	k)

)T , (9)

where A and B refer to the two sublattices. The annihila-
tion operators γx,y(k) is defined as

γx,y(	k) =
1√
N

∑

	r
γx,y(	r)e–i	k·	r . (10)

The crystal momentum 	k is defined in the Brillouin zone
shown in Fig. 3(a). In the case of the buckled honeycomb
lattice, 	r is the projected coordinate in the (1, 1, 1) plane.

With this setup, the Hamiltonian takes the following
block form:

H(k) =
(

0 HAB
H†

AB 0

)

, (11)

where

HAB

= t‖

(
3
4 (ei	k·ê1 + ei	k·ê2 )

√
3

4 (ei	k·ê1 + ei	k·ê2 )
√

3
4 (ei	k·ê1 + ei	k·ê2 ) 1

4 (ei	k·ê1 + ei	k·ê2 + 2ei	k·ê3 )

)

. (12)
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Figure 3 (a) The Brillouin zone of the honeycomb lattice. (b) The
band structure of the tight binding model is described in Eq. (7) in the
strong anisotropy limit. There are four bands (The spin degrees of
freedom add another copy and are omitted). The bottom band and
the top band are completely flat, while the middle two bands have
the same dispersion relations as in graphene

There are four band. The middle two bands exhibit exactly
the same dispersion as that in graphene:

E2,3 = ∓ t‖
2

∣
∣
∣
∣

∑

i

ei	k·êi

∣
∣
∣
∣ = ∓ t‖

2

√
√
√
√3 + 2

3∑

i=1

cos 	k · 	bi, (13)

where 	bi = 1
2εijk(êj – êk) are the next nearest neighboring

vectors. The bands display two Dirac cones at K and K ′. In
addition, Fermi surface nesting and Van Hove singularity
occur at 1/4-filling above and below the Dirac point. The
wavefunctions associated with the middle two bands are

|ψ(	k)〉2,3

=
1√
N0

(

e–i θ
2
∑

i

êiei	k·êi ,±ei θ
2
∑

i

êie–i	k·êi

)

, (14)

where the phase θ = arg(
∑

i ei	k·êi ) and the normalization
N0 = 6 – 2

∑3
i=1 cos 	k · 	bi.

On the other hand, the top and the bottom bands are
perfectly flat with the energy,

E1,4 = ∓3
2

t‖. (15)

They connect to the middle two bands at the � point. The
corresponding wavefunctions are represented as

|ψ(	k)〉1,4 =
1√
3N0

(∑

i

	bie–i	k·êi ,±
∑

i

	biei	k·êi

)

, (16)

and the energy dispersions are plotted in Fig. 3.

4.3 The appearance of the flat-band and the localized state
The existence of the flat bands implies that one can con-
struct local eigenstates of the single-particle Hamiltonian.
The flat band has been studied in detail in [6, 7] in the con-
text of the p-orbitals in the honeycomb optical lattice, and

Figure 4 (a) The spatial localized states in the lower flat band of the
tight-binding Hamiltonian Eq. (7) for (a) (px ,py ) doublet; (b) (dxz ,dyz )
doublet; (c) Eg doublet. (d) The spatial localized state Wigner-crystal
when the lower flat-band is 1/3 filled

plaquette states on a hexagon are constructed as the local
basis (Fig. 4(a)). Here we investigate it in the orbital-active
Dirac material realized by the dxy/dx2–y2 and the eg dou-
blets.

The localized states can be elegantly constructed from
the Bloch wavefunction in Eq. (16),

|ψ	R〉± =
1√
Nk

∑

k

|ψ(	k)〉1,4 e–i	k·	R, (17)

where 	R are the centers of the hexagons. Each hexagon
hosts one localized state from each flat band. The local-
ized states are

|ψ	R〉± =
5∑

n=0

(±1)n

×
(

cos
nπ

3
γ †

x (	rn) + sin
nπ

3
γ †

y (	rn)
)

|0〉 . (18)

The summation is over the six vertices of the hexagon
as shown in Fig. 4(b) for the case of the dxy/dx2–y2 doublet.
The localized state has the same weight on each site but
different orbital configurations, related by π

3 rotations. On
each site, the orbital is projected into the π-bonding along
the outward bond away from the hexagon. Due to the de-
structive interference, electrons in such localized single-
particle states cannot leak out the plaquette, rendering the
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localized states eigenstates of the tight-binding Hamilto-
nian in Eq. (7) with the same energy. The above analysis
can be carried over to the Eg doublets on the buckled hon-
eycomb lattice. In this case, the localized state is confined
in a buckled hexagon as shown in Fig. 4(c).

4.4 Orbital configurations at high symmetric points
As shown in Fig. 3(b), the spectrum exhibits double degen-
eracy at the K(K ′) point and the � point in the Brillouin
zone. Now we investigate the Bloch wavefunction at these
high symmetric points in detail.

4.4.1 � point
Around the center of the Brillouin zone 	k = (0, 0), the
Hamiltonian Eq. (11), in the unit of t‖, can be expanded
as

H�(k) =
3
2

(

1 –
1
4
|k|2
)

τ1 ⊗ σ0

–
3
4

(kxτ2 ⊗ σ1 + kyτ2 ⊗ σ3)

–
3

16
((

k2
x – k2

y
)
τ1 ⊗ σ3 + 2kxkyτ1 ⊗ σ1

)
, (19)

where the Pauli matrices σ0 ∼ σ3 (σ0 represents the iden-
tity matrix) describe the orbital degrees of freedom γx,y in
the E irrep, and τ0 ∼ τ3 act on the space of sublattice (A, B).

To the leading order, the dispersion of the above band
structure is

E�
1,4 = ∓3

2
t‖,

E�
2,3 = ±3

2
t‖
(

–1 +
1
4
|
k|2

)

.
(20)

Therefore, the bands touch each other quadratically at
both upper and lower degeneracy points. The degenerate
wavefunctions at each touching point can be regrouped so
that they only contain one of each the orbital component.
At the lower touching point, the wavefunctions are

|ψ(�)〉+
x(y) =

1√
2
(
γ

†
x(y),A + γ

†
x(y),B

) |0〉 . (21)

At the upper touching point, the B sublattice component
acquires a minus sign, and the wavefunctions are

|ψ(�)〉–
x(y) =

1√
2
(
γ

†
x(y),A – γ

†
x(y),B

) |0〉 . (22)

4.4.2 K and K ′ points
Around 	K = ( 4π

3
√

3 , 0), the Hamiltonian in Eq. (11) can be
expanded as

HK = –
4
3

kxτ1 ⊗ σ0 +

4
3

kyτ2 ⊗ σ0

–
3
8

(2 + 
kx)τ1 ⊗ σ0 –
3
8

kyτ2 ⊗ σ3

–
3
8

kyτ1 ⊗ σ1 –

3
8

(2 – 
kx)τ2 ⊗ σ1,

(23)

where 
	k = 	k – 	K . The middle two bands touch each other
with the dispersion,

E2,3 = ∓3
4

t‖|
k|, (24)

which demonstrates the Dirac cone. The doubly degener-
ate wavefunctions can be combined so that each of them
only occupies one of the sublattices:

|ψ( 	K)〉A =
1√
2
(
γ

†
x,A + iγ †

y,A
) |0〉 ,

|ψ( 	K)〉B =
1√
2
(
γ

†
x,B – iγ †

y,B
) |0〉 .

(25)

The orbital states in Eq. (25) on the two sublattices are
circularly polarized and exhibit opposite chiralities. Such
complex combinations of orbitals exhibit distinct physi-
cal properties for different orbital realizations. In the case
of the (px, py) doublet as well as the (dxz, dyz) doublet, the
circularly polarized state |γ1〉 ± i |γ2〉 carries angular mo-
mentum Lz = ±1; in the case of the dxy/dx2–y2 doublet, the
circularly polarized state carries angular momentum ∓2,
which are equivalent to ±1 due the 3-fold rotation sym-
metry; in the case of the Eg doublet, it carries magnetic
octupole moment. These complex orbital states play an
important role in the topological properties of the orbital-
active Dirac material and will be addressed in Sect. 6.

4.5 Response of the flat band to magnetic field
One interesting question regarding the flat band that ap-
peared is its response to an external magnetic field. In a
flat band, because the kinetic energy of the electrons is
completely quenched, the usual semi-classical picture is no
longer valid. Recent work [42] demonstrates that the re-
sponse of flat bands to an external magnetic field is closely
related to the quantum distance of the flat band. The quan-
tum distance between two Bloch wavefunctions is defined
as,

d = 1 –
∣
∣〈ψ(k)|ψ(k′)〉∣∣2, (26)

which ranges from 0 to 1. The flat band is singular if d
is nonzero in the limit that |k – k′| → 0. A singular point
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k0 can be characterized by the maximal quantum distance
dmax between the wavefunctions of k and k′ that are suffi-
ciently close to k0. In systems without orbital degrees of
freedom, it is found that when dmax is nonzero, the flat
band splits into Landau levels in an energy window, and
the width of the energy window is determined by dmax.

In our case, the flat band touches the dispersive Dirac
band at the � point. The wavefunction of the flat band,
expanded around the � point, is

|ψ〉 =
1√
2
(
sin θ (	k), – cos θ (	k),

sin θ (	k), – cos θ (	k)
)
,

(27)

where θ (	k) is the azimuth angle of 	k. Therefore, the wave-
function at θ and θ –π/2 are orthogonal to each other, ren-
dering the maximal quantum distance d = 1. As a result,
the flat band that appeared here is singular by definition.

We study the response of the flat band to an external
magnetic field by including the magnetic field in the hop-
ping parameter t → t exp(i

∫
A(	r) d	r). For simplicity, the

Landau gauge A = B(0, x) is chosen and the strength of the
magnetic field B is set by the flux through each hexagon
2πp/q. In the presence of the magnetic field, the original
four bands split into 4q sub-bands as shown in Fig. 5. While
the middle two dispersive Dirac bands form the character-
istic Landau levels, surprisingly, the two singular flat bands
are completely inert to the magnetic field, in contrast with
previous results on singular flat bands without orbital de-
grees of freedom.

The reason is due to the orbital nature of the singularity
in Eq. (27). In the presence of the magnetic field, one can
still construct localized states inside the flat band. Instead
of occupying a hexagon, the localized states now occupy a
magnetic unit cell. The wavefunction is nonzero only along
the boundary of the magnetic unit cell, and the orbital con-

Figure 5 (a) The flat band in the orbital active Dirac system is singular
but does not respond to an external magnetic field due to the orbital
nature of the singularity. (b) An example of the localized state in the
presence of the magnetic field. Here the flux through each hexagon is
2π /3. The localized state occupies three hexagons

figuration is parallel to the tangential direction. An exam-
ple of the localized states is shown in Fig. 5(b) for the flux
given by 2π

3 .

5 General symmetry consideration beyond strong
anisotropic limit

In the last section, we demonstrate many remarkable fea-
tures resulting from the tight-binding Hamiltonian Eq. (7),
including orbital enriched Dirac cone, quadratic band
touching and flat bands. Since the Hamiltonian only in-
cludes the nearest neighboring σ -bonding, a natural ques-
tion is whether these features rely on the specific form of
the Hamiltonian, or, are protected by symmetry.

In this section, we address this issue by general sym-
metry consideration. We study the band structure of the
orbital active Dirac materials around the high symmet-
ric points in the Brillouin zone using k · p theory. In gen-
eral, the band flatness is not generic and can be bent by
the π-bondings. However, the orbital configurations at the
high symmetric points and k dependence of the disper-
sion around the � and K points are preserved as long as
the symmetry of the system is respected. In the following,
we consider the effects of the point group symmetry of the
buckled honeycomb lattice D3d .

5.1 � point
At the � point, the group of wavevector is the point group
of the lattice, D3d , which has an inversion symmetry. It has
6 irreps: A1g , A2g , A1u, A2u, Eg , and Eu. The Bloch wave-
function is composed of the orbital part |γx,y〉 and the plane
wave part |�〉A,B, which can be classified into the irreps
of the group of wavevector separately. The orbital degrees
of freedom (|γx〉 , |γy〉) form the two dimensional Eg irrep,
while the plane wave part |�〉A + |�〉B and |�〉A – |�〉B form
the 1D A1g and A2u irreps. Therefore the composite Bloch
wavefunction can be grouped into two two-dimensional
irreps, Eg and Eu, respectively.

This indicates that four energy levels can be grouped into
two doubly-degenerate sets, where the degeneracy com-
pletely originates from orbitals. The Bloch wavefunctions
of the Eg irrep are

|γx(y)〉 ⊗ (|�〉A + |�〉B), (28)

and the wavefunctions of the Eu irrep are

|γx(y)〉 ⊗ (|�〉A – |�〉B), (29)

This is consistent with Eq. (21) and Eq. (22). Furthermore,
in both degeneracy sets, the orbital part of the wavefunc-
tions can be regrouped into the complex orbital states
|γ±〉 = |γ1〉 ± i |γ2〉. Therefore, spin-orbit coupling is able
to gap out the degeneracy.
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The generic dispersion around the � point can be ob-
tained from the k · p theory. The k · p Hamiltonian is in-
variant under the D3d point group symmetry. In order to
write down all the symmetry allowed terms, it is conve-
nient to first classify the operators in the orbital space 	σ ,
the operators in the sublattice space 	τ and the momentum
	k into irreps of the point group D3d . In the sublattice space,
the classification is

{
τ0, τ1, A1g ,
τ2, τ3, A2u .

(30)

In the orbital space, the classification is
⎧
⎪⎨

⎪⎩

σ0, A1g ,
σ2, A2g ,
(σ1,σ3), Eg .

(31)

For the momentum, the classification is
⎧
⎪⎨

⎪⎩

(kx, ky), Eu,
k2

x + k2
y , A1g ,

(2kxky, k2
x – k2

y ), Eg .
(32)

Based on these classifications and the product table of
the D3d point group, the most general Hamiltonian takes
the following form,

H�(	k) =
(
h1 + h2

(
k2

x + k2
y
))

τ1 ⊗ σ0

+ kx(h3τ2 ⊗ σ1 + h4τ3 ⊗ σ1)

+ ky(h3τ2 ⊗ σ3 + h4τ3 ⊗ σ3)

+
(
k2

x – k2
y
)
(h5τ0 ⊗ σ3 + h6τ1 ⊗ σ3)

+ 2kxky(h5τ0 ⊗ σ1 + h6τ1 ⊗ σ1), (33)

where h1 ∼ h6 are constants with the unit of energy. At
the first order of 	k, the degeneracy is still preserved, so we
have to include second-order terms of 	k. It recovers the
tight-binding Hamiltonian around the � point presented
in Eq. (19), when the h’s are set to

h1 = –4h2 = –2h3 = –8h6 =
3
2

t‖,

h4 = h5 = 0.
(34)

In the leading order, the dispersion is

E1,2 = –h1 –
(

2h2 +
h2

3 + h2
4

h1

)

|k|2 ± (h5 – h6)|k|2,

E3,4 = h1 +
(

2h2 +
h2

3 + h2
4

h1

)

|k|2 ± (h5 + h6)|k|2.
(35)

At finite k, the degeneracy is lifted by

∣
∣E�

1 – E�
2
∣
∣ =

m–

2
|k|2,

∣
∣E�

3 – E�
4
∣
∣ =

m+

2
|k|2,

(36)

where the effect mass m± = 4|h5 ± h6|. Therefore, the
bands touch quadratically at both degenerate points. It is
known that quadratic bound touching is unstable to inter-
action and can lead to exotic phases such quantum Hall
effect and nematicity [43].

5.2 K(K ′) point
At the K point, the group of wavevector is D3, contain-
ing the three-fold rotations around the perpendicular axis
and three 2-fold rotations around horizontal axis that in-
terchanges the two sublattices.

The Bloch wavefunctions |ψ(K)〉, containing both the
plane wave part and the orbital part, can be organized
into irreps of the group of wavevector. The plane wave
part contains two sublattice components, forming the E-
irrep, with the A/B sublattice component carrying chiral-
ity ±1. The on-site orbital degrees of freedom γx and γy
also transform as the E irrep, the complex combination
γx ± iγy carrying the chirality ±1. Therefore, the four com-
posite wavefunctions can be decomposed into three irreps
as 2 ⊗ 2 = 1 ⊕ 1 ⊕ 2. There are two trivial A1 represen-
tations, where the chiralities of the orbital and planewave
cancel each other and an E irrep where the chiralities of the
orbital and planewave add up. In general, the two A1 states
do not have the same energy. In contrast, the two states in
the E irrep are degenerate from symmetry and carry op-
posite chirality at the Dirac point. Explicitly, the two states
are:

(|γx〉 + i |γy〉) ⊗ |K〉A ,

(|γx〉 – i |γy〉) ⊗ |K〉B .
(37)

This is consistent with the wavefunctions of the tight-
binding model at K in Eq. (25).

To obtain the generic dispersion around K(K ′), we again
employ the k · p theory. The Hamiltonian around K , a
combination of the plane wave, orbital, and sublattice has
to be invariant under the C3v point group. Following the
same strategy, we first organize 	σ , 	τ and the momentum

	k = 	k – 	K into irreps of the little group d3. In the sublat-
tice space, we have,

⎧
⎪⎨

⎪⎩

τ0, A1,
τ3, A2,
(τ1, –τ2), E.

(38)
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In orbital space, we have,
⎧
⎪⎨

⎪⎩

σ0, A1,
σ2, A2,
(σ3, –σ1), E.

(39)

In addition, the momentum (
kx,
ky) belongs to the E
irrep as well.

Therefore, based on the product table of D3 point group,
the most general Hamiltonian, apart from an overall con-
stant, reads,

HK (
	k) = h1τ3 ⊗ σ2 + h2(τ1 ⊗ σ3 + τ2 ⊗ σ1)

+ 
kx
{

+h3τ0 ⊗ σ3 + h4τ1 ⊗ σ0

+ h5τ2 ⊗ σ2 + h6τ3 ⊗ σ1

+ h7(τ1 ⊗ σ3 – τ2 ⊗ σ1)
}

+ 
ky
{

–h3τ0 ⊗ σ1 – h4τ2 ⊗ σ0

+ h5τ1 ⊗ σ2 + h6τ3 ⊗ σ3

+ h7(τ2 ⊗ σ3 + τ1 ⊗ σ1)
}

.

(40)

The expansion of the σ -bonding Hamiltonian at K in
Eq. (23) is a special case with

h2 = h4 = 2h7 = –
3
4

t‖,

h1 = h3 = h5 = h6 = 0.
(41)

In the general situation, at the leading order of 
	k, the dis-
persions of the four bands read,

EK
1,4 = –h1 ± 2h2 + O

(|
k|2),
EK

2,3 = h1 ± 2h7|
k| + O
(|
k|2),

(42)

which is consistent with those given by the nearest-
neighboring tight-binding model. The dispersion EK

2,3 is
Dirac-like as long as h7 �= 0. The situation of the K ′ point
can be obtained by performing the reflection symmetry
with respect to the y axis.

The above analysis solely relies on the non-Abelian na-
ture of the point group and therefore is widely applicable to
the orbital-active Dirac material, independent of the origin
of the orbitals.

6 Gap opening mechanism
We have shown that the symmetry of the honeycomb
lattice protects the degeneracy of the band structure at
K(K ′) point and � point. The degenerate states form the
2-dimensional irrep of the little group at the high symme-
try points. The degeneracy can be lifted by including var-
ious symmetry-breaking terms in the Hamiltonian, which

introduces gaps at the Dirac point or/and the quadratic
band touching point. The interplay of different symmetry-
breaking terms can give rise to various topological band
structures, rendering the orbital active Dirac system a flex-
ible platform for realizing topological insulators with dif-
ferent edge-state properties. In this section, we discuss the
gap opening mechanisms for different orbital doublets of
the E irrep, previously studied in different contexts [8, 15],
in a unified manner.

Based on Eq. (21) and Eq. (25), the degenerate wavefunc-
tions at � and K can be grouped into circular polarized
orbital state γx ± iγy with opposite chirality. As a result, a
σ2 term in the orbital space, which measures the chirality,
is able to lift the degeneracy at both � and K points. In
addition, at K(K ′) points, the two complex orbital states
only occupy A and B sublattices, respectively. As a result,
a τ3 term in the sublattice space can also gap out the Dirac
points. In contrast, since the degenerate states at the �

point have the same weight on both sublattices, they re-
main degenerate after the τ3 term is added to the Hamil-
tonian. One can also add other terms to the k · p Hamilto-
nian to open up a gap in the spectrum. But the two terms
mentioned above, τ3 and σ2, denoted as Hm and Hλ respec-
tively, are among the simplest and have a clear physical ori-
gin. In the real space, they have the following form,

Hm = m
{∑

	r∈A,σ

γ †
σ (	r)γσ (	r) –

∑

	r∈B,σ

γ †
σ (	r)γσ (	r)

}

,

Hλ = λ

{∑

	r∈A,B

iγ †
x (	r)γy(	r) + h.c.

}

.
(43)

The term Hm represents the staggering mass resulting
from the imbalance between the A and B sublattices, which
for example, occurs in TMD materials. It only depends on
the particle number on each sublattice and does not rely
on the particular orbital state the electrons occupy. On the
other hand, Hλ measures the chirality of the orbital and
originates from spin-orbit coupling –λ0	L · 	S, where λ0 is
the atomic spin-orbit coupling strength, 	L is the physical
angular momentum operator and 	S is the spin operator of
electrons.

In free space, 	L acts on the Hilbert space labeled by the
angular momentum s, p, d, etc. In the case of the planar
and buckled honeycomb lattices, the spherical symmetry
reduces to the site symmetry C3v. As the result, the physi-
cal angular momentum 	L should be projected into the 2d
irrep. The result depends on the particular orbital realiza-
tions of the irrep, even though they are equivalent under
the C3v point group. In the following, we discuss the dif-
ferent orbital realizations case by case.

In the case of the (px, py) and (dxz, dyz) doublets, the
circular polarized orbital state have angular momentum
±1. The Lz operator, projecting into the two-dimensional
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Figure 6 (a) The gap opening pattern from the Hλ term for the (px ,py ) and (dxz ,dyz ) doublets. (b) The gap opening pattern from the Hλ term for the
dxy/dx2–y2 doublet. (c) The gap opening pattern from the stagger mass term for all cases. The complex orbitals state naturally occurs at the K (K ′)
point

space, becomes σ2, while Lx and Ly are zero. The spin orbit
coupling –λ	L ·	s becomes –λσysz. As a result, after the spin-
orbit coupling is included in the Hamiltonian, which lifts
the degeneracy at the � point and the K points, the com-
plex orbital state with positive chirality, px +ipy or dxz +idyz ,
has higher energy than its partner, as shown in Fig. 6(a).
In the case of the (dxy, dx2–y2 ) doublet, the complex or-
bital states carry angular momentum ∓2. The Lz operator
in this space is –2σy while the other components vanish.
Therefore, the spin-orbit coupling term is 2λ0σysz. Note
the factor of 2 and extra minus sign compared with the
previous two cases. Therefore, the complex orbital state
dxy + idx2–y2 has lower energy than its partner at the � point
and the K points when the degeneracy is lifted, as shown
in Fig. 6(b).

The Eg doublet is special. As discussed in Sect. 3, the
complex orbital combinations do not carry angular mo-
mentum. The angular momentum operator L, projecting
into this space, vanishes for all components. The σy term
measure the octupole momentum f̂xyz instead, which is the
lowest rank of non-vanishing multipole order for Eg or-
bitals. On the level of single-particle physics, the σy term
cannot be obtained directly from the spin-orbit coupling in
the Eg space. It can appear as a result of second-order per-
turbation, taking into account the virtual excitation from
the Eg orbitals to the t2g orbitals. As discussed in Eq. (3),
the T2g orbitals splits into one 1d irrep A1 and one 2d irrep
E of the site symmetry group C3v, which in general have
distinct onsite energies. We denote the energy difference
from the two irreps derived from the T2g orbitals to the
Eg orbitals as 
1 and 
2, respectively. The second order
spin-orbit coupling reads,

H ′
λ = –λ2

0PEg

{ 	L ⊗ 	SPA1g
	L ⊗ 	S


1
+

	L ⊗ 	SPE	L ⊗ 	S

2

}

PEg

= –
(

λ2
0

2
1
+

λ2
0


2

)

σ0

–
λ2

0

1
2

(
1 – 
2)σ2 ⊗ S(1,1,1), (44)

where PEg , PE and PA1 are the projection operators, and
S(1,1,1) is the spin operator along the (1,1,1) direction. The
first term is proportional to the identity operator and thus
can be absorbed into the chemical potential. The second
represents the effective spin-orbit coupling in the Eg dou-
blets with the spin-orbit coupling strength,

λ =
λ2

0

1
2

(
1 – 
2). (45)

Recall that 
1 –
2 is the energy difference between the A1
and E irreps derived from the T2g orbital in Eq. (3). There-
fore, the energy splitting of the T2g triplet under C3v site
symmetry is essential for nonzero λ.

The gaps introduced by the σy term in the orbital space
are topological. It is straightforward to show that the four
bands in Fig. 6(a) and (b) acquire Chern numbers 1, 0, 0, –1
from the bottom to the top. As a result, edge states appear
on the boundary of the material. We consider the Hamil-
tonian on a ribbon with finite width but infinite length, in
which case kx remains a good quantum number. The spec-
trum is plotted in Fig. 7(a) as a function kx, showing the
edge states between the four bulk bands. The orbital wave-
functions of the edge states are in general complex. The
expectation value of the σy operator in the orbital space is
indicated by the color bar. When the orbital degree of free-
dom is the Eg doublet, the edge states carry the magnetic
octupole moment instead of the dipole moment, sketched
in Fig. 7(b).



Xu and Wu Quantum Frontiers            (2022) 1:24 Page 11 of 15

Figure 7 (a) The spectrum of the Hamiltonian including Hλ term on a
ribbon geometry. λ is set to 0.2t‖ . Edge states appear between the
bulk bands. The orbital wavefunction of the edges is complex, the
chirality indicated by the color bar. (b) The ribbon geometry. When
the orbital realization is from the Eg doublet, the edge states carry
magnetic octupole momentum

The topological gaps are proportional to the coefficient
λ of the σ2 term in the Hamiltonian. Remarkably, when
the orbital degrees freedom are realized by the (px, py),
(dxz, dyz) or (dxy, dx2–y2 ), λ is directly related to the atomic
spin-orbit coupling strength λ0, which could be quite
large for heavy atoms. This leads to a robust topological
phase, such quantum spin hall effect, at high tempera-
tures. In contrast, in Eg systems, the σ2 term comes from
the second-order perturbation of the spin-orbit coupling.
Therefore, in the Eg Dirac materials, the band degeneracy
is much more stable than other realizations. Even though
the quadratic band touching can be gaped out from dy-
namic spin-orbit coupling generated by interaction, the
Dirac points are stable against interaction, making the Eg
Dirac materials an ideal 2D Dirac semi-metal.

We also present the gap opening pattern from the stag-
gering mass term Hm in Fig. 6(c), which is the same for dif-
ferent orbital realizations. Hm term leads to a trivial band
insulator by itself However, including Hm in the presence
of Hλ can lead to richer topological phases with various
Chern bands and edge state configurations [15].

7 The interaction effects
The interplay between band structure and interactions can
result in various interesting phases of matter, depending
on the filling factors. Some of the most interesting phases
are discussed below.

For simplicity, let us first consider the spinless fermions.
In this case, each site are maximally occupied by two
fermions because of the orbital degrees of freedom. At
half-filling, i.e., one fermion per site, the Fermi energy is
at the Dirac points, which are stable against weak interac-
tions. Therefore, the system remains a Dirac semi-metal
for weak interactions but becomes a Mott insulator for
strong enough interactions. Consider the simplest on-site

interaction
∑

i

Vnx,iny,i, (46)

where nx,i and ny,i are the number operators for px and py
orbitals, respectively. In the large V limit, the system is ex-
pected to undergo a phase transition to a Mott insulating
phase. The orbital super-exchange is described by a quan-
tum 120◦ model, which is a frustrated orbital-exchange
model. The order-from-disorder analysis show the ground
state possesses a

√
3 × √

3 type orbital-ordering [44].
At quarter filling, the Fermi level is at the quadratic band

touching point, which is unstable against interaction. In-
finitesimal interaction opens a gap, leading to the anoma-
lous quantum hall phase that breaks the time-reversal
symmetry or a nematic phase that breaks the rotational
symmetry [8–10, 21].

As the filling factor becomes smaller than 1/4, the
Fermi level is within the flat band when the π-bonding is
negelcted, and the system starts to develop different types
of order orderings at commensurate fillings [6]. In partic-
ular, when the flat band is 1/3-filled, the localized states
close-pack the lattice. If only on-site interactions are con-
sidered, such a close-packing many-body state is the exact
many-body ground state. This close-packing state breaks
the original lattice translation symmetry with an enlarged√

3 × √
3 unit cell, sketched in Fig. 4(b). When long-range

interactions are considered, the Wigner crystal appears at
even lower fillings.

Furthermore, when the Dirac band is 3/4-filled, the
Fermi surface is a regular hexagon by connecting the mid-
dle points of the first Brillouin zone edge. This causes
Fermi surface nesting by three inequivalent momenta,
which makes the system unstable against weak interac-
tions. This can lead to the formation of exotic states of
matter, such as orbital density waves or superconductivity
[45, 46].

Including the spin degrees of systems can further enrich
the aforementioned phases. In this case, the on-site inter-
action takes the following form:

Hint = U
(
n↑

x n↓
x + n↑

y n↓
y
)

+ 

(
γ ↑,†

x γ ↓,†
x γ ↓

y γ ↑
y + h.c.

)

– J
(

	Sx · 	Sy –
1
4

nxny

)

+ Vnxny,
(47)

where U is the Hubbard interaction, J is the Hund’s cou-
pling, V is the inter-orbital repulsion and 
 is the pairing
hopping term. The site index i is omitted.

In the spinful case, at the half-filling, each site is occu-
pied by two electrons. Because of the strong intra-orbital
repulsion and Hund’s coupling, two electrons prefer to stay
in two different orbitals and form a triplet. As a result,
the low-energy effective theory of the Mott insulator is
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described by a spin-1 Heisenberg model on the honey-
comb lattice where the orbital degrees of freedom are in-
ert, which is in sharp contrast with the spinless model.

At the quarter-filling, the bottom two spinful bands are
filled. The Fermi surface is right at the quadratic band-
touching point. When the interaction is weak, it dynami-
cally generates the spin-orbital coupling term, which gives
rise to the quantum spin Hall effect. As the interaction
strength grows, the system becomes a Mott insulator
where each site is occupied by one electron with both or-
bital and spin degrees of freedom, and the system is ex-
pected to form both magnetic and orbital order.

At filling one-eighth, the Fermi surface is within the bot-
tom two spinful bands. In the absence of π-bonding, the
two bands become flat, which enhances the interaction ef-
fect. Due to the Coulomb interaction, the system favors a
flat-band ferromagnetic state [47]. Therefore, effectively,
one of the spinful flat bands is filled, and the Fermi surface
is at the quadratic band touching point again. The resulting
weak interaction phase exhibits the anomalous quantum
Hall effect [21].

As the filling becomes even lower, the systems start to
Wigner-crystallize. When spin-orbit coupling is included,
the flat band becomes nearly flat and acquires Chern num-
ber ±1. In this case, the Chern fractional insulator [43]
may become a ground state candidate and competes with
the Wigner crystal phase.

8 Discussion and summary
We have studied the orbital-active Dirac materials in a uni-
fied manner. The various orbital realizations can be un-
derstood as the irreps of the point group symmetry C3v.
All belonging to the two-dimensional E irrep of C3v, the
(px, py) doublet, the (dxy, dx2–y2 ) doublet and the Eg dou-
blet can be mapped to each other, and the Dirac materi-
als based on these two sets of different doublet have the
same universal properties. Using k · p theory, we demon-
strate that the symmetry leads to the orbital enriched Dirac
cone at K(K ′) point and quadratic band touching at the
� point. The symmetry also enforces the unique orbital
configuration of the wavefunction at these high symmetry
points. When only the σ -bonding is considered, the spec-
trum hosts two flat bands, which can lead to exotic phases
such as the Wigner crystal.

Compared with other doublets, the Eg doublet exhibits
unique features. First, this doublet is naturally realized in
a buckled honeycomb lattice instead of the planar one,
leading to a distinct pattern of the Wigner crystal. Fur-
thermore, in the Eg doublet, the angular momentum is
completely quenched, and the lowest order of the mag-
netic moment is the octupole moment. This leads to edge
states carrying octupole moment once a topological gap is
opened.

Orbital active Dirac materials are not only limited to the
electronic systems but also include systems of phonons

and polaritons [31–36], where their polarization modes re-
alize the orbital degrees of freedom. The symmetry argu-
ment in Sect. 5 also enforces chiral valley phonons in ma-
terials with a honeycomb structure, such as boron nitride
and transition metal dichalcogenides. Thus the interplay
between the chirality of electrons’ wavefunction and the
chirality of the phonons opens a new door for valleytron-
ics.

Finally, we briefly discuss the band flatness of the Ma-
jorana fermions. One dimensional Majorana edge modes
can appear with flat dispersion as protected by time-
reversal symmetry [48]. The divergence of density of states
leads to interesting interaction effects by lifting band flat-
ness via spontaneous time-reversal symmetry breaking.
Majorana modes with the cubic dispersion relation can
also be realized as the surface state with high topological
index superconductivity [49]. Its density of states diverges
at k = 0, which can be viewed as nearly flat.

Appendix A: The C3V group and its double group
CD

3V
The C3v point group is the simplest non-abelian group,
containing six elements generating by a three-fold rotation
and an in-plane reflection. It has three irreps A1, A2 and E.
The first two are one-dimensional while the last one is two-
dimensional. The A1 irrep is trivial and examples include
s orbitals and pz orbitals; the A2 irrep is odd under the re-
flection with realizations such as pseudovector Lz and f
orbital y(3x2 – y2). In this work, we are mostly interested
in the two-dimensional E irrep.

The C3v group includes 6 operations in 3 conjugacy
classes: the identity I, the 3-fold rotations {C1

3 , C2
3} around

the vertical axis, and the reflection operations with respect
to three vertical planes {σvi} with i = 1 ∼ 3. It possesses
two one-dimensional representations A1 and A2, and one
two-dimensional representation E. Their character table is
presented in Table 1. The bases of the A1,2 representations
carry angular momentum quantum number Lz = 0, and
those of the E representation can be chosen with Lz = ±1.

In the presence of spin-orbit coupling, C3v is augmented
to its double group CD

3v = C3v + C̄3v. C̄3v = ĪC3v is the coset
by multiplying Ī to C3v, where Ī is the rotation of 2π . The
CD

3v group has six conjugacy classes, and hence six non-

Table 1 The character table of the C3v group, which has two one
dimensional representations A1,2 and one two-dimensional
representation E. A1,2 carry orbital angular momentum Lz = 0,
and E carries Lz =±1

I 2C3 3σv

A1 1 1 1
A2 1 1 –1
E 2 –1 0
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Table 2 Spinor representations for the CD3v group: The
two-dimensional representation E 1

2
is of Jz =± 1

2 . E 3
2
splits into

two non-equivalent one-dimensional representations with
different characters under vertical reflections

I Ī {C13 , C̄23} {C23 , C̄13} 3σv 3σ̄v

E 1
2

2 –2 1 –1 0 0

E 3
2

1 –1 –1 1 i –i
1 –1 –1 1 –i i

equivalent irreducible representations whose characteris-
tic table is presented in Table 2. A1,2 and E remain the
representations of CD

3v of integer angular momentum, for
which Ī is the same as the identity operation. In addition,
CD

3V also possesses half-integer angular momentum rep-
resentations, for which Ī is represented as the negative of
the identity matrix. For example, a new two-dimensional
representation E 1

2
appears corresponding to the angular

momentum Jz = ± 1
2 . The cases of Jz = ± 3

2 are often de-
noted as the E 3

2
representation. Actually, they are not

an irreducible two-dimensional representation, but two
non-equivalent one-dimensional representations. The two
bases of ψJz=± 3

2
are equivalent under the 3-fold rotations

since 3
2 ≡ – 3

2 (mod3), and neither of them are eigenstates
of the reflections σv and σ̄v = Īσv. Instead, their superposi-
tions 1√

2 (ψ 3
2

± iψ– 3
2

) carry the characters of ±i for σv and
∓i for σ̄v, respectively.

Appendix B: Spherical tensor operators in the
d-orbital space

In the Hilbert space of d orbitals, the angular momentum
operators are defined in the standard way

L̂x =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
1 0

√
3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

L̂y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 –i 0 0 0
i 0 –i

√
3
2 0 0

0 i
√

3
2 0 –i

√
3
2 0

0 0 i
√

3
2 0 –i

0 0 0 i 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B.1)

L̂z =

⎛

⎜
⎜
⎜
⎜
⎝

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 –1 0
0 0 0 0 –2

⎞

⎟
⎟
⎟
⎟
⎠

.

The total angular momentum operator L̂2 = L̂2
x + L̂2

y + L̂2
z ,

and the ladder operators L̂± = L̂x ± L̂y. The spherical ten-
sors Ŷlm satisfy the following commutation relation,

[L+, Yl,m] =
√

(l – m)(l + m + 1)Yl,m+1. (B.2)

Fixing l, the tensor operator with the lowest m can be easily
expressed as powers of L̂–,

Ŷl,–l =
√

(2l)!
2ll!

(L̂–)l. (B.3)

Based on these relations, the general rank l spherical ten-
sors can be constructed systematically from the angular
momentum operators. All 25 linear independent operators
acting on d orbitals can be organized into spherical tensor
operators with rank 0 ∼ 4. The rank 1 tensor operators are,

Ŷ1,–1 =
1√
2

L̂–, Ŷ1,0 = L̂z, Ŷ1,1 = –
1√
2

L̂+. (B.4)

The rank 2 tensor operators are

Ŷ2,–2 =
√

3
8

L̂2
–, Ŷ2,–1 =

√
3
2

L̂–L̂z,

Ŷ2,0 =
1
2
(
2L̂2

z – L̂2
x – L̂2

y
)
, Ŷ2,1 = –

√
3
2

L̂+L̂z,

Ŷ2,2 =
√

3
8

L̂2
+,

(B.5)

where bars over the operators represent the average over
all possible operators ordering. The rank three tensor op-
erators are

Ŷ3,–3 =
√

5
4

L̂3
–, Ŷ3,–2 =

√
15
8

L̂2
–L̂z,

Ŷ3,–1 =
√

3
4

L̂–
(
4L2

z – L2
x – L2

y
)
,

Ŷ3,0 =
1
2

Lz
(
2L̂2

z – 3L2
x – 3L2

y
)
,

Ŷ3,1 = –
√

3
4

L̂+
(
4L2

z – L2
x – L2

y
)
,

Ŷ3,3 =
√

15
8

L̂2
+L̂z, Ŷ3,–3 = –

√
5

4
L̂3

+.

(B.6)

Lastly, the rank 4 tensors are

Ŷ4,–4 =
√

35
128

L̂4
–, Ŷ4,–3 =

√
35
4

L̂3
–L̂z,

Ŷ4,–2 =
√

5
32

L̂2
–
(
7L̂2

z – L̂2
)
,
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Ŷ4,–1 =
√

5
4

L̂–L̂z
(
7L̂2

z – 3L̂2
)
,

Ŷ4,0 =
1
8
(
35L̂4

z – 30L̂2
z L̂2 + 3L̂4

)
, (B.7)

Ŷ4,1 = –
√

5
4

L̂+L̂z
(
7L̂2

z – 3L̂2
)
,

Ŷ4,2 =
√

5
32

L̂2
+
(
7L̂2

z – L̂2
)
,

Ŷ4,3 = –
√

35
4

L̂3
+L̂z, Ŷ4,4 =

√
35

128
L̂4

+.
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