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Single branch of chiral Majorana modes from doubly degenerate Fermi surfaces
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Majorana fermions are often proposed to be realized by singling out one Fermi surface without spin degen-
eracy via spin-orbit coupling, and then imposing boundaries or defects. In this work, we take a different route
starting with two degenerate Fermi surfaces without spin-orbit coupling, and show that by the method of “kink
on boundary,” the dispersive chiral Majorana fermions can be realized in superconducting systems with p ± is
pairings. The surfaces of these systems develop spontaneous magnetizations whose directions are determined by
the boundary orientations and the phase difference between the p- and s-component gap functions. Along the
magnetic domain walls on the surface, there exist chiral Majorana fermions propagating unidirectionally, which
can be conveniently dragged and controlled by external magnetic fields. Furthermore, the surface magnetization
is shown to be a magnetoelectric effect based on a Ginzburg-Landau free-energy analysis. We also discuss how
to use the proximity effects to realize chiral Majorana fermions by performing the kink on boundary method.
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Majorana fermions are their own antiparticles which were
first introduced to high-energy physics [1]. In the past decade,
they have been intensively investigated in the context of con-
densed matter physics [2]. The braiding of Majorana particles
exhibits non-Abelian statistics [3–6], which is distinct from
the usual Fermi and Bose statistics and can be applied for
quantum computations [7–11]. The topological nature of Ma-
jorana modes makes the braiding and fusion operations robust
from the decoherence processes which are detrimental to the
realization of quantum computers.

The Majorana modes are proposed to exist in the ν =
5
2 fractional quantum Hall state [3]. There have also been
considerable interests in studying Majorana fermions in topo-
logical superconducting systems [12–17]. Majorana fermions
appear on boundaries, in vortex cores, and at defects of
topological superconducting systems [5,18–23]. The chiral
Majorana fermion has been proposed to emerge in the quan-
tum anomalous Hall insulator in proximity with an s-wave
superconductor [24–26]. The interaction effects in Majorana
fermions have also been discussed by various authors [27–29].
Recent experiments have provided evidence to the existence
of Majorana zero modes and chiral Majorana fermions in
condensed matter systems [30–32].

A Majorana fermion is half of a usual fermion in view of
the degrees of freedom that it contains. Since electrons have
two spin degrees of freedom, the chiral Majorana fermions
can only be obtained by a “half of half” method. Typically,
the first “half” is achieved by singling out a nondegenerate
Fermi surface in spin-orbit coupled systems, which becomes
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effectively single component. The second “half” is performed
by imposing boundaries or defects to generate zero modes.

On the other hand, there has been considerable experi-
mental and theoretical interest in studying superconducting
states with competing singlet and triplet pairings [33–43].
A spontaneously time-reversal symmetry breaking mixing is
energetically favored exhibiting ±π

2 phase difference between
the gap functions in these two different channels [34]. This
class of novel pairing states has been proposed in the ultracold
electric dipolar fermion systems [34], in cold fermion systems
under p-wave Feshbach resonances [42], in iron-pnicitide
superconductors [41], and in inversion symmetry breaking
superconducting systems [43]. Such kind of time-reversal
symmetry breaking superconductors host gapped Dirac cones
on the surface with nontrivial gravitational responses and
thermal Hall effects [43–49]. Recently, there has been strong
experimental evidence for unconventional and time-reversal
symmetry breaking pairing in the superconducting state of the
noncentrosymmetric material Re0.82Nb0.18 [50], which is very
likely of a mixed singlet and triplet nature [51].

In this Rapid Commnication, we analyze the formation
of chiral Majorana fermions in superconductors with mixed
singlet and triplet pairings of the p ± is type. Different from
previous works, there are two degenerate Fermi surfaces with-
out any spin-orbit coupling, and the strategy of “half of half”
is implemented as “kink on boundary.” The boundaries of
the p ± is superconductors are shown to be spontaneously
spin polarized, and the magnetizations are opposite for p + is
and p − is pairings. As a result, the “kink” formed by the
domain wall between the p + is and p − is superconducting
regions on the surface is also a magnetization domain wall. We
show that there exists a chiral Majorana fermion propagating
unidirectionally along the “kink.” The spirit of such kink on
boundary method is similar to realizing Majorana corner and
hinge modes in the high-order topological systems [52–59].
However, the chiral Majorana fermions realized using our
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method are mobile in the sense that they can be dragged and
controlled by external magnetic fields, hence convenient for
braiding purposes. In addition, we show that the spontaneous
surface magnetization is a manifestation of a novel mag-
netoelectric effect based on a Ginzburg-Landau free-energy
analysis. Finally, we also discuss how to use the proximity
effects in triplet superconductors including CuxBi2Se3 and
Sn1−xInxTe to realize chiral Majorana fermions by performing
the kink on boundary method.

We consider a gap function structure with a dominant
p-wave component mixed with an s-wave one. It typically
prefers the time-reversal symmetry breaking pairing pattern
p ± is [34]. The corresponding gap function matrix reads
�αβ (�k) = �s(�k)(iσ2)αβ + �p(�k)d̂ (�k) · (i�σσ2)αβ where d̂ (�k)
is a unit real vector and �σ ’s are the Pauli matrices in spin
space. Only when the phase difference between �s and �p

equals to ±π
2 , is �αβ proportional to a unitary matrix. Typi-

cally, unitary pairings are energetically more favorable over
nonunitary ones [60]. To see this, consider the following
Ginzburg-Landau free energy

F = −αs�
∗
s �s − αp�

∗
p�p + βs|�s|4 + βp|�p|4

+γ1|�p|2|�s|2 + γ2(�∗
p�

∗
p�s�s + c.c.), (1)

in which both αs and αp are negative, signaling instabilities
in both s- and p-wave channels. Equation (1) is the most
general form of the free energy up to quartic order which
respects time-reversal and inversion symmetries. Since γ2 is
positive generically [43], a ±π/2 phase difference between
�s and �p is energetically favored. Up to an overall gauge
transformation, the p- and s-wave components can be fixed
as real and imaginary, respectively. Both time-reversal (T )
and inversion (P) symmetries are spontaneously broken in
the p ± is pairing states. Nevertheless, the system is invariant
up to an overall phase under the PT transformation, i.e., the
combined parity and time-reversal operations.

For simplicity, we start with a 1D pz ± is superconductor,
whose Bogoliubov–de Gennes (BdG) Hamiltonian reads

H1D = 1

2

∫
dz ψ†(z)

{[
− h̄2

2m
∂2

z − μ(z)

]
τ3 − �sσ2τ1

−�p

k f
i∂zσ1τ1

}
ψ (z), (2)

in which ψ (z) = [c†
↑(z)c†

↓(z)c↑(z)c↓(z)]T ; τi’s are the Pauli
matrices in the Nambu space; k f is the Fermi wave vector;
and �s and �p represent the singlet and triplet pairing gap
functions which are assumed real without loss of generality.
The BdG Hamiltonian, Eq. (2), possesses the particle-hole
symmetry PhH1DP−1

h = −H1D where Ph is an antiunitary
transformation defined as Phψ

†(z)P−1
h = ψ†(z)σ0τ1K , with K

the complex conjugate operation. The triplet pairing pattern
in Eq. (2) corresponds to the d-vector configuration d̂ ‖ ẑ,
hence the z component of spin is conserved, represented as
Sz = 1

4σ3τ3. In the absence of �s, the system preserves time-
reversal symmetry T ψ†(z)T −1 = ψ†(z)iσ2τ0K , and there
exists a chiral operator Cch = −iT Ph = σ2τ1 anticommuting
with the Hamiltonian. The chiral operator in general maps
positive energy states to negative energy states, but becomes
a symmetry for the zero modes. In what follows, an open

boundary condition is imposed along the z direction at the
upper (z = L

2 ) and lower (z = − L
2 ) edges, with μ(z) = h̄2

2m k2
f

at |z| < L
2 and μ(z) = −∞ at |z| > L

2 , where L is the system
size.

When �s = 0, there exist two Majorana zero
modes at each edge of the system. The associated
creation operators for the four Majorana modes are
γ

a,†
λ = ∫

dz ψ†(z)
a
λ (z), in which a = + (−) for upper

(lower) edge and λ = ± labeling the two zero modes
at each edge. The zero mode wave functions 
a

λ are
solved as 
a

+(z) = 1√
2
(e−ia(π/4), 0, 0, eia(π/4) )T u+(z) and


a
−(z) = 1√

2
(0, e−ia(π/4), eia(π/4), 0)T u−(z), respectively,

where ua(z) is the envelope function with the expression
given in Supplemental Material (SM) Sec. I [61]. Since
[Cch, Sz] = 0, the wave functions of the four zero modes can
be chosen as the simultaneous eigenstates of Cch and Sz:

Cch

a
λ = aλ
a

λ, Sz

a
λ = 1

2λ
a
λ. (3)

Furthermore, there exists an emergent supersymmetry ex-
pressed as γ a

+ = γ
a,†
− [62].

When �s 	= 0, the four modes become gapped, and a spon-
taneous magnetization develops on the edge. Since the singlet
pairing component in H1D is −�sCch, Cch and Sz still form a
complete set of good quantum numbers for the four modes as
expressed in Eq. (3). Without loss of generality, let us consider
the case of �s > 0. γ

a,†
λ=a represents the quasiparticle annihila-

tion operator, since [H1, γ
a,†
λ=a] = −�sγ

a,†
λ=a. The projection of

the Sz operator to the edge state subspace can be expressed as
Sz = − 1

2 a(γ a,†
λ=−aγ

a,†
λ=a − 1

2 ), hence,

〈G|Sz|G〉 = 1
4 a, (4)

where a = ±1, and |G〉 is the ground state of the system. This
result shows the fractionalization of the sz eigenvalue to ± 1

4
on the boundary. Therefore, the upper and lower edges carry
spontaneous magnetizations along the z direction, and they
are oppositely magnetized as enforced by the PT symmetry.
Define the PT operation as S = GPT , where G : cσ (z) →
icσ (z) (σ =↑,↓) is a gauge transformation. The operation
S flips both a and λ and maintains the Cch index invariant,
since S switches the upper and lower edges, {S, Sz} = 0, and
[S,Cch] = 0. As a result, γ

a,†
λ=a and γ

−a,†
λ=−a are related by S

and are the eigenoperators with the same energy eigenvalue.
Hence, the magnetizations are opposite for the two edges.
As for the case of �s < 0, the magnetization at each edge is
reversed with respect to the case of �s > 0. We also note that
there is no magnetization in the bulk due to the PT symmetry.

Next we consider the p ± is superconductors in two di-
mensions and show that there appears a single Majorana zero
mode localized at the magnetic kink on the 1D edge of this
system. The corresponding BdG Hamiltonian reads

H2D = 1

2

∫
d2�r ψ†(�r)

{[
− h̄2

2m
(∂2

y + ∂2
z ) − μ(z)

]
τ3

−�s(y)σ2τ1 + 1

k f

(
�y

pi∂yτ2 − �z
pi∂zσ1τ1

)}
ψ (�r),

(5)
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in which �r = (y, z), �
y,z
p represent the triplet pairing strengths

in the py, pz partial wave channels, respectively, and the d
vector is pointing along the momentum direction. Again an
open boundary condition is imposed along the z direction.
With a uniform �s(y), the momentum ky along the y direc-
tion is a good quantum number. The Hamiltonian in Eq. (5)
reduces back to Eq. (2) by setting ky = 0, thus there are two
gapped modes 
a

± on each edge a.
At a small but nonzero ky, the effective 1D low-energy

edge Hamiltonian can be obtained by the k · p method, as

Ha
2D,edge = −a(�ss3 + �

y
p

k f
kys1), in which si’s are the Pauli

matrices in the basis of 
a
± for the a edge. For a spatially

slowly varying �s(y), the edge Hamiltonian becomes

Ha
2D,edge = −a

[
�s(y)s3 − i

�
y
p

k f
∂ys1

]
. (6)

Since the direction of the edge magnetization is determined
by the sign of �s(y), the position where �s(y) changes
sign forms a magnetic kink separating regions of oppo-
site directions of magnetizations. Alternatively, �s(y) can
be viewed as the mass of the 1D superconducting spinless
fermion model, therefore, a Majorana zero mode emerges at
the magnetic kink [63,64]. The Majorana zero mode can be
solved based on the low-energy edge Hamiltonian in Eq. (6).
For a kink with sgn[�s(y)] = −λ sgn(y) where λ = ±, the
wave function of the zero mode at a edge is W a

λ (y, z) =
1√
2
[eiλ(π/4)
a

+(z) + e−iλ(π/4)
a
−(z)]wλ(y), and the envelope

function reads wλ(y) = 1
N eλ

∫ y
0 dy′k f [�s (y′ )/�p] with N a normal-

ization factor. We have also numerically verified the existence
of Majorana zero modes using a lattice model with details
included in SM Sec. II [61].

The symmetry properties of the four zero modes W a
λ ’s are

analyzed as follows. With the presence of �s, Cch is no longer
a symmetry of the zero modes; nevertheless, a new chiral
operator can be chosen as C′

ch = −σ3τ1 which anticommutes
with H2D and is a symmetry for W a

λ ’s. When �s(y) is an
odd function of y, the system is invariant under the operation
M ′

y = GMy, where the reflection operation My is defined as
Myψ

†(y, z)M−1
y = ψ†(−y, z)iσ2τ0. Furthermore, C′

ch and M ′
y

commute and form a complete set of good quantum numbers
for the four zero modes W a

λ ’s:

C′
chW

a
λ = −aλW a

λ , M ′
yW

a
λ = −λW a

λ . (7)

Note that for a fixed λ, the C′
ch indices of the pair of states

W ±
λ are opposite while the M ′

y eigenvalues are the same, and
for a fixed a, both the C′

ch indices and the M ′
y eigenvalues

of the states W a
± are opposite. These are consequences of the

symmetries of the system as discussed in SM Sec. III [61].
Now we extend the above discussions to 3D p ± is super-

conductors, with the following BdG Hamiltonian:

H3D = 1

2

∫
d�r ψ†(�r)

{[
− h̄2

2m
∇2 − μ(z)

]
τ3 − �s(y)σ2τ1

+ 1

k f
(�x

pi∂xσ3τ1 + �y
pi∂yτ2 − �z

pi∂zσ1τ1)

}
ψ (�r),

(8)

in which d̂ (�k) is assumed to be k̂. The open boundary condi-
tion is imposed along the z direction, the same as before. H3D

reduces to the Hamiltonian in Eq. (2) when kx = ky = 0, and
to Eq. (5) when kx = 0.

When �s(y) = �s is a constant, the surface is uniformly
spin polarized. The surface modes at kx = ky = 0 are 
a

λ’s
as given in Eq. (3). Away from the surface � point, the
low-energy surface Hamiltonian for the a boundary can be
obtained by the k · p method as

Ha
surf = a

[
−�sξ3 + 1

k f
(�x

pkxξ2 − �y
pkyξ1)

]
, (9)

where ξi’s are the Pauli matrices in the basis of 
a
±. For the

case of rotationally invariant triplet pairing, i.e., �
j
p = �p

( j = x, y, z), the surface magnetization per unit area is evalu-

ated as a
k2

f

8π
r(

√
1 + r2 − r) where r = �s/�p, with detailed

calculations included in SM Sec. IV [61]. Due to the sur-
face magnetization, the spontaneous time-reversal symmetry
breaking pattern (i.e., the sign of �s) can be controlled by
an external magnetic field. By applying an arbitrarily small
field along the positive (negative) z direction to the upper
boundary of the system above the superconducting transition
temperature, the p + is (p − is) state will be favored near
the upper boundary when the system is cooled down to be
superconducting. The induced symmetry breaking pattern is
the opposite for the lower boundary with the same direction
of the external field.

There exists a chiral Majorana fermion propagating along
the magnetization domain wall where �s(y) changes sign
on the boundary of the system. Assuming sgn[�s(y)] =
−λ sgn(y) with λ = ±1, then for a fixed λ, there exists a Ma-
jorana zero mode W a

λ with kx = 0 on the a boundary. In this
case, a new chiral operator C′

ch which anticommutes with H3D

(see SM Sec. III [61]) can be defined as C′
ch = GMxT Ph, sat-

isfying C′
chψ

†(x, y, z)C′−1
ch = ψ†(−x, y, z)(−σ3τ1) where Mx

is the reflection operation defined as Mxψ
†(x, y, z)M−1

x =
ψ†(−x, y, z)iσ3τ1. Since C′

ch reduces to −σ3τ1 when kx = 0,
C′

ch is a symmetry for the zero modes. When kx deviates from
0, the dispersion can be obtained by applying the k · p method

to �Hch(kx ) = −�x
p

k f
kxσ3τ1, which is just

�x
p

k f
C′

chkx. Hence, the
propagation direction, i.e., the chirality, is determined by the

C′
ch index and the velocity is v = C′

ch
�x

p

h̄k f
. The above analysis

is confirmed by numerical computations on a finite size lattice
system discussed in SM Sec. II [61]. A schematic plot of the
propagation of the Majorana modes is shown in Fig. 1.

We also show that the spontaneous surface magnetization
is a manifestation of a magnetoelectric effect. In p ± is su-
perconductors, spatial inhomogeneities, including the spatial
variations of the external potential V (�r) and the gap functions
of the s- and p-wave pairings, can all induce spin polar-
izations. In the following, a Ginzburg-Landau free-energy
analysis is presented for the mechanism of the magnetization,
which holds for temperatures close to the transition tempera-
ture Tc and the slow varying case. Denote the magnetic field as
�h(�r), and the singlet and triplet pairing complex gap functions
as �s(�r) and �p(�r), respectively, where an isotropic p-wave
pairing is assumed, i.e., �

j
p = �p ( j = x, y, z). The free
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FIG. 1. The propagating chiral Majorana modes represented by
red arrows. The yellow arrows in the figure represent the directions
of magnetizations at several selected surfaces or interfaces.

energy acquires the following terms under �h(�r) as

�F (3) = 1

3
Dε f

∫
d3�r �h · Im[−(∇�s)�∗

p + �s∇�∗
p],

�F (4) = D
∫

d3�r �h · Im[(∇V )�s�
∗
p − V (∇�s)�∗

p

+V �s∇�∗
p], (10)

in which ε f is the Fermi energy; k f is the Fermi wave vector;
and D = Nf

1
k f

7ζ (3)
(8π )2

1
T 2

c
where Nf is the density of states at the

Fermi energy, Tc is the superconducting transition tempera-
ture, and ζ is the Riemann zeta function. The derivations of
Eq. (10) are included in SM Sec. V [61]. Since the mag-
netization �M is conjugate to �h, all ∇�s, ∇�p, and ∇V can
induce �M.

The first term in �F (4) leads to the magnetoelectric ef-
fect. The magnetization induced by the spatial variation of
the external potential is given by �M(�r) = χ∇V (�r), where
χ = D Im(�p�

∗
s ). A nonzero χ requires the coexistence of

�s and �p with a phase difference not equal to 0 or π ,
hence, both the inversion and time-reversal symmetries are
broken. As analyzed before, the p ± is pairing gap functions
are energetically favored when they are nearly degenerate.
In this case, χ is nonzero and its sign is opposite for the
p ± is cases. The open boundary condition used previously
corresponds to a sudden jump of the electric potential. Hence,
the spin-polarized surface state is a manifestation of the mag-
netoelectric effect.

Magnetizations can also be induced by the spatial inhomo-
geneity of the superconducting gap functions as described in
�F (3). This effect is embodied in the spontaneous magneti-
zation at the interfaces between regions with different pairing
symmetries in the bulk as shown in Fig. 1(b). Furthermore, for
the interface between the p + is and p − is regions, we find
localized and spin-polarized midgap states at the energy of
|�p|, while for the interface between the p + is and −p + is
regions, the energies are at |�s|. The solutions of these midgap
states are included in SM Sec. VI [61]. We also note that
the chiral Majorana fermion can alternatively be viewed as
propagating on the edge of such interfaces.

FIG. 2. The propagating chiral Majorana fermion (represented
by the red straight arrows) produced by (a) a current-carrying wire
placed on top of a p ± is superconductor, and (b) a triplet pairing
superconductor in proximity with an s-wave superconducting thin
film. In (a), the black straight arrows, the red circled arrows, and the
orange fat arrows represent the electrical currents flowing through
the wire, the magnetic fields generated by the current, and the surface
magnetizations, respectively. In (b), the yellow arrows represent the
directions of the external magnetic fields.

The chiral Majorana fermion can be produced and con-
trolled by a current-carrying wire placed on top of the surface
of the system as shown in Fig. 2(a). The directions of the
magnetic fields on the surface produced by the wire are an-
tiparallel on the opposite sides of the wire, thus the induced
symmetry breaking pattern (p + is or p − is) changes across
the wire when the system is cooled below Tc. As discussed
previously, there exists a chiral Majorana fermion propagating
along the domain wall produced by the electric current. The
domain wall will follow the motion of the wire if the motion
is slow enough to ensure adiabaticity. Hence, such chiral Ma-
jorana fermion is mobile and can be conveniently dragged by
translating the wire on the surface.

Besides the intrinsic p ± is superconductivities, our strat-
egy for realizing mobile chiral Majorana fermions can also
be carried out using proximity effect. There is experimental
evidence for the CuxBi2Se3 and Sn1−xInxTe materials to host
a time-reversal invariant triplet superconductivity [36,38–40].
In these two materials, although the proposed triplet pairing
symmetry (A1u representation of the D3d point group) [35] is
not the same as the p-wave pairing discussed in our work,
Cch is still an antisymmetry (i.e., anticommuting with the
Hamiltonian), and Sz is in the little group of �k ‖ ẑ since the
C3 symmetry is unbroken. Hence, the presence of an s-wave
pairing will play exactly the same role as discussed in our
work in splitting the Majorana zero modes and creating a
spontaneous magnetization on the surface with the normal
direction along ẑ. As shown in Fig. 2(b), by coating an s-wave
superconducting thin film on top of the triplet superconduct-
ing bulk, the unitary t ± is pairing symmetry (t for the above
mentioned A1u pairing) is energetically favored close to the
interface between the s-wave film and the triplet pairing bulk
due to the proximity effect. The phase difference between the
singlet and triplet pairing components (i.e., t + is or t − is)
can be conveniently controlled by external magnetic fields,
and there exists a chiral Majorana fermion propagating along
the domain wall separating the t + is and the t − is regions on
the interface.

In summary, we have proposed that both the localized
Majorana zero-energy states and the dispersive chiral ones
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can be realized via the kink on boundary method. The
boundaries of p ± is superconductors are spontaneously mag-
netized, with opposite directions of magnetizations for the
p + is and p − is pairings, as a manifestation of the mag-
netoelectric effect. Along the 1D domain wall between the
p ± is domains on the surface, there exists a chiral Ma-

jorana mode propagating unidirectionally, which can be
controlled by magnetic fields. Our discussions are rele-
vant to superconducting materials with competing singlet
and triplet pairing orders and proximity-effect-induced su-
perconductivities with a mixed singlet and triplet pairing
symmetry.
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