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Quantum criticality of bosonic systems with the Lifshitz dispersion
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We study a novel type of quantum criticality of the Lifshitz ϕ4 theory below the upper critical dimension
du = z + dc = 8, where the dynamic critical exponent z = 4 and the spatial upper critical dimension dc = 4.
Two fixed points, one Gaussian and the other non-Gaussian, are identified with zero and finite interaction strengths,
respectively. At zero temperature the particle density exhibits different power-law dependences on the chemical
potential in the weak- and strong-interaction regions. At finite temperatures, critical behaviors in the quantum
disordered region are mainly controlled by the chemical potential. In contrast, in the quantum critical region
critical scalings are determined by temperature. The scaling ansatz remains valid in the strong-interaction limit for
the chemical potential, correlation length, and particle density, while it breaks down in the weak-interaction one.
Approaching the upper critical dimension, physical quantities develop logarithmic dependence on dimensionality
in the strong-interaction region. These results are applied to spin-orbit coupled bosonic systems, leading to
predictions testable by future experiments.
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I. INTRODUCTION

Quantum phase transitions, uniquely driven by quantum
fluctuations, appear when the ground-state energy encounters
nonanalyticity via tuning a nonthermal parameter. Physical
properties around quantum critical points (QCPs) are of
extensive interest because the interplay between quantum and
thermal critical fluctuations strongly influences the dynamical
and thermodynamic quantities, giving rise to rich quantum
critical properties beyond the classical picture [1,2]. Quan-
tum critical fluctuations are believed to be responsible for
various emergent phenomena, including the non-Fermi-liquid
behaviors in heavy fermion systems, unconventional supercon-
ductivity, and novel spin dynamics in one-dimensional (1D)
quantum magnets [3–6].

The progress of ultracold atom physics with synthetic spin-
orbit (SO) coupling has attracted a great deal of interest [7–21].
In solid-state systems, the SO coupled exciton condensations
have also been investigated in semiconductor quantum wells
[9,22–24]. For bosons under isotropic Rashba SO coupling,
the single-particle dispersion displays a ring of minima in mo-
mentum space. Depending on interaction symmetries, either a
striped Bose-Einstein condensation (BEC) or a ferromagnetic
condensate with a single plane wave develops [9,11–13,25,26].
The case of the spin-independent interaction is particularly
challenging: The striped states are selected through the
“order-from-disorder” mechanism from the zero-point energy
beyond the Gross-Pitaevskii framework [9]. Inside harmonic
traps, the skyrmion-type spin textures appear accompanied by
half-quantum vortices [9,26], and the experimental signatures
of spin textures have already been observed [23,24].

Compared to the conventional superfluid BEC phases
[27–32], the progress of SO coupled bosons paves the way
to study novel quantum criticality. Consider an interacting
Bose gas under Rashba SO and Zeeman couplings: When
the Zeeman field is tuned to a “critical” value, the dispersion
minimum comes back to the origin exhibiting a novel q4

dispersion [33], which is referred to as the Lifshitz point in
literature [34]. Quantum wave functions at the Lifshitz-point
exhibit conformal invariance [34–36], which have been applied

to describe the Rokhsar-Kivelson point [37] of the quantum
dimer model and quantum eight-vertex model. For the SO
coupled bosons, by employing an effective nonlinear σ -model
method, it is argued that at the Lifshitz point a quasi-long-range
ordered ground state instead of a true BEC develops due to the
divergent phase fluctuations [33].

The SO coupled bosons are not the only system to realize
the Lifshitz dispersion. It has an intrinsic connection to a
seemingly unrelated field of quantum frustrated magnets.
Suppose a spin- 1

2 antiferromagnetic Heisenberg model defined
in the square lattice with the nearest-neighbor coupling J1 and
the next-nearest-neighbor coupling J2. It can be mapped to a
hard-core boson model, and the Lifshitz dispersion appears at
J2 = J1/2. These bosonic systems are fundamentally different
from the regular ones with the quadratic dispersion: They
are beyond the paradigm of the “no-node” theorem, Perron-
Frobenius theorem [38,39], or Marshall-sign rule in the context
of quantum antiferromagnetism [40].

In this paper, we investigate the quantum complex ϕ4

theory with the Lifshitz dispersion, focusing on its novel
quantum criticality. Different from the usual case with the
quadratic dispersion, the dynamic critical exponent z = 4 and
the upper critical dimension du = 8, and thus the spatial upper
critical dimension dc = 4. Below the upper critical dimension,
there exist two fixed points (FPs)—an unstable Gaussian FP
and a non-Gaussian one with a finite interaction strength.
Quantum critical behaviors at both zero and finite temperatures
around these two FPs are investigated. At zero temperature
the particle density shows power-law dependence on the
chemical potential with different exponents in the weak- and
strong-interaction regions. At finite temperatures, according
to whether the chemical potential or temperature controls the
critical scalings, the disordered phase falls into the quantum
disordered or quantum critical region (QCR), respectively.
In the quantum disordered region the power-law dependence
of the chemical potential dominates the critical behaviors, and
thermal fluctuations generate exponentially small corrections,
while in the quantum critical region physical quantities, in-
cluding the chemical potential, correlation length, and particle
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density, exhibit power-law dependence on temperature. The
scaling ansatz [2] breaks down in the weak-interaction limit but
is sustained in the strong-interaction one. Logarithmic critical
behaviors appear in both regions when the system is near
the upper critical dimension. The connection of these results
to the two-dimensional (2D) SO coupled bosonic systems is
discussed.

II. QUANTUM LIFSHITZ ϕ4 MODEL

We construct the d-dimensional Euclidean quantum Lif-
shitz ϕ4 action as

S0 = T
∑
ωn

∫ �

0
ddqϕ∗(−iωn − μ + q4)ϕ,

(1)

SI = u

2

∫ β

0
dτ

∫ ∞

1/�

ddx|ϕ(x,τ )|4,

where d is the spatial dimension; � is the ultraviolet (UV)
momentum cutoff; μ and u denote the chemical potential and
interaction strength, respectively; τ is the imaginary time and
β = 1/T ; ωn = 2nπT is the Matsubara frequency; ϕ(x,τ ) is
a complex bosonic field. Due to the q4 dispersion, the effective
dimension deff = d + z with z = 4. The classical dimensions
of T and μ are �4, and that of u is �ε where ε = 8 − deff =
4 − d. Hence the upper critical dimension du = 8, and the
corresponding spatial one dc = 4. In the following, we rescale
T ,μ, and u by their classical dimensions to be dimensionless.
For quantities of the correlation length, particle density, and
ground-state energy that will be studied below, they are also
rescaled by �−1, �d , and �4 to be dimensionless, respectively.

The zero-temperature renormalization-group (RG) equa-
tions are derived following the momentum-shell Wilsonian
method as presented in Appendix A. Two FPs are identified
as a Gaussian FP (μ∗

1,u
∗
1) = (0,0) and a non-Gaussian one

(μ∗
2,u

∗
2) = (0,2ε/Kd ) appearing at d < dc. The RG equations

are integrated as

μl = e4lμ, ul = eεlu/Cd (μ,u,l),
(2)

Cd (μ,u,l) = 1 − u

8
Kd [
(μ,1,ε/4) − eεl
(μl,1,ε/4)],

with l being the RG scale parameter. Here, μl=0 = μ,
ul=0 = u, and Kd = 2−d+1π−d/2/�( d

2 ), with �(z) being the

gamma function and 
(μ,s, ε
4 ) ≡

∞∑
k=0

μk(k + ε
4 )−s being the

Hurwitz-Lerch transcendent. 
(μ,s, ε
4 ) has a branch cut run-

ning from (+1,+∞) in the complex μ plane. Since |μl| < 1
is maintained throughout the RG process, ul remains analytic
as a function of μ. Furthermore, in the complex ε plane, 


has a branch cut from (−∞,0), therefore ε can be analytically
extended to a finite positive value.

The Gaussian FP is unstable at ε > 0. Close to this FP, the
correlation length diverges as ξ (T = 0,μ) ≈ |μ|−ν with the
critical exponent ν = 1/4 rather than 1/2 as a consequence
of the Lifshitz dispersion. At the non-Gaussian FP, ν = 1/4
remains at the one-loop level since the interaction does not
renormalize the chemical potential at zero temperature, which
is different from the Wilson-Fisher FP of the classic phase
transition.

FIG. 1. Diagram of the zero-temperature RG flows. The red and
black dots mark the two FPs. Quantum phase transitions occur when
μ changes sign: The disordered and ordered phases lie at μ < 0 and
μ > 0, respectively. For μ > 0, symbols I and II denote the weak-
and strong-interaction regions, respectively. The dashed line at μ > 0
marks the crossover between these two regions.

We consider the critical behaviors at zero temperature.
The RG flows based on Eq. (2) are presented in Fig. 1. The
run-away flows indicate two stable phases: one disordered
at μ < 0 and the other ordered at μ > 0. The disordered
phase shows vanishing particle density at the one-loop level,
nevertheless small but finite particle density could develop
beyond one loop at u > 0. The two FPs obtained above lie on
the phase boundary of μ = 0. To study the critical physics at
μ > 0, a stop scale l∗0 is introduced at which μl∗0 = α � 1. α

is a nonuniversal parameter to control the RG flow remaining
in the crossover from the critical to noncritical regions [32].
According to different behaviors of the interaction strength ul∗0 ,
we define the weak- and strong-interaction regions via ul∗0 ≈
u( α

μ
)

ε
4 and u∗

2, respectively. Correspondingly, the crossover
between these two regions is approximately marked by the line
of u ≈ 2ε

Kd
(μ

α
)

ε
4 . The critical behaviors of the particle density n

and the ground-state energy density eg as well as ul∗0 in these
two regions are summarized in Table I (details in Appendix A).

The finite-temperature RG equations are presented in
Appendix B. We focus on two parts of the disordered
region close to the QCPs: the quantum disordered region
with negative and large chemical potential, i.e., μ < 0 and
|μ| � T , and the quantum critical region with small chemical
potential |μ| � T . Since the RG process ceases to work at

TABLE I. Critical properties in the weak- and strong-interaction
regions. μ is close to the phase boundary marked by μ = 0. eg =
1
n

∫
μdn gives the ground-state energy density.

u ul∗0 n eg

I u � 2ε

Kd

(
μ

α

)ε/4
u
(

α

μ

)ε/4
μ/u μ/2

II u � 2ε

Kd
( μ

α
)ε/4 2ε/Kd

Kdαε/4

2ε
μd/4 μd

4+d
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μl∗ = −1, a stop scale l∗ is accordingly defined at which
the coarse-graining length scale reaches the correlation length
ξ (T ,μ).

In the quantum disordered region, the running temperature
remains low at the stop scale l∗, i.e., Tl∗ � 1. Similar to
the zero-temperature case, two different limits of the running
interaction strength are introduced, corresponding to the weak-
and strong-interaction regions set by ul∗ ≈ uμ− ε

4 and u∗
2,

respectively. As shown in Appendix C, the correlation length
is calculated as

ξ (T ,μ) ≈ |μ|−1/4

[
1 − c(T ,u)

T

|μ|e
−2 |μ|

T

]
, (3)

where c(T ,u) = 1
8uKdT

− ε
4 and ε/4 for the weak- and strong-

interaction region, respectively. The finite-temperature correc-
tions are exponentially small.

Next consider the QCR where T � |μ|. Then at the
stop scale l∗ with μl∗ = −1, Tl∗ � 1, indicating that the
system flows into the high-temperature region. For simplicity,
we set μ = 0 (QCP) since in this region the correction
to thermodynamic quantities from a finite μ is subleading.
The correlation length and particle density are denoted as
ξT and nT , respectively. Similarly, based on the interaction
strength ul∗ the critical behaviors at finite temperatures also
fall into weak- and strong-interaction regions characterized by

ul∗ ≈ u[ε/(2KduT )]
ε/4

1+ε/4 and u∗
2, respectively. The crossover

line qualitatively follows u ∼ εT ε/4.

III. WEAK-INTERACTION REGION IN THE QCR

In this region, under the condition ln[1/(uT )] � 1/ε, ξT

and nT are derived in Appendices D and E as

ξT ≈
[

ε

2KduT

] 1
4+ε

, nT ≈ ad

[
ε

2Kdu

] ε/4
1+ε/4

T
1

1+ε/4 , (4)

where ad = 1
8Kd [ψ((4 + d)/8) − ψ(d/8)] with ψ(z) =

d ln �(z)/dz being the digamma function. In this case, even
though the interaction is relevant, ul∗ remains small, leaving
a weak-interaction window to justify the RG calculation.
The weak-interaction results in Eq. (4) can also be obtained
following the one-loop self-consistent method, the details of
which are presented in Appendix D.

The scaling ansatz is believed to be valid for the system
below the upper critical dimension [2]. In our case, it dictates
that the critical behavior of the correlation length in the QCR
can be cast into the form ξT ∝ T −1/4g(|μ|/T ), where g(x) is a
universal scaling function [2,32]. Then in the QCR, by setting
μ = 0, the scaling ansatz predicts ξT ∼ T −1/4. Nevertheless,
Eq. (4) yields a novel thermal exponent for the temperature
dependence of ξT as νT = 1/(4 + ε) beyond the scaling ansatz.
In contrast, typically scaling-ansatz-breakdown behaviors are
observed in systems equal to or above the upper critical
dimension [41,42].

When approaching the upper critical dimension dc,
such that �(d/4,1)

T ε/4 � ln ( 2
KduT

) � 4
ε
, the critical scalings are

obtained in Appendix D as

ξT ≈
(

KduT

2
ln

2

KduT

)− 1
4

, (5)

nT ≈ adT

(
KduT

2
ln

2

KduT

)− ε
4

, (6)

which exhibit the expected nonuniversal logarithmic behav-
iors.

Based on Eqs. (4)–(6), the limits of u → 0 and ε → 0 of
ξT and nT do not commute, reflecting the singular nature of
the QCP. At finite temperatures ξT and nT diverge as u → 0
at μ = 0 (QCP), which signals the strong instability around
the unstable Gaussian FP. Thermal fluctuations are enhanced
by the Lifshitz dispersion near the QCP due to the divergence
of single-particle density of states. Both divergences are cut
off when the system has a finite μ and/or a finite interaction
strength.

IV. STRONG-INTERACTION LIMIT IN THE QCR

In this limit, u � 2ε/Kd , and ξT and nT exhibit power-law
scalings as (Appendix E)

ξT ≈ G
−1/4
d T −1/4, nT ≈ adG

−1
d T d/4, (7)

where Gd = ε{A + ln[(1 + Aε)/(Aε)]} and A ≈ 0.46. It in-
dicates universal scaling behaviors near the non-Gaussian FP,
obeying the scaling ansatz [2]. Interestingly, at ε � 1, Eq. (7)
shows a nonanalytic logarithmic dependence on ε as

ξT ≈ T − 1
4 [ε ln(1/ε)]−

1
4 , nT ≈ adT

d
4 [ε ln(1/ε)]−

ε
4 . (8)

The above discussion for finite ε in the QCR is summarized
in Fig. 2. The effective interaction strength is actually tem-
perature dependent. Increasing temperature enhances thermal
fluctuations, which subdues quantum fluctuations generated
from the interaction. In contrast, when decreasing tempera-
tures, the system gradually enters a strong-interaction region
as long as u > 0.

ξ

ξ

-1/4 -1/4

FIG. 2. The quantum critical behaviors in the QCR at μ = 0 with
a finite ε. The blue dot-dashed line shows the crossover between the
weak- and strong-interaction regions.

085140-3



JIANDA WU, FEI ZHOU, AND CONGJUN WU PHYSICAL REVIEW B 96, 085140 (2017)

TABLE II. The zero-temperature critical properties of the 2D SO
coupled bosons with the Lifshitz dispersion. μ is close to the phase
boundary.

u ul∗ n eg

I u � 8π
√

μ

α
u
√

α

μ
μ/u μ/2

II u � 8π
√

μ

α
8π 1

8π

√
αμ μ/3

V. LIFSHITZ BOSE GAS FROM SO COUPLING

We apply the above general analysis to the 2D bo-
son system with the Lifshitz dispersion—the SO coupled
bosons under the Zeeman field. As shown in Appendix F,
tuning the Zeeman field and SO coupling strength λ can
convert the single-particle dispersion into the form εq =
−μ + q4

4λ2 . λ can be used to rescale all quantities in the
system by ϕ(ωn,�q)/(4λ2) → ϕ(ωn,�q), 4λ2μ → μ, 4λ2T →
T , 4λ2u → u, �q → �q. Accordingly the low-energy physics is
effectively described by the quantum Lifshitz action Eq. (1) at
d = 2.

At zero temperature, we focus on the region at μ > 0.
According to the previous analysis, when μ is close to
the phase boundary, the crossover between the weak- and
strong-interaction regions is characterized by u ≈ 8π (μ

α
)1/2.

The critical behaviors are summarized in Table II. In the weak-
interaction region, μ = un following the mean-field result,
and in the strong-interaction regime n ∝ √

μ. In comparison,
for the 2D bosons with the q2 dispersion [32], n ≈ μ

8π
ln α

μ

at μ � �2. The relation of n ∝ √
μ is similar to that of

1D bosons with the q2 dispersion in the low-density regime
[32,43,44]. Such systems are well known to be renormalized
into the strong-interaction region, nearly fermionized. This
relation is also similar to a free 2D Fermi gas with the same q4

dispersion, the single-particle density of states of which also
exhibits the 1D-like feature as ρ(ε) ∝ ε− 1

2 . Thus the dominant
critical physics carries certain features of fermions. Similar
fermionization behaviors in the strongly interacting boson
systems have also been studied in the SO coupled BEC systems
the energy minima of which lie in a ring in momentum space
[45], and also in the region of resonance scattering [46,47].

Similar analysis can also be applied to the ground-state
energy density eg . When u is sufficiently small, eg ≈ μ/2 ≈
nu/2 coincides with the leading-order result of the usual
weak-interacting dilute Bose gas with the q2 dispersion
[31]. However, in the strong-interaction region, eg ≈ μ/3 ≈
(8πn)2/(3α), which is very different from 4πn/[ln 1/(4πn)]
for the case of the q2 dispersion.

At finite temperatures, we focus on μ = 0 in the QCR
of the 2D boson system. The crossover between the weak-
and strong-interaction regions now becomes u ≈ 2T 1/2. In the
weak-interaction region,

ξT ∼ (uT )−
1
6 , nT ∼ u− 1

3 T
2
3 , (9)

showing the divergences of ξT and nT as u → 0. In cold atom
experiments, interactions are typically weak in the absence
of Feshbach resonances, therefore the thermal exponent

νT = 1/6 could be measurable. Furthermore, these scaling
relations deviate from the double logarithmic behaviors of 2D
boson gases with the q2 dispersion [32]. In contrast, in the
strong-interaction region,

ξT ∼ T − 1
4 , nT ∼ T

1
2 . (10)

ξT is nearly determined by thermal fluctuations independent of
the interaction strength. It can be understood as a decoherent
effect from the strong interparticle scattering.

VI. DISCUSSION AND CONCLUSIONS

We have studied the quantum critical properties of a
complex ϕ4 model with the Lifshitz dispersion, which gives
rise to a novel type of quantum critical phase transitions with
the dynamic critical exponent z = 4. At zero temperature, the
particle density depends on the chemical potential as n ∝ μ

and μ
d
4 in the weak- and strong-interaction regions controlled

by the Gaussian and non-Gaussian FPs, respectively. At
finite temperatures, the correlation length in the quantum
disordered region scales as |μ|− 1

4 in both weak- and strong-
interaction limits, while the finite-temperature corrections
are exponentially small. In the quantum critical region, the
temperature dependence of the correlation length scales as
ξT ∝ T − 1

4+ε and T − 1
4 in the weak- and strong-interaction

regions, respectively. The critical behavior in the weak-
interaction region is beyond the scaling ansatz while it is
maintained in the strong-interaction region. In both interaction
limits, logarithmic behaviors appear when the system is close
to the upper critical dimension. The above studies based
on the field-theoretical method are general, and are applied
to the 2D interacting SO coupled bosonic system with the
Lifshitz dispersion. Their critical behaviors are testable by
future experiments.

An interesting point is whether bosons with the Lifshitz
dispersion can support superfluidity. Under the mean-field the-
ory, the Bogoliubov phonon spectrum, εq =

√
q4(q4 + nu/2),

scales as q2 in the long-wavelength limit. It implies the
vanishing of the critical velocity, and thus the absence of the
superfluidity. In two dimensions, even in the ground state,
the quantum depletion of the condensate diverges signaling
the possible absence of BEC even at zero temperature [33].
Nevertheless, the pairing order parameter of bosons could be
nonvanishing. The results obtained in [33] are based on the
nonlinear σ model with a finite condensate fraction. Thus
they cannot be simply extended to the region near the QCP
where the condensate part is vanishingly small. Therefore,
the obtained results in [33] are complementary to our general
ε-expansion RG analysis near the QCP. Based on our analysis,
it is possible that bosons at the Lifshitz point do not exhibit
superfluidity even in the ground state with interactions, which
will be deferred for a future study.
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APPENDIX A: ZERO-TEMPERATURE CRITICAL
BEHAVIORS OF THE QUANTUM ϕ4 MODEL WITH THE

LIFSHITZ DISPERSION

We start with Eq. (1) in the main text. Following the main
text, the same rescaled dimensionless physical variables are
used. The one-loop RG equations at zero temperature for d =
4 − ε are derived as

dμl

dl
= 4μl,

dul

dl
= εul − u2

l

2

Kd

1 − μl

, (A1)

where μl=0 = μ and ul=0 = u are the initial chemical po-
tential and interaction strength, respectively. In addition,
Kd = 2−d+1π−d/2/�( d

2 ) with �(z) being the gamma function.
Equation (A1) exhibits a Gaussian and a non-Gaussian fixed
point located at (0,0) and (0,2ε/Kd ), respectively, as shown in
the main text.

When μ = 0, the stop scale is infinite, i.e., l∗ → ∞. For a
finite ε = 4 − d > 0, the interaction u is relevant. Following
Eq. (2) in the main text, ul→∞ = 2ε/Kd ≡ u∗

2, indicating
flowing towards the non-Gaussian fixed point.

Now consider μ > 0 but close to the FPs. At the stop
scale l∗0 , μl∗0 = μe4l∗0 = α � 1, which yields el∗0 = (α/μ)1/4.
By integrating Eq. (A1) for the interaction strength, we arrive
at

ul∗0 ≈ ueεl∗0

1 + Kdueεl∗0 /(2ε)
≈

{
u
(

α
μ

) ε
4 , u � uc

2ε/Kd, u � uc

, (A2)

where uc = 2ε
Kd

(μ

α
)

ε
4 .

At zero temperature, the particle density is defined as

n = 〈GS|ϕ∗(x)ϕ(x)|GS〉, (A3)

where 〈GS|· · ·|GS〉 denotes the ground-state expectation
value. The RG equation for n simply follows as

dnl

dl
= dnl, (A4)

with nl=0 = n being the initial particle density, which yields
nl∗0 = edl∗n.

At the stop scale l∗0 , the RG solution flows to the ordered
phase, in which the mean-field approximation [32,48] applies:

μl∗ = nl∗ul∗ . (A5)

Based on Eq. (A2), nl∗0 = edl∗n, and μl∗ = e4l∗μ, we obtain

μ =
(

α

μ

)(d−4)/4
nu(α/μ)ε/4

1 + (α/μ)ε/4Kdu/(2ε)
(A6)

= nu

1 + (α/μ)ε/4Kdu/(2ε)
. (A7)

Consequently, the particle density n is solved as

n ≈
{

μ/u, u � uc

Kdαε/4

2ε
μd/4, u � uc

. (A8)

The average ground-state energies in the weak- and strong-
interaction regions are expressed as

eg = EG/N = (1/n)
∫

μdn ≈
{

μ/2, u � uc

μd

4+d
, u � uc

. (A9)

APPENDIX B: RG EQUATIONS AT FINITE
TEMPERATURES

At finite temperatures, the RG equations are derived as

dTl

dl
= 4Tl, (B1)

dμl

dl
= 4μl − 2Kdul

e(1−μl )/Tl − 1
, (B2)

dul

dl
= εul − Kdu

2
l

{
coth

[ 1−μl

2Tl

]
2(1 − μl)

+
csch

[ 1−μl

2Tl

]
Tl

}
, (B3)

where Tl=0 = T , μl=0 = μ, and ul=0 = u are the initial
temperature, chemical potential, and interaction strength,
respectively.

The RG Eqs. (B2) and (B3) can be formally solved as

Tl = e4lT , (B4)

μl = e4l

{
μ − 2Kd

∫ l

0

e−4l′ul′dl′

exp [(1 − μl′)/Tl′ ] − 1

}

≡ e4lμ(u,T ,l), (B5)

ul = eεl

{
u − Kd

∫ l

0
e−εl′u2

l′

[
coth [(1 − μl′)/(2Tl′)]

2(1 − μl′)

+ 1

Tl′
csch2

(
1 − μl′

2Tl′

)]}
≡ eεlu(μ,T ,l), (B6)

where

μ(u,T ,l) = μ − 2Kd

∫ l

0

e−4l′ul′dl′

exp [(1 − μl′ )/Tl′] − 1
, (B7)

u(μ,T ,l) = u − Kd

∫ l

0
e−εl′u2

l′

[
coth[(1 − μl′)/(2Tl′ )]

2(1 − μl′ )

+ 1

Tl′
csch2

(
1 − μl′

2Tl′

)]
(B8)

correspond to the renormalized chemical potential and interac-
tion strength at the scale l, respectively. These equations are the
staring point to analyze the critical behaviors in the quantum
disordered and critical regions introduced in the main text.

APPENDIX C: CRITICAL BEHAVIORS IN THE QUANTUM
DISORDERED REGION

In the quantum disordered region, |μ| � T and μ < 0, then
Tl∗ � 1 at μl∗ = −1, which means the running temperature
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remains small at the stop scale. Consequently, the running in-
teraction strength is well approximated by its zero-temperature
form:

ul ≈ ueεl

1 + Kdueεl/(2ε)
. (C1)

In the weak-interaction limit, namely, u � 2ε
Kd

e−εl∗ , the chem-
ical potential in Eq. (B7) is solved as

μ(u,T ,l) ≈ μ − uKd

2
e−|μ|/T T 1−ε/4T

ε/4
l e−T −1

l . (C2)

From μl∗ = e4l∗μ(u,T ,l) = −1, the correlation length can be
determined as

ξT = el∗ ≈
{
|μ| + T W

(
uKd

2T ε/4e2|μ|/T

)}− 1
4

≈ |μ|− 1
4

(
1 − 1

4

uKdT
1−ε/4

2|μ| e−2|μ|/T

)
, (C3)

where W (z) is the Lambert function—the solution of z =
WeW . From Eq. (C3), the weak-interaction condition can be
cast into

u = 2ε

Kd

e−εl∗ = 2ε

Kd

με/4, (C4)

i.e., ul∗ = uμ−ε/4 � 2ε/Kd = u∗
2. Plugging Eq. (C3) into

Eq. (C2), the renormalized chemical potential follows:

μ(u,T ,l∗) ≈ −|μ| − uKd

2
T 1−ε/4e−2|μ|/T . (C5)

In the strong-interaction limit, u � 2ε/Kd = u∗
2. The chemi-

cal potential in Eq. (B7) can be calculated as

μ(u,T ,l) ≈ μ − εT e−|μ|/T e−T −1
l . (C6)

Again from μl∗ = e4l∗μ(u,T ,l) = −1, we determine the cor-
relation length as

ξT = el∗ ≈ {|μ| + T W (εe−2|μ|/T )}− 1
4

≈ |μ|− 1
4

(
1 − 1

4

εT

|μ|e
−2|μ|/T

)
. (C7)

Then the renormalized chemical potential in the strong-
interaction region follows:

μ(u,T ,l∗) ≈ −|μ| − εT e−2|μ|/T . (C8)

Based on Eqs. (C3), (C5), (C7), and (C8) in the quantum
disordered region, thermal fluctuations only give exponentially
small corrections in both weak- and strong-interaction regions.

APPENDIX D: WEAK-INTERACTION LIMIT IN THE QCR

In the QCR with |μ| � T , the running temperature flows
into the high-temperature region Tl∗ � 1 at the stop scale with
μl∗ = −1. The renormalized chemical potential [Eq. (B7)]
becomes

μ(u,T ,l) ≈ μ − uKd�(d/4,1)

2
T d/4 − 2uKdT

eεl − T −ε/4

ε

+O(u2) (D1)

with �(x,z) = ∫ ∞
z

tx−1e−t dt being the incomplete gamma
function. Assuming ε is small enough such that εl � 1, then
the third term of Eq. (D1) becomes 2uKdT [l − ln 1

T 1/4 ]. In
this limit there are many different analytic regions for the
correlation length and chemical potential. For simplicity, we
focus on the region where

l � ln
1

T 1/4
, (D2)

then the chemical potential in Eq. (D1) becomes

μ(u,T ,l) ≈ μ − uKd�(d/4,1)

2
T d/4 − 2KduT l + O(u2).

(D3)

Furthermore, the third term of Eq. (D3) is asked to dominate
over the second one, which gives rise to

4uKdT l

uKd�(d/4,1)T d/4
= 4T ε/4l

�(d/4,1)
� 1. (D4)

Under the above conditions, Eq. (D1) becomes

μ(u,T ,l) ≈ μ − 2uKdT l. (D5)

At the stop scale l∗, μl∗ = e4l∗μ(u,T ,l∗) = −1, which gives
rise to

2uKdT l∗e4l∗ = 1 ⇒ l∗ ≈ 1

4
ln

2

KduT
. (D6)

Equation (D6) automatically satisfies the condition Eq. (D2)
since ln ( 2

Kdu
)
1/4 � 1. Furthermore, the conditions of εl∗ � 1

and Eq. (D4) lead to the condition for the interaction strength:

�(d/4,1)

T ε/4
� ln

(
2

KduT

)
� 4

ε
, (D7)

which always holds once ε → 0+ and T �= 0.
Therefore, at finite temperatures as long as ε is small

enough, the obtained stop scale in Eq. (D6) self-consistently
satisfies all conditions for the analytic region we study. From
Eqs. (D5) and (D6), the renormalized chemical potential
follows:

μ(u,T ,l∗) ≈ μ − KduT

2
ln

(
2

KduT

)
. (D8)

Then at μ = 0, the correlation length becomes

ξT ≈
[
KduT

2
ln

(
2

KduT

)]−1/4

. (D9)

When ε � ln−1[1/(uT )], the renormalized chemical potential
from Eq. (D1) becomes

μ(u,T ,l) ≈ μ − uKd�(d/4,1)

2
T d/4 − 2Kdu

T eεl

ε

+O(u2). (D10)

We consider the region in which the third term in Eq. (D10)
dominates over the second one, which gives rise to the
condition for the weak-interacting limit:

2KduT eεl/ε

uKd�(d/4,1)T d/4/2
� 1. (D11)
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At the stop scale l∗, μl∗ = e4l∗μ(u,T ,l) = −1, then the
correlation length is determined as

ξT = el∗ ≈
(

ε

2Kd

) 1
4+ε

(uT )−
1

4+ε . (D12)

Correspondingly, the renormalized chemical potential in
Eq. (D10) follows as

μ(u,T ,l∗) ≈ μ −
(

ε

2Kd

)− 4
4+ε

(uT )
4

4+ε . (D13)

Equations (D11) and (D12) lead to the condition for the weak-
interaction limit:

a1u
4
ε � T � 1 (D14)

where

a1 =
[

ε

2Kd

]− 4
ε
[

4

ε�(d/4,1)

]− ε2

4(4+ε)

. (D15)

The weak-interaction condition in Eq. (D14) can be reformu-
lated as

u � ε

2Kd

(
4

ε�(d/4,1)

) ε3

16(4+ε)

, T ε/4 ≈ ε

2Kd

T ε/4, (D16)

where, except for the constant factor 1
2Kd

, the right-hand side
of Eq. (D16) is just the crossover interaction strength dividing
the strong- and weak-interaction regions at finite temperatures,
as illustrated in Fig. 2 in the main text.

The above weak-interaction results can also be obtained
following the one-loop self-consistent (SC) method. Set
μ = 0 (QCP), then the one-loop SC equation for the self-
energy μSC

T (� T ) follows:

∣∣μSC
T

∣∣ ∼ u

∫ ∞

0

qd−1dq

e(q4+|μSC
T |)/T − 1

≈ uT

ε
∣∣μSC

T

∣∣ε/4 , (D17)

which gives rise to μSC
T ∼ −(uT/ε)

1
1+ε/4 . Consequently, ξSC

T ∼
(uT/ε)−

1
4+ε with the same thermal exponent as that for ξT in

Eq. (D12). Furthermore, nSC
T becomes

nSC
T ∼

∫ ∞

0

E−ε/4dE

e(E+|μSC
T |)/T − 1

≈
( ε

u

) ε/4
1+ε/4

T
1

1+ε/4 , (D18)

which agrees with nT in Eq. (3) in the main text up to a constant
prefactor.

APPENDIX E: STRONG-INTERACTION LIMIT
IN THE QCR

In the strong-interaction region, 2ε/(uKd ) � 1, i.e., u �
2ε/Kd . When reaching the stop scale l∗, we determine the
renormalized chemical potential [Eq. (B7)] as follows:

μ(u,T ,l) ≈ μ − AεT − εT ln

[
e4lT (1 + Aε)

1 + Aεe4lT

]

+O(ε2), (E1)

with A = ln[e/(e − 1)] ≈ 0.46. Therefore at ε � 1, since
Tl = T e4l � 1 in the QCR, the third term in Eq. (E1)

dominates over the second term. In this case, at μ = 0,
μl∗ = e4l∗μ(u,T ,l) = −1 leads to

εT e4l∗ ln

[
e4l∗T (1 + Aε)

1 + Aεe4l∗T

]
= 1, (E2)

which is solved as

T e4l∗ = − 1

ε(A − W {eA[A + (1/ε)]}) . (E3)

Expanding the Lambert function as

W {eA[A + (1/ε)]} = ln
eA

ε
− ln ln

eA

ε
+ ln ln eA

ε

ln eA

ε

− ln ln eA

ε
− 1

2 ln2 ln eA

ε

ln2 eA

ε

+ O(ε)

≈ A − ln ε, (E4)

we arrive at

T e4l∗ = − 1

ε(A − W {eA[A + (1/ε)]}) ≈ 1

ε ln(1/ε)
⇒ ξT

= el∗ ≈ [εT ln(1/ε)]−1/4. (E5)

Therefore at ε � 1,

μ(u,T ,l∗) ≈ μ − εT [ln(1/ε) + ln ln(1/ε)]

≈ μ − εT ln(1/ε) = μ + εT ln ε when ε � 1.

(E6)

At finite ε, the third term in Eq. (E1) is comparable with the
second one, then

μ(u,T ,l∗) = μ − AεT − εT ln

[
1 + Aε
1

e4lT
+ Aε

]

≈ μ − AεT − εT ln

[
1 + Aε

Aε

]
= μ − GdT ,

(E7)

where Gd = ε{A + ln [(1 + Aε)/(Aε)]}. From the stop-scale
condition μ∗

l = −1, we reach (μ = 0)

ξT = el∗ ≈ G
−1/4
d T −1/4. (E8)

The particle density in the QCR at the stop scale l∗ can be
derived as

nT = Kde
−dl∗

∫ 1

0

qd−1dq

e(q4+1)/Tl∗ − 1

≈ KdTl∗e
−dl∗

∫ 1

0

qd−1dq

q4 + 1
= adT eεl∗ , (E9)

where el∗ = |μ(u,T ,l∗)|−1/4 and

ad = Kd

8

[
ψ

(
4 + d

8

)
− ψ

(
d

8

)]
(E10)

where ψ(z) = d ln �(z)/dz and �(z) are digamma and gamma
functions, respectively. Since in the quantum disordered region
ξT = el∗ is finite, Eq. (E9) indicates that the particle density
vanishes at zero temperature. Nevertheless, a small particle
density could appear when RG calculation is carried out
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beyond one loop. Plugging the correlation lengths of Eqs. (D9),
(D12), and (E8) into Eq. (E9), particle densities in the QCR
under different situations are derived as presented in Eqs. (3),
(5), and (6) in the main text.

APPENDIX F: DERIVATION OF LIFSHITZ-TYPE ACTION
FROM THE 2D BOSE GAS

We consider the Hamiltonian H = H0 + HI defined as

H0 =
∫

d2 �qψ†
α(�q)hαβ(�q)ψβ(�q), (F1)

HI = u

2

∫
d2�rψ†

α(�r)ψ†
β(�r)ψβ(�r)ψα(�r), (F2)

where �q = (qx,qy) and h(�q) = −μ + 1
2m

[q2
x + q2

y −
2λ(σxqx + σyqy) + 2λ�σz]. In Eqs. (F1) and (F2), ψα

is the bosonic annihilation operator; the pseudospin indices
α,β = ↑,↓ refer to two different internal components; σμ’s
are the Pauli matrices associated with the spin components
Sμ = 1

2σμ (μ = x,y,z); λ and λ�, reduced by 2m, are
the isotropic Rashba SO strength and Zeeman coupling,
respectively; u is the s-wave scattering interaction. Equations
(F1) and (F2) describe a two-dimensional interacting Bose gas
with an isotropic Rashba spin-orbit coupling under a Zeeman
field. The quadratic part, H0, yields the single-particle spectra
of two branches as εq± = −μ + (q2 ± 2λ

√
�2 + q2)/(2m)

with q = |�q|.
We work in the regime of a large Zeeman splitting field

and large Rashba SO coupling strength, therefore, for the low-
energy physics, only the lower branch of εq− is considered. The
global minimum of εq− is either located at q = 0 if λ < � or
at q = √

λ2 − �2 if λ � �. At λ = �, the two minima merge
into one with a quartic low-energy dispersion as εq− = −μ +
q4/(8mλ2) (the minimum energy reference point −λ2/m is
shifted to zero), where large λ implies that the band given by
εq− is almost flat.

An effective action for the low-energy bosons is constructed
as follows. The Rashba SO coupling is assumed strong enough
such that only the lower branch bosons need to be considered.
We assume that bosons are almost fully polarized with the
Zeeman field at small values of �q, and thus the Berry phase

effect associated with the variation of spin eigenstates with �q
is neglected.

The boson field variable is denoted as ϕ(�x,τ ) with the
momentum cutoff defined as � inversely proportional to the
average interaction range in real space. Following the method
of the bosonic coherent-state path integral [49], we write
the low-energy effective action S = SG + SI with the quartic
single-particle dispersion at λ = � in the imaginary-time
formalism as

SG = T
∑
ωn

∫ �

0
d2 �qϕ∗(ωn,�q)

[
−iωn − μ + q4

4λ2

]
ϕ(ωn,�q),

(F3)

SI = u

2

∫ β

0
dτ

∫
1/�

d2 �x|ϕ(�x,τ )|4,

where 2m is absorbed into λ. The powers of � can be used as
the natural units of different physical quantities. The units of
T , ωn, and μ are �2, and those of λ and ϕ(x,τ ) are �. u is
dimensionless. As discussed above the effective interaction in
Eq. (F3) is isotropic.

Though the effective action in Eq. (F3) is derived from
the Hamiltonian with a spin-isotropic interaction [Eq. (F2)], it
also holds for the systems with spin-anisotropic interactions.
In the latter situation the original Hamiltonian may contain
interaction terms mixing spin components different from the
isotropic one. However, with the assumed strong spin-orbit
coupling and Zeeman field, the high-energy branch can
be effectively gaped out. Consequently, the above single-
component boson field description still effectively works with
the interaction coefficient now being a linear combination of
the original spin-anisotropic interaction parameters. Therefore
the Lifshitz ϕ4 action with an isotropic interaction in Eq. (F3)
generally holds regardless of the spin symmetry the original
interaction possesses.

For the situation we are interested in, λ is always
finite, which now can be used to rescale all quanti-
ties in Eqs. (F3) by ϕ(ωn,�q)/(4λ2) → ϕ(ωn,�q), 4λ2μ → μ,

4λ2T → T , 4λ2u → u, �q → �q. Then the action of Eqs. (F3)
is converted to the action of Eq. (1) at d = 2 in the main text.
Following the analysis in the main text, at zero temperature
two FPs are immediately identified as (μ∗

1/�
4,u∗

1/�
2) = (0,0)

and (μ∗
2/�

4,u∗
2/�

2) = (0,8π ).
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[19] J. Radić, S. S. Natu, and V. Galitski, Phys. Rev. A 91, 063634
(2015).

[20] Y. Li, G. I. Martone, and S. Stringari, Annual Review of
Cold Atoms and Molecules (World Scientific, Singapore, 2015),
Chap. 5.

[21] L. Huang, Z. Meng, P. Wang, P. Peng, S.-L. Zhang, L. Chen, D.
Li, Q. Zhou, and J. Zhang, Nat. Phys. 12, 540 (2016).

[22] W. Yao and Q. Niu, Phys. Rev. Lett. 101, 106401 (2008).
[23] A. A. High, A. T. Hammack, J. R. Leonard, S. Yang, L. V. Butov,

T. Ostatnický, M. Vladimirova, A. V. Kavokin, T. C. H. Liew,
K. L. Campman et al., Phys. Rev. Lett. 110, 246403 (2013).

[24] A. High, J. Leonard, A. Hammack, M. Fogler, L. Butov, A.
Kavokin, K. Campman, and A. Gossard, Nature (London) 483,
584 (2012).

[25] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev. Lett. 105,
160403 (2010).

[26] H. Hu, B. Ramachandhran, H. Pu, and X.-J. Liu, Phys. Rev. Lett.
108, 010402 (2012).

[27] P. B. Weichman, M. Rasolt, M. E. Fisher, and M. J. Stephen,
Phys. Rev. B 33, 4632 (1986).

[28] P. B. Weichman, Phys. Rev. B 38, 8739 (1988).
[29] D. S. Fisher and P. C. Hohenberg, Phys. Rev. B 37, 4936

(1988).
[30] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,

Phys. Rev. B 40, 546 (1989).

[31] E. B. Kolomeisky and J. P. Straley, Phys. Rev. B 46, 11749
(1992).

[32] S. Sachdev, T. Senthil, and R. Shankar, Phys. Rev. B 50, 258
(1994).

[33] H. C. Po and Q. Zhou, Nat. Comm. 6, 8012 (2015).
[34] E. Ardonne, P. Fendley, and E. Fradkin, Ann. Phys. 310, 493

(2004).
[35] B. Hsu and E. Fradkin, Phys. Rev. B 87, 085102 (2013).
[36] C. L. Henley, J. Stat. Phys. 89, 483 (1997).
[37] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

(1988).
[38] R. P. Feynman, Statistical Mechanics, A Set of Lectures

(Addison-Wesley, Reading, MA, 1972).
[39] C. Wu, Mod. Phys. Lett. B 23, 1 (2009).
[40] W. Marshall, Proc. R. Soc. A 232, 48 (1955).
[41] J. Wu, L. Zhu, and Q. Si, J. Phys. Conf. Ser. 273, 012019 (2011).
[42] J. Wu, W. Yang, C. Wu, and Q. Si, arXiv:1605.07163.
[43] I. Affleck, Phys. Rev. B 41, 6697 (1990).
[44] E. S. Sørensen and I. Affleck, Phys. Rev. Lett. 71, 1633 (1993).
[45] T. A. Sedrakyan, A. Kamenev, and L. I. Glazman, Phys. Rev. A

86, 063639 (2012).
[46] F. Zhou and M. S. Mashayekhi, Ann. Phys. 328, 83 (2013).
[47] S.-J. Jiang, W.-M. Liu, G. W. Semenoff, and F. Zhou, Phys. Rev.

A 89, 033614 (2014).
[48] D. R. Nelson and H. S. Seung, Phys. Rev. B 39, 9153 (1989).
[49] J. W. Negele and H. Orland, Quantum Many-Particle Systems

(Westview, USA, 1998).

085140-9

https://doi.org/10.1103/PhysRevLett.110.085304
https://doi.org/10.1103/PhysRevLett.110.085304
https://doi.org/10.1103/PhysRevLett.110.085304
https://doi.org/10.1103/PhysRevLett.110.085304
https://doi.org/10.1103/PhysRevA.91.063634
https://doi.org/10.1103/PhysRevA.91.063634
https://doi.org/10.1103/PhysRevA.91.063634
https://doi.org/10.1103/PhysRevA.91.063634
https://doi.org/10.1038/nphys3672
https://doi.org/10.1038/nphys3672
https://doi.org/10.1038/nphys3672
https://doi.org/10.1038/nphys3672
https://doi.org/10.1103/PhysRevLett.101.106401
https://doi.org/10.1103/PhysRevLett.101.106401
https://doi.org/10.1103/PhysRevLett.101.106401
https://doi.org/10.1103/PhysRevLett.101.106401
https://doi.org/10.1103/PhysRevLett.110.246403
https://doi.org/10.1103/PhysRevLett.110.246403
https://doi.org/10.1103/PhysRevLett.110.246403
https://doi.org/10.1103/PhysRevLett.110.246403
https://doi.org/10.1038/nature10903
https://doi.org/10.1038/nature10903
https://doi.org/10.1038/nature10903
https://doi.org/10.1038/nature10903
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.108.010402
https://doi.org/10.1103/PhysRevLett.108.010402
https://doi.org/10.1103/PhysRevLett.108.010402
https://doi.org/10.1103/PhysRevLett.108.010402
https://doi.org/10.1103/PhysRevB.33.4632
https://doi.org/10.1103/PhysRevB.33.4632
https://doi.org/10.1103/PhysRevB.33.4632
https://doi.org/10.1103/PhysRevB.33.4632
https://doi.org/10.1103/PhysRevB.38.8739
https://doi.org/10.1103/PhysRevB.38.8739
https://doi.org/10.1103/PhysRevB.38.8739
https://doi.org/10.1103/PhysRevB.38.8739
https://doi.org/10.1103/PhysRevB.37.4936
https://doi.org/10.1103/PhysRevB.37.4936
https://doi.org/10.1103/PhysRevB.37.4936
https://doi.org/10.1103/PhysRevB.37.4936
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.46.11749
https://doi.org/10.1103/PhysRevB.46.11749
https://doi.org/10.1103/PhysRevB.46.11749
https://doi.org/10.1103/PhysRevB.46.11749
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1103/PhysRevB.87.085102
https://doi.org/10.1103/PhysRevB.87.085102
https://doi.org/10.1103/PhysRevB.87.085102
https://doi.org/10.1103/PhysRevB.87.085102
https://doi.org/10.1007/BF02765532
https://doi.org/10.1007/BF02765532
https://doi.org/10.1007/BF02765532
https://doi.org/10.1007/BF02765532
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1142/S0217984909017777
https://doi.org/10.1142/S0217984909017777
https://doi.org/10.1142/S0217984909017777
https://doi.org/10.1142/S0217984909017777
https://doi.org/10.1098/rspa.1955.0200
https://doi.org/10.1098/rspa.1955.0200
https://doi.org/10.1098/rspa.1955.0200
https://doi.org/10.1098/rspa.1955.0200
https://doi.org/10.1088/1742-6596/273/1/012019
https://doi.org/10.1088/1742-6596/273/1/012019
https://doi.org/10.1088/1742-6596/273/1/012019
https://doi.org/10.1088/1742-6596/273/1/012019
http://arxiv.org/abs/arXiv:1605.07163
https://doi.org/10.1103/PhysRevB.41.6697
https://doi.org/10.1103/PhysRevB.41.6697
https://doi.org/10.1103/PhysRevB.41.6697
https://doi.org/10.1103/PhysRevB.41.6697
https://doi.org/10.1103/PhysRevLett.71.1633
https://doi.org/10.1103/PhysRevLett.71.1633
https://doi.org/10.1103/PhysRevLett.71.1633
https://doi.org/10.1103/PhysRevLett.71.1633
https://doi.org/10.1103/PhysRevA.86.063639
https://doi.org/10.1103/PhysRevA.86.063639
https://doi.org/10.1103/PhysRevA.86.063639
https://doi.org/10.1103/PhysRevA.86.063639
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1016/j.aop.2012.09.005
https://doi.org/10.1103/PhysRevA.89.033614
https://doi.org/10.1103/PhysRevA.89.033614
https://doi.org/10.1103/PhysRevA.89.033614
https://doi.org/10.1103/PhysRevA.89.033614
https://doi.org/10.1103/PhysRevB.39.9153
https://doi.org/10.1103/PhysRevB.39.9153
https://doi.org/10.1103/PhysRevB.39.9153
https://doi.org/10.1103/PhysRevB.39.9153



