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Quantized interlevel character in quantum systems
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For a quantum system subject to external parameters, the Berry phase is an intralevel property, which is gauge
invariant module 2π for a closed loop in the parameter space and generally is nonquantized. In contrast, we
define an interband character � for a closed loop, which is gauge invariant and quantized as integer values. It is
a quantum mechanical analogy of the Euler character based on the Gauss-Bonnet theorem for a manifold with a
boundary. The role of the Gaussian curvature is mimicked by the difference between the Berry curvatures of the
two levels, and the counterpart of the geodesic curvature is the quantum geometric potential which was proposed
to improve the quantum adiabatic condition. This quantized interband character is also generalized to quantum
degenerate systems.
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I. INTRODUCTION

The study of time-dependent systems has greatly facilitated
the exploration of novel physics [1–11]. In particular, research
on the quantum adiabatic evolution has led to a variety of
important results, such as the quantum adiabatic theorem
[12–14], the Landau-Zener transition [15,16], the Gell-Mann-
Low theorem [17], and the Berry phase and holonomy [18,19].
It has given rise to many applications in quantum control and
quantum computation [20–28]. Another noteworthy example is
the Berry phase and the corresponding gauge structure, which
have been applied to condensed-matter physics to reveal novel
phenomena, including the quantized charge pumping [29,30],
quantum spin Hall effect [31–33], quantum anomalous Hall
effect [34], and electric polarization [35,36].

The Berry phase equals the surface integral of the Berry
curvature over an area enclosed by a loop in the parameter
space, while the first Chern number corresponds to integrating
the Berry curvature over a closed surface. According to
the generalized Gauss-Bonnet theorem, the Chern number is
quantized. The Chern number is very helpful in characterizing
the topological phase as different from the ordinary “phase”
associated with the symmetry breaking of local order param-
eters. For example, the first Chern number characterizes the
quantization of Hall conductance [37,38]. The Berry phase also
has a deep relation to the gauge field and differential geometry,
where it is viewed as a holonomy of the Hermitian line bundle
[19]. It can also be calculated by a line integral over a loop.
The integration result is independent of the linear velocity on
the loop, implying the geometric property of the Berry phase.
Wilczek and Zee further introduced the non-Abelian Berry
phase [39], a generalization of the original Abelian one [18].
The non-Abelian Berry phase is presented in the quantum
degenerate system with a U (N ) gauge field, which also has
a deep relation to the topology, such as the Wilson loop [40]
and the second Chern number.
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The Berry phase is a consequence of the projection of the
Hilbert space to a particular level. Around a closed loop, its
value actually is gauge dependent but remains invariant module
2π . On the other hand, the interlevel connection, i.e., the
projection of the time derivative of the state vector of one level
to that of another one, has not been well studied. An interesting
application is the quantum geometric potential, which has been
applied to modify the quantum adiabatic condition (QAC)
[41], and its effect on quantum adiabatic evolution has been
experimentally detected [42].

In this article, we construct a gauge-invariant interlevel
character � based on the quantum geometric potential. It is
quantized in terms of integers, which can be viewed as a coun-
terpart of the Euler characteristic number for a manifold with
boundary. The Gauss-Bonnet theorem says that there are two
contributions to the Euler characteristic numbers, i.e., the sur-
face integral of the Gaussian curvature and the loop integral of
the geodesic curvature along the boundary. The quantum geo-
metric potential plays the role of the geodesic curvature, and the
Berry curvature difference between two levels is the analogy
to the Gaussian curvature. We also generalized the quantum
geometric potential to the case of degenerate quantum systems,
and the quantized character � can be constructed accordingly.

II. GAUGE INVARIANT IN NONDEGENERATE
QUANTUM SYSTEMS

For nondegenerate quantum systems, an interlevel gauge
invariant, referred to as “quantum geometric potential,” was
introduced in the literature [41]. Without loss of generality,
we start with a nondegenerate N -level Hamiltonian Ĥ (�λ(t))
controlled by a real l vector �λ(t) = {λ1(t),λ2(t), . . . ,λl(t)} as
a function of time t . At each fixed t , a set of orthonormal eigen-
functions |φm(�λ)〉 associated with the eigenvalues Em(�λ) is de-
termined by Ĥ (�λ)|φm(�λ)〉 = Em(�λ)|φm(�λ)〉 (m = 1,2, . . . ,N ).
The Berry connection for each energy level is defined as
Aμ

m = i〈φm(�λ)|∂λμ
|φm(�λ)〉 (μ = 1,2, . . . ,l). Consequently, the

quantum geometric potential arises as

�ND,mn = An − Am + d

dt
arg〈φm|φ̇n〉, (1)
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where ND denotes the nondegenerate systems, and the “·”
illustrates the time derivative. In addition, Am ≡ Aμ

mλ̇μ (in
this paper, the repeated indices imply the summation). The
adiabatic solution to the time-dependent Schrödinger equation,
i∂t |ηa

m(�λ(t))〉 = Ĥ (�λ(t))|ηa
m(�λ(t))〉, is

∣∣ηa
m(t)

〉 = exp

{
−i

∫ t

0
Em(τ )dτ

}∣∣φ̃a
m(t)

〉
, (2)

with |φ̃a
m(t)〉 = exp{∫ iAmdt}|φa

m(t)〉, if the initial state
|ηa

m(0)〉 = |φa
m(0)〉. Then, �ND,mn can also be defined as

�ND,mn = d

dt
arg〈φ̃m| ˙̃φn〉. (3)

�ND,mn is gauge invariant under an arbitrary local U (1) ⊗ U (1)
gauge transform with |φm(n)(t)〉 → eiαm(n)(t)|φm(n)(t)〉, where
αm(n)(t) are smooth scalar functions. In the spin- 1

2 system
coupled to an external time-dependent magnetic field, �ND is
equivalent to the geodesic curvature of the path of the magnetic
field orientation on the Bloch sphere, implying its geometric
implications. When applying �ND,mn to the time-dependent
system, an improved QAC for the nondegenerate system can
be established for n �= m [41],

|〈φm|φ̇n〉|
|Em(t) − En(t) + �ND,mn(t)| 	 1, (4)

which indicates Em(t) − En(t) + �ND,mn(t) is more appropri-
ate to describe the instantaneous energy gaps.

III. A QUANTIZED CHARACTER
IN NONDEGENERATE SYSTEM

We introduce a quantized gauge-invariant character � based
on the quantum geometric potential as an analogy to the
Gauss-Bonnet theorem with boundary. For simplicity, we
begin with a two-level system controlled by a real 3-vector
�λ(t). At each time t , there exists a pair of eigenfunctions
|φ±(�λ(t))〉 associated with the eigenvalues E±(�λ(t)). Define
ω = (Aμ

− − Aμ
+)dλμ, and F = dω with d being the exterior

derivative. Explicitly, F is carried out as F = F− − F+,
where F± = 1

2F
μν
± dλμ ∧ dλν with F

μν
± = ∂μAν

± − ∂νAμ
±. A

quantized character � is defined as

2π� =
∫
M

F −
∫

∂M
�NDdt

= + − − −
∫

∂M
darg〈φ+|φ̇−〉, (5)

where �ND is the gauge invariant in Eq. (1) for the nondegen-
erate systems, and ± = ∫

∂M Aμ
±dλμ − ∫

M F±. Since F and
�ND are both locally gauge invariant, � is also gauge invariant.

To show the quantization of �, we first consider a simple
example of a two-level problem with the Hamiltonian Ĥ (t) =
Bn̂(t) · �σ . Here, n̂ is a three-dimensional (3D) unit vector,
and the whole parameter space is the Bloch sphere. If n̂(t)
concludes a region M on the Bloch sphere with a smooth
boundary ∂M (Fig. 1), then � is quantized. Consider the
transition term 〈φ+|φ̇−〉 from the ground state to the excited
state, which is a complex number. The corresponding F

FIG. 1. The region M on the S2 Bloch sphere with a smooth
boundary ∂M.

is the Berry-curvature difference between the ground and
excited states. To explicitly calculate �, we can work in
a given gauge where |φ−(θ,φ)〉 = (sin θ

2 e−iφ, − cos θ
2 )T and

|φ+(θ,φ)〉 = (cos θ
2 e−iφ, sin θ

2 )T . Under this gauge, + = 2π

if ∂M encloses the north pole, and − = −2π if it encloses
the south pole. Otherwise, ± = 0. Meanwhile, arg〈φ+|φ̇−〉 =
arg[(θ̇ − i sin θφ̇)/2]. When �λ(t) completes a close loop ∂M,
correspondingly, z(t) = 〈φ+|φ̇−〉 defines a close curve in the
complex plane. The winding number of z(t) relative to the
origin is defined as W [z] = ∫

∂M darg〈φ+|φ̇−〉, as shown in
Fig. 2. If ∂M does not enclose the north or south pole, ±
do not contribute, and W [〈φ+|φ̇−〉] contributes −2π , such that
� = 1. After a similar analysis for other situations, one can
conclude that � = 1 for any region M on the sphere.

For a general nondegenerate model, we can define the
quantized character � between any two different energy levels
E± associated with a closed curve in the parameter space.
According to the Stokes theorem, ± count the singularities of
Berry connections Aμ

± in the region M, e.g., the number of the
Dirac strings, hence they are quantized. The winding number
of z(t) relative to the origin is also quantized. Therefore, � is
quantized for any situation.

Below we demonstrate the similarities between the quan-
tized character � and the Euler number in the Gauss-Bonnet

FIG. 2. (a) The top view of a closed curve on the Bloch sphere
in the vicinity of the north pole. θ and φ represent the radial and
angular coordinates, respectively. (b) The corresponding curve z(t) in
the complex plane with z(t) = 〈φ+|φ̇−〉 = (θ̇ − i sin θφ̇)/2.
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FIG. 3. (a) A curve �X(s) is plotted on a 2D manifold (shaded area)
in the 3D real space. �V (s) lives in the tangent space, and is parallel
transported along the curve. �T (s) = d

ds
�X(s) is the velocity vector, and

θ is the angle between �V and �T . The geodesic curvature kg = dθ/ds.
(b) The trajectory of |φ̃−(t)〉 is sketched in the Hilbert space. |φ̃+(t)〉is
a parallel-transported “tangent” vector along the “curve.” | ˙̃φ−(t)〉 is
the velocity vector, which is the derivative of the curve. The gauge
invariant � = dθ/dt , where θ = arg〈φ̃+| ˙̃φ−〉.

theorem. For a 2D compact Riemannian manifold M with a
smooth boundary ∂M, the Gauss-Bonnet theorem reads∫

M
GdA +

∫
∂M

kgds = 2πχ (M), (6)

where G, kg , and χ (M) are the Gaussian curvature, geodesic
curvature of ∂M, and the Euler number of M, respectively.
For quantum systems (e.g., a spin-1/2 problem in an external
magnetic field), each point in the parameter space has an
associated Hilbert space, i.e., the bundle. The Gauss-Bonnet
theorem is generalized to characterize the bundle by the Chern
number.

The gauge invariant �ND defined in Eq. (1) is the analogy
to the geodesic curvature kg in Eq. (6). To explain this, we plot
a curve �X(s) on a 2D manifold in R3, as shown in Fig. 3(a),
which is parameterized by the arc length s. �X(s) represents
the displacement vector for a point on the curve; then, kg is
a geometric quantity depending on both the manifold and the
curve. The geodesic curvature kg reflects the deviation of the
curve from the local geodesics. Choose a vector function �V (s)
living in the tangent space at the position �X(s) and parallel
transported along the curve. Then, kg = dθ/ds, where θ is the
angle between the velocity vector �T = d �X/ds and �V (s).

The similarity between �ND and kg is illustrated in Fig. 3(b).
Following Eq. (3), the trajectory of |φ̃−(t)〉, which has taken
into account the Berry phase, is viewed as a curve with the
parameter time t in the Hilbert space. | ˙̃φ−(t)〉 is the analogy of
the “tangent” vector, and |φ̃+(t)〉 corresponds to the parallel-

transported vector field along the curve. Consequently, the
gauge-invariant term �ND = dθ/dt is the time derivative of
the angle θ = arg〈φ̃+| ˙̃φ−〉 over time. Therefore, Eq. (5) can
be viewed as a quantum analogy to the Gauss-Bonnet theorem
described in Eq. (6).

Recall the proof of the Gauss-Bonnet theorem in differential
geometry, and we can observe the similarity to our theorem
described in Eq. (5). To prove the Gauss-Bonnet theorem, one
first decomposes the geodesic curvature into two parts. One is
the derivative of the angle between the velocity vector �T and
the local coordinates, which contributes an integer winding
number when the curve �X completes a loop since �T has to
come back to itself. The other part is a loop integral of a 1-
form. Through the Stokes theorem, it equals the negative of the
surface integral of the Gaussian curvature. Hence, this proof
scheme is very similar to the proof to the quantization of �

defined in Eq. (5).
There exist fundamental differences between the gauge

invariant �ND and the usual Berry connection. The integral
of �ND over a closed loop is gauge invariant and single
valued. In contrast, the Berry connection is not gauge invariant
locally, and the Berry phase for a closed-loop evolution is
gauge invariant but multiple-valued module 2π . The Berry
connection and the Berry phase are intrasubspace quantities
associated with one energy level, while�ND is an intersubspace
property associated with two different energy levels.

IV. A QUANTIZED CHARACTER
IN DEGENERATE SYSTEMS

The gauge-invariant quantized character � studied above
can also be extended to the degenerate systems. For this
purpose, the gauge invariant �ND is generalized to the case
with degeneracy, which is defined between two eigenspaces
associated with two different degenerate energy levels. We first
consider a special case that a Hamiltonian Ĥ (�λ) possesses N

energy levelsEm(�λ) (m = 1,2, . . . ,N), each of which isL-fold
degenerate. The situation for energy levels possessing different
degeneracies is discussed in Appendix C.

For each energy level m, there is a set of instantaneous
orthonormal eigenstates |φa

m(�λ)〉 satisfying Ĥ (�λ)|φa
m(�λ)〉 =

Em(�λ)|φa
m(�λ)〉 (a = 1,2, . . . ,L). If the system evolves adiabat-

ically starting from the initial state |ηa
m(�λ(0))〉 = |φa

m(�λ(0))〉,
then the adiabatic solution to the time-dependent Schrödinger
equation, i∂t |ηa

m(�λ(t))〉 = Ĥ (�λ(t))|ηa
m(�λ(t))〉, is

∣∣ηa
m(t)

〉 = exp

{
−i

∫ t

0
Em(τ )dτ

}∣∣φ̃a
m(t)

〉
, (7)

with |φ̃a
m(t)〉 = |φb

m(t)〉[�m(t)]ba . The non-Abelian Berry
phases �m and the corresponding Berry connections Aμ

m are
defined as

�m(t) = P
{

exp

(
i

∫ �λ(t)

�λ(0)
Aμ

mdλμ

)}
, (8)

Aμ
m(�λ)ab = i

〈
φa

m(�λ)
∣∣∂λμ

∣∣φb
m(�λ)

〉
, (9)

where P means path ordering [39]. The exact time-dependent
solution can be expanded as |ψ(t)〉 = ca

m(t)|ηa
m(t)〉; then one
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obtains

ċa
m(t) = −

∑
n�=m

exp

{
i

∫ t

0
εmn(τ )dτ

}
(�†

mTmn�n)abcb
n(t), (10)

where εmn(τ ) = Em(τ ) − En(τ ) (details are given in
Appendix A). The transition matrices Tmn are followed
by

T ab
mn = 〈

φa
m(�λ)

∣∣∂t

∣∣φb
n(�λ)

〉
, (11)

where a and b denote the row and column indices of the matrix
Tmn, respectively, with m and n being energy-level labels.

To figure out the gauge invariant in the degenerate case,
we extract the “phase” from �

†
mTmn�n, i.e., the counterpart

of �ND,mn(t) in Eq. (1). The phase of T is defined as θT =
−i
L

Tr[ln(UV †)], where U and V are unitary matrices from T ’s

singular-value decomposition, Tmn = UmnSmnV
†
mn, and Smn

is a diagonal real matrix with non-negative elements. We
assume all the singular values of T are positive (details are
given in Appendix B). The phase of �m is 1

n
Tr{∫ Amdτ },

where Am = Aμ
mλ̇μ, i.e., because �m can be expressed as

exp(
∫

i
n

Tr{Am}dτ )�̄m, where det �̄m = 1. Then the gauge
invariant in the degenerate systems is defined as

�D,mn = 1

L
Tr

{
An − Am − i

d

dt
ln(UmnV

†
mn)

}
, (12)

or, in a compact form,

�D,mn = − i

L
Tr{ẊmnX

†
mn}, (13)

with Xmn(�λ(t)) = �
†
mUmnV

†
mn�n (here, “D” denotes the de-

generate systems). The phase of �
†
mTmn�n is defined as∫

i�D,mndτ , and Eq. (10) can be rewritten as

ċa
m = −

∑
n�=m

exp

{
i

∫ t

0
[εmn(τ ) + �D,mn(τ )]dτ

}

× (�̄†
mŪmnSmnV̄

†
mn�̄n)abcb

n(t). (14)

Similar to �ND,mn in nondegenerate situations, �D,mn provides
a proper correction for the instantaneous energy gaps for the
degenerate systems. With the introduction of �D,mn, a modified
QAC is discussed in Appendix A.

�D,mn is U (L) ⊗ U (L) gauge invariant under any two
independent U (L) gauge transformations Wm and Wn (details
are given in Appendix C):∣∣φa

m(�λ)
〉 → ∣∣φb

m(�λ)
〉
(Wm(�λ))ba,∣∣φa

n (�λ)
〉 → ∣∣φb

n(�λ)
〉
(Wn(�λ))ba. (15)

Then the quantized character � can be defined between any
two eigenspaces associated with eigenvalues E±. � in Eq. (5)
is replaced by �D, and F is defined as 1

L
Tr{F− − F+},

where F± = 1
2F

μν
± dλμ ∧ dλν with F

μν
± = ∂μAν

± − ∂νAμ
± −

i[Aμ
±,Aν

±] being the non-Abelian Berry curvatures. z(t) =
exp{ 1

L
Tr ln(UV †)} defines a closed curve in the complex

plane, when �λ completes a closed loop. Therefore, W [z] =∫ −i
L

Tr{ln(UV †)} is a winding number of z relative to the
origin of the complex plane, which is quantized and plays the

counterpart of
∫
∂M darg〈φ+|φ̇−〉 in the nondegenerate case.

Therefore, Eq. (5) still holds for the degenerate system.

V. DISCUSSION AND CONCLUSIONS

Based on the gauge-invariant quantum geometric potential,
we define a quantized character � for both nondegenerate and
degenerate quantum systems. It is a quantum analogy to the
Gauss-Bonnet theorem for a manifold with boundary. This
character is fundamentally different from the Chern number,
which is quantized for the bundle based on a manifold without
boundary. Furthermore, � is an interlevel index, while the
Chern number is an intraband (level) property.

We speculate that this quantized interlevel character � can
be further applied to the study of quantizations of physical
observables in topological physics and quantum adiabatic
condition. Since it is an interband quantity, it may have
applications in studying nonequilibrium properties, including
interband transitions, nonadiabatic processes, and dynamical
properties involving multiple bands.
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APPENDIX A: TIME-EVOLVING EQUATION
FOR DEGENERATE SYSTEM

As discussed in this article, the solution to the time-
dependent Schrödinger equation can be expanded by |ηa

m〉,
defined in Eq. (7) in the main text as

|ψ(t)〉 = ca
m(t)

∣∣ηa
m(t)

〉
, (A1)

or with |φ̃a
m〉 = |φb

m(t)〉(�m(t))ba as

|ψ(t)〉 = ca
m(t) exp

{
−i

∫ t

0
Em(τ )dτ

}∣∣φ̃a
m

〉
, (A2)

where �m is defined in Eq. (9) in the main text. It can be shown
that 〈φ̃a

m| ˙̃φa
m〉 = 0 because

〈
φ̃a

m

∣∣ ˙̃φa
m

〉 = (�†
m)ac

〈
φc

m

∣∣φ̇b
m

〉
(�m)ba + (�†

m)ac
〈
φc

m

∣∣φb
m

〉
(�̇m)ba

= (�†
m)ac(−iAm)cb(�m)ba

+ (�†
m)acδcb(iAm)bd (�m)da = 0. (A3)

Solving the time-dependent Schrödinger equation i∂t |ψ(t)〉 =
Ĥ (t)|ψ(t)〉, one gets

i
{
ċa
m

∣∣φ̃a
m

〉−iEm(t)ca
m

∣∣φ̃a
m

〉 + ca
m

∣∣ ˙̃φa
m

〉}
exp

{
−i

∫ t

0
Em(τ )dτ

}

= Ea
mca

m exp

{
−i

∫ t

0
Em(τ )dτ

}∣∣φ̃a
m

〉
. (A4)
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Left multiply 〈φ̃a
m| to the equation above, and one obtains

i
{
ċa
m − iEm(t)

}
exp

{
−i

∫ t

0
Em(τ )dτ

}
+

∑
b,n,n�=m

icb
n(t)

〈
φ̃a

m

∣∣ ˙̃φb
n

〉
exp

{
−i

∫ t

0
En(τ )dτ

}

= Em(t)ca
m(t) exp

{
−i

∫ t

0
Em(τ )dτ

}
. (A5)

Then one arrives at

ċa
m(t) = −

∑
n,n�=m

{
exp

[
i

∫ t

0
εmn(τ )dτ

]〈
φ̃a

m

∣∣ ˙̃φb
n

〉}
cb
n(t). (A6)

Therefore, the time-evolving equation of Eq. (10) in the main
text can be obtained,

ċa
m(t) = −

∑
n�=m

exp

{
i

∫ t

0
εmn(τ )dτ

}
(�†

mTmn�n)abcb
n(t),

(A7)

with εmn(τ ) = E+(τ ) − E−(τ ). Therefore,

ċa
m = −

∑
n�=m

exp

{
i

∫ t

0
[εmn(τ ) + �D,mn(τ )]dτ

}

× (�̄†
mŪmnSmnV̄

†
mn�̄n)abcb

n(t). (A8)

With the gauge invariant �D in the degenerate systems given
by Eq. (12), we can further revise the QAC for the quantum
degenerate systems. For an adiabatic process, all the cb

m(t)’s
are nearly time independent because |ηb

m(t)〉 are already the
adiabatic evolution states. If one further assumes that εmn(t),
�D,mn(t), Smn, and (�̄†

mŪmnSmnV̄
†
mn�̄n)ab(t) are slow-varying

variables, and the system is initially prepared in the states
|ηa

k (0)〉, then the time-evolving part is approximately controlled
by exp{i(εmn + �D,mn)t}. With these conditions, the QAC for
the degenerate systems can be expressed as (∀m �= n)

max(Smn)

|εmn + �D,mn| 	 1, (A9)

where max(Smn) is the maximum value of the singular values of
the transition matrix Tmn. Physically, the max(Smn) represents
the most probable channel in the process of transition.

To illustrate how the degenerate QAC given by Eq. (A9)
works, we construct a two-level toy model as follows:

H (t) =
[�n1(t) · �σ

�n2(t) · �σ
]
. (A10)

If �n1 = �n2 = [sin θ cos(ωt), sin θ sin(ωt), cos θ ], then H is
simply a double copy of the Rabi model. �D can be calcu-
lated by Eq. (12) and the result is [1 − 2 cos2(θ/2)]ω. After
extracting the phase term i

∫ t

0 �D(τ )dτ , the remaining part

�̄
†
+ŪSV̄ †�̄− is a constant, and S is also a constant matrix

sin(θ )ω/2 · I2×2, so that we can use Eq. (A9) to judge the

adiabaticity as

|sin(θ )ω/2|
|2 + [1 − 2 cos2(θ/2)]ω| 	 1. (A11)

When θ → 0+, Eq. (A11) breaks down if ω � 2 because the
denominator goes to zero. This is expected since when ω

matches the energy gap, the resonance happens so that the
system is no longer adiabatic.

Besides �D, one can also define other gauge invariants
within the general time-dependent problem described above.
Every single element of the matrix, (�†

mTmn�n)ab, can be
evaluated as 〈φ̃a

m| ˙̃φb
n〉, and it is also gauge invariant as long as the

initial basis is fixed. Similar to what we do in the nondegenerate
case, we can separate the phase factor from 〈φ̃a

m| ˙̃φb
n〉 as

〈
φ̃a

m

∣∣ ˙̃φb
n

〉 = exp

{
i

∫ t

0
�ab

mndτ

}∣∣〈φ̃a
m

∣∣ ˙̃φb
n

〉∣∣, (A12)

with �ab
mn = d

dt
arg(〈φ̃a

m| ˙̃φb
n〉). Then, Eq. (10) can be rewritten

by using �ab as

ċa
m(t) = −

∑
m�=n

exp

{
i

∫ t

0

[
εmn(τ ) + �ab

mn(τ )
]
dτ

}

× ∣∣〈φ̃a
m

∣∣ ˙̃φb
n

〉∣∣cb
n(t). (A13)

If one further assumes εmn(t) = εmn, |〈φ̃a
m| ˙̃φb

n〉|, and �ab
mn

are slow-varying variables, the adiabatic condition can be
deduced as ∣∣〈φ̃a

m

∣∣ ˙̃φb
n

〉∣∣∣∣εmn + �ab
mn

∣∣ 	 1 ∀a,b,m �= n. (A14)

|φ̃a
m〉 is the adiabatically evolved basis, so that the meaning of

QAC given by Eq. (A14) is that all the transitions between
any two adiabatically evolved bases with different energies
are all very weak, so that this degenerate system can evolve
adiabatically.

APPENDIX B: AMBIGUITY OF THE SINGULAR-VALUE
DECOMPOSITION (SVD)

For a general l × l matrix C, when applying SVD to it,
one will obtain (C)ab = (U )ad (�)d (V †)db, with l non-negative
singular values �d (a, b, and d vary from 1 → l) and U and
V being unitary matrices. SVD has its intrinsic ambiguity that
comes from the unitary matrices U and V . In the case that all
the singular values are positive, one can insert two diagonal
matrices as

(C)ab = (U )ad (�)d (V †)db = (U )adeiλd (�)de−iλd (V †)db,

(B1)
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with λd being any real numbers. After the insertion, one can
define (U ′)ad = (U )adeiλd and (V ′)ad = (V )adeiλd , so that C =
U ′�V ′†, which is also a valid SVD of C. Therefore, SVD has
its intrinsic ambiguity of the choice of the unitary matrices, but
there is neither ambiguity of the singular values nor ambiguity
of the product of U and V † in this case.

When the singular values of a matrix C contain a zero or
multiple zeros, there are further ambiguities. For example, if
C is decomposed as C = U�V † and the nth singular value is
zero, then one can also insert two diagonal matrices as

(C)ab = (U )ad (�)d (V †)db = (U )adeiλd (�)de−iλ′
d (V †)db,

(B2)

with λd and λ′
d being any real numbers and λd = λ′

d if d �=
n. Because the nth singular value is zero, λn and λ′

n do not
have to be equal. We define (U ′)ad = (U )adeiλd and (V ′)ad =
(V )adeiλ′

d , so that C = U ′�V ′†, however, UV † �= U ′V ′†.

APPENDIX C: PROOF OF THE GAUGE INVARIANCE
OF THE QUANTUM GEOMETRIC POTENTIAL �D

As mentioned in this article, �D is gauge invariant under
any independent U (L) gauge transformations Wm,∣∣φa

m(�λ)
〉 → ∣∣φb

m(�λ)
〉
(Wm(�λ))ba. (C1)

Under the gauge transformations above, Am, Tmn, and UmnV
†
mn

transform as follows:

Aμ
m → W †

mAμ
mWm + iW †

m∂λμWm, (C2)

Tmn → W †
mTmnWn, (C3)

UmnV
†
mn → W †

mUmnV
†
mnWn. (C4)

[Umn and V
†
mn are the unitary matrices that come from the SVD

of Tmn; Am and Tmn are introduced in Eqs. (9) and (11) in the
main text.] �D is carried out as

�D,mn = 1

L
Tr

{
(An − Am) + i

d

dt
[− ln(UmnV

†
mn)]

}
, (C5)

and under the gauge transformations Wm,

�D,mn

Wm−→ 1

L
Tr

{
(W †

nAnWn + iW †
nẆn

−W †
mAmWm − iW †

mẆm) + i
d

dt
[− ln(UmnV

†
mn)

− ln(W †
m) − ln(Wn)]

}
. (C6)

We have used the fact that Tr{ln(AB)} = Tr{ln(A)} +
Tr{ln(B)} if A,B ∈ U (L) in the equation above. W

†
mAmWm

are similarity transformations, so that the trace remains the
same as before. If A ∈ U (L), then Tr{ln(A)} = ln[det(A)], so
that d

dt
Tr{ln(A)} = d

dt
Tr{ln(�)} with V �V † = A and � being

diagonal. If V �V † = A ∈ U (L), then

Tr{A†Ȧ} = Tr{V �†(V †V̇ )�V † + V V̇ † + V �†�̇V †}
= Tr{�†�̇} = Tr{�−1�̇} = d

dt
Tr{ln(�)}, (C7)

so that if A ∈ U (L), d
dt

Tr{ln(A)} = Tr{A†Ȧ}. Then Eq. (C6)
can be simplified as

�D
Wm−→ �D + 1

L
Tr

{
−i

d

dt
[ln(W †

n ) + ln(Wn)

+ ln(W †
m) − ln(W †

m)]

}
= �D. (C8)

Therefore, �D is gauge invariant under a U (L) × U (L) gauge
transformation.

As for the case that the degeneracies of these two
eigenspaces are different, one can still define the gauge in-
variant as

�D,mn = − i

min(Lm,Ln)
Tr{ẊmnX

†
mn}, (C9)

where X is �
†
mUmnV

†
mn�n, and Lm and Ln are the degeneracies

of these two eigenspaces (suppose Lm < Ln). As mentioned in
the main text, V †V = ILm×Lm

is an identity matrix, while V V †

is not. Am, Tmn, and UmnV
†
mn transform the same as Eqs. (C2)–

(C4), so that under the gauge transformation,

�D,mn = − i

Lm

Tr

{
−iAm + d

dt
(UmnV

†
mn)(VmnU

†
mn) + iUmnV

†
mnAnVmnU

†
mn

}
(C10)

Wm−→ − i

Lm

Tr

{
−iW †

mAmWm + W †
mẆm + Ẇ †

mWm + d

dt
(UmnV

†
mn)(VmnU

†
mn) (C11)

+UmnV
†
mnẆnW

†
nVmnU

†
mn + W †

mUmnV
†
mnWn(iW †

nAnWn − W †
nẆn)W †

nVmnU
†
mnWm

}
(C12)

= − i

Lm

Tr

{
−iW †

mAmWm + d

dt
(UmnV

†
mn)(VmnU

†
mn) + iW †

mUmnV
†
mnAnVmnU

†
mnWm

}
(C13)

= �D,mn. (C14)

Therefore, the gauge invariance is verified. Note that some
terms in the equations above, such as UmnV

†
mnAnVmnU

†
mn and

UmnV
†
mnẆnW

†
nVmnU

†
mn, are in fact not similarity transforma-

tions of An and ẆnW
†
n .
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