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Multiflavor Mott insulators in quantum materials and
ultracold atoms
Gang V. Chen 1,2,3✉ and Congjun Wu4,5,6,7✉

Mott insulators with large and active (or multiflavor) local Hilbert spaces widely occur in quantum materials and ultracold atomic
systems, and are dubbed “multiflavor Mott insulators”. For these multiflavor Mott insulators, the spin-only description with the
quadratic spin interactions is often insufficient to capture the major physical processes. In the situation with active orbitals, the
Kugel-Khomskii superexchange model was then proposed. We briefly review this historical model and discuss the modern
developments beyond the original spin-orbital context. These include and are not restricted to the 4d/5d transition metal
compounds with the spin-orbit-entangled J= 3/2 quadruplets, the rare-earth magnets with two weakly-separated crystal field
doublets, breathing magnets and/or the cluster and molecular magnets, et al. We explain the microscopic origin of the emergent
Kugel-Khomskii physics in each realization with some emphasis on the J= 3/2 quadruplets, and refer the candidate multiflavor
Mott insulators as “J= 3/2 Mott insulators”. For the ultracold atoms, we review the multiflavor Mott insulator realization with the
ultracold alkaline and alkaline-earth atoms on the optical lattices. Despite a large local Hilbert space from the atomic hyperfine spin
states, the system could naturally realize a large symmetry group such as the Sp(N) and SU(N) symmetries. These ultracold atomic
systems lie in the large-N regime of these symmetry groups and are characterized by strong quantum fluctuations. The Kugel-
Khomskii physics and the exotic quantum ground states with the “baryon-like” physics can appear in various limits. We conclude
with our vision and outlook on this subject.
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INTRODUCTION
There are many different ways to classify and view the physics
related to correlated quantum many-body systems1. One classi-
fication scheme may be insufficient and thus misses other
complementary views, while different views could raise different
types of physical questions and point to new directions of our
field. Here we sketch some popular schemes and views in the
field. One could classify the quantum many-body systems from
the relevant and emergent phases and phase transitions.
Alternatively, one could summarize various physical phenomena
and classify the qualitative behaviors that may or may not be
unique to particular phases, but these efforts can be quite useful
experimentally and practically. One can further identify the
internal structures of the underlying systems such as the intrinsic
topological structures2 or emergent symmetries and the related
experimental signatures. One may also discuss various universal
properties pertinent to certain phases or focus on the physical
realization of these phases in quantum materials with the relevant
physical degrees of freedom. The last view may necessarily involve
a significant amount of specific physics and specific features of the
degrees of freedom and the underlying quantum materials3–5. The
universal parts of the physics, however, are inevitably entangled
with the specific physics and manifest themselves in terms of the
specific degrees of freedom. The balance between universality
and specifics may be strongly constrained by the specific materials
instead of being determined by the more subjective purposes.
Therefore, one could further classify the correlated many-body

systems according to the relevant physical degrees of freedom
and their interactions.
With the above thoughts, we turn to the multiflavor Mott

insulators. As we have described in the abstract, these multiflavor
Mott systems carry a large and active local Hilbert spaces with
multiple flavors local states6. One traditional example of such
multiflavor Mott insulating systems is the one involving both
active spin and orbital degrees of freedom where the spin and
orbital states play the role of flavors and the Kugel-Khomskii spin-
orbital superexchange model was proposed by Kliment Kugel and
Daniel Khomskii7. The advance that Kugel and Khomskii made
beyond the Anderson’s mechanism8 of the superexchange spin
interaction was to include the orbitals and treat them on the equal
footing as the spin. Because of the complicated expression and
the orbital involvement, the Kugel-Khomskii model did not receive
a significant attention over the past few decades. Nevertheless,
the Kugel-Khomskii physics is realistic and relevant for many
physical systems3,4,9–12. In the recent years, the orbital degrees of
freedom and the orbital related physics are getting more
attention. This is due to many factors, such as the rising of
topological materials13–16 (that often require the spin-orbit
coupling to generate the topological bands), the spin-orbit-
coupled correlated materials where the spin-orbit coupling is the
key ingredient17, the experimental progress including the
resonant X-ray scattering measurement that allows the experi-
mental detection of the orbital structures and excitations18,19, and
so on. Therefore, it is timing to revisit the Kugel-Khomskii physics.
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Part of this review aims to suggest the broad applicability of the
Kugel-Khomskii model in the multiflavor Mott insulating quantum
materials beyond the original spin-orbital disentangled context. By
“disentangled”, the spins and the orbitals are independent local
variables. The new territory for the Kugel-Khomskii physics is
proposed to be the multiflavor Mott insulators. This includes, but
is not restricted to, the breathing materials and/or cluster and
molecular magnets, the rare-earth magnets with weak crystal
fields, the spin-orbital-entangled J= 3/2 local moments of
transition metal compounds, etc. We will explain the realization
of the multiflavor local Hilbert space in these Mott insulating
systems. Beyond the quantum materials’ context, the ultracold
atom systems, such as the alkaline atoms and the alkaline-earth
atoms on the optical lattices, could serve as candidate systems to
realize the Kugel-Khomskii physics together with their own merits
with the exact high symmetry groups that are more proximate to
the color-like degree of freedom in particle physics and will be
discussed in the second half of the review.
The observation is that, despite the proposed multiflavor Mott

insulators do not explicitly contain the orbitals as the original
Kugel-Khomskii context, there exist emergent orbital-like degrees
of freedom that play the role of the orbitals. For the breathing
magnets and/or cluster Mott systems20–31, it is the degenerate
ground states of the local clusters that function as the effective
orbitals. The effective Kugel-Khomskii physics appears when one
considers the residual interactions between the degenerate
ground states of the local clusters. These interactions lift the
remaining degeneracy and create the many-body ground states. It
is worthwhile to mention that, many of the correlated miore
systems are actually in the cluster Mott insulating regime32,33. For
certain rare-earth magnets34–39, although the orbitals are present
implicitly, they are strongly entangled with the spin, and then
what is meaningful is the local “J” moment. For this case, it is the
degenerate energy levels that can be treated as effective orbital
degrees of freedom. For the transition metal compounds with the
J= 3/2 local moments that are dubbed “J= 3/2 Mott insula-
tors”28,40–45, one can group the four local states into two fictitious
orbitals with one spin-1/2 moment and then naturally describe the
interaction as the Kugel-Khomskii model. We carefully derive the
superexchange model in terms of the effective spin and orbitals
and express the model in the form of the Kugel-Khomskii
interaction. The correspondence between the microscopic multi-
polar moments in the J= 3/2 language and the effective spin-
orbital language is established. This correspondence may be
useful for the mutual feedback between the understanding from
different languages and views. This J= 3/2 local moments and the
effective Kugel-Khomskii physics can be broadly applied to many
4d/5d Mott systems such as the Mo-base, Re-based, Os-based
double perovskites40, and can even be relevant to certain 3d
transition metal compounds such as vanadates with the V4+

ions3,10,46. We further discuss the physical consequences from
these effective Kugel-Khomskii description for the multiflavor Mott
insulators.
We devote the second half of the review to the ultracold atom

system. The ultracold atom system has become a new frontier of
condensed matter physics and provides new opportunities and
platforms for exploring the emergent correlation physics. The
Kugel-Khomskii physics turns out to be particularly relevant for
many alkali and alkaline-earth atoms that possess large hyperfine
spins and thus a large local Hilbert space47–49. Like the multiflavor
Mott insulating quantum materials in the previous paragraphs, the
physical picture of these large hyperfine spins is very different
from that of traditional magnets with large spins. Thus, we can
discuss some of the common features shared by the multiflavor
Mott insulating quantum materials and the ultracold alkali and
alkaline-earth atomic Mott insulators. Here, the traditional
magnets refer to the conventional 3d transition metal compounds
without quenched orbitals3 and are used to distinguish from the

multiflavor Mott insulating quantum materials. In these traditional
magnets, large spins arise from the Hund’s coupling, and the spins
of the localized electrons on the same lattice site are aligned to
form a large spin. The leading order contribution to the couplings
between different sites is the Anderson’s superexchange of a
single pair of electrons, such that the fluctuation with respect of
an ordered moment would be just ± 1. This is the physical origin of
the 1/S-effect, in other words, as S is enlarged, the system evolves
towards the classical direction. In many alkali and alkaline-earth
atom systems, however, the situation is quite different. The energy
scale is far below the atomic ionization energy, and exchanging a
pair of fermions can completely shuffle the spin configuration
among the 2S+ 1 spin states. The spin states are much more
delocalized in their Hilbert space. Thus, a large spin here behaves
more like a large number of flavors or colors, which strongly
enhances the quantum fluctuations. Since these ultracold alkali
and alkaline-earth atoms naturally support high symmetries
beyond the SU(2) for the traditional magnets, it is more
appropriate to adopt the perspective of high symmetries (e.g.,
SU(N) and Sp(N) with N= 2S+ 1) with the color-like degrees of
freedom for these atomic states47,48,50–54. Such high symmetries
often require some fine-tuning for the multiflavor Mott insulating
quantum materials except the more recent twisted multilayer
graphenes and transition metal dichalcogenide heterostructures.
Nevertheless, based on the spirit of Kugel-Khomskii physics,
exchanging a pair of electrons for example in the “J= 3/2 Mott
insulator” is also understood to be able to shuffle the effective
spin and orbital states and make the system more delocalized in
the Hilbert space with an enhanced quantum fluctuations40.
This new perspective from these ultracold atom systems

provides an opportunity to explore the many-body physics closely
related to the Kugel-Khomskii-like physics for N= 4, and some
aspects with high symmetries may even be connected to the
high-energy physics. As an early progress, an exact and generic
symmetry of Sp(4), or, isomorphically SO(5), was proved for the
spin-3/2 alkali fermion systems47,48. Under the fine-tuning, the
Sp(4) symmetry can be augmented to SU(4). Later, the SU(N)
symmetry has also been widely investigated in the alkaline-earth
fermion systems due to the vanishing electron spins and the sole
nuclear spin contribution49,55,56. For instance, the alkaline-earth-
like atom 173Yb with the spin S= 5/254 has 6 components and
thus SU(6) symmetry, and the 87Sr atom with S= 9/253 has 10 spin
components and thus SU(10) symmetry, respectively. Thus, we will
review the properties of quantum magnetism with the ultracold
atoms possessing the Sp(N) and SU(N) symmetries with N= 4.
These are the ultracold-atom versions of the Kugel-Khomskii
physics. They are characterized by various competing orders due
to the strong quantum fluctuations. As an exotic example, they
can exhibit the “baryon-like” physics. In an SU(4) quantum
magnet, quantum spin fluctuations are dominated by the multi-
site correlations, whose physics is beyond the two-site one of the
SU(2) magnets as often studied in the condensed matter systems.
It is exciting that in spite of the huge difference of the energy
scales, the large-spin cold fermions can also exhibit similar physics
to quantum chromodynamics (QCD).
The remaining parts of this review are organized as follows. We

first start with a brief introduction of the traditional Kugel-
Khomskii superexchange model in the multiflavored Mott insulat-
ing systems with active orbitals. We then turn the attention to
explain various modern quantum materials’ realizations of the
emergent Kugel-Khomskii physics and the status of the effective
orbitals. After these examples, we focus the attention on the
“J= 3/2 Mott insulators” and establish the emergent Kugel-
Khomskii model. We then review the ultracold atoms on the
optical lattices and discuss the high-symmetry models in the
multiflavor Mott regimes and the emergent physics with the
alkaline and alkaline earth atoms. Finally, we summarize this
review.
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Traditional Kugel-Khomskii exchange model
As we have remarked in the Introduction, a conventional and
representative example of the multiflavor Mott insulators with a
large and active local Hilbert space is the one involving active
orbital degrees of freedom where the spin and orbital states play
the role of the multiflavored local Hilbert space. Thus, we start the
review with these spin-orbital-based Mott insulators and their
superexchange interactions.
The Anderson superexchange interaction for the spin degrees

of freedom in the Mott insulators is widely accepted as the
major mechanism for the antiferromagnetism8. Anderson’s
treatment was perturbative. The virtual exchange of the
localized electrons from the neighboring sites through the
high-order perturbation processes generates a Heisenberg
interaction between the local spin moments. Anderson’s original
work was based on a single-band Hubbard model where only
one orbital related band is involved, and Anderson’s treatment
could be well adjusted to include the orbitals from the
intermediate anions. Insights from these calculations were
summarized as the empirical Goodenough-Kanamori-Anderson
(GKA) rules57,58.
For the Hubbard model with multiple orbitals at the magnetic

ions, the orbital necessarily becomes an active degree of
freedom in addition to the spin once the system is in the Mott
insulating phase with localized electrons on the lattice sites7. In
this case, more structures are involved in the local moment
formation that generates a large local Hilbert space with both
spins and orbitals in the Mott regime, and the original
Anderson’s spin exchange model cannot be directly applied to
the multiflavor Mott insulators with the spin and orbitals here.
With more active degrees of freedom in the large local physical
Hilbert space, the GKA rules can no longer provide the nature
and the magnitude of the exchange interactions, even the signs
of the exchange interactions cannot be determined. These
exchange interactions sensitively depend on the orbital config-
urations on each lattice site. Moreover, as the orbital is an active
and dynamical degree of freedom here, the orbitals are
intimately involved in the superexchange processes. Thus, in
addition to the exchange of the spin quantum numbers, the
perturbative superexchange processes in these multiflavor Mott
insulators are able to exchange the orbital quantum numbers. In
reality, both the spin and the orbital quantum numbers can be
exchanged separately or simultaneously. Taking together, the
full exchange Hamiltonian would involve pure spin exchange,
pure orbital exchange, and the mixed spin-orbital exchange7.
This spin-orbital exchange model is nowadays referred as
“Kugel-Khomskii model”.
Closely following Kugel and Khomskii7, we present an

illustrative derivation of the Kugel-Khomskii spin-orbital exchange
model from a two-orbital Hubbard model. The Hubbard model is
given7,59,

H ¼
P
hiji

tαβij a
y
iασajβσ þ U

2

P
i
niασniβσ0 ð1� δαβδσσ0 Þ

� 1
2

P
i;α≠β

JHðayiασaiασ0a
y
iβσ0aiβσ þ ayiασaiβσa

y
iασ0aiβσ0 Þ;

(1)

where α, β= 1, 2 label the two orbitals, σ; σ0 label the spin
quantum number, and the final term takes care of the inter-
orbital pair hopping and the Hund’s coupling (JH). The orbital
degeneracy is assumed, and an isotropic and diagonal hopping
t11 = t22 = t, t12= 0 is further assumed. In reality, the isotropic
and diagonal hoppings are not guaranteed, and the orbital
degeneracy is not quite necessary. A standard perturbation
treatment yields the conventional Kugel-Khomskii model with

HKK ¼
X
hiji

J1 Si � Sj þ J2 τi � τj þ 4J3 ðSi � SjÞ ðτi � τjÞ; (2)

where we have the relations between the electron billinear
operators and the spin-orbital operators,X
σ

ayi;1;σai;1;σ ¼ 1
2
þ τzi ; (3)

X
σ

ayi;2;σai;2;σ ¼ 1
2
� τzi ; (4)

X
σ

ayi;1;σai;2;σ ¼ τþi ; (5)

X
σ

ayi;2;σai;1;σ ¼ τ�i ; (6)

andX
α

ayi;α;"ai;α;" ¼
1
2
þ Szi ; (7)

X
α

ayi;α;#ai;α;# ¼
1
2
� Szi ; (8)

X
α

ayi;α;"ai;α;# ¼ Sþi ; (9)

X
α

ayi;α;#ai;α;" ¼ S�i ; (10)

and the exchange couplings are given as

J1 ¼
2t2

U
1�

JH
U

� �
; (11)

J2 ¼ J3 ¼
2t2

U
1þ

JH
U

� �
: (12)

Here Si and τi refer to the electron spin and the orbital pseudospin,
respectively. In particular, when τz= 1/2 (−1/2), the orbital 1 (2) is
occupied. Because the spin and orbitals are disentangled, the spin
sector retains the SU(2) rotational symmetry. The orbital SU(2)
symmetry in Eq. (2) is accidental and is due to the special choice of
the hopping parameters. Via a fune-tuning of the hoppings and
the interactions, the Kugel-Khomskii model could have a larger
symmetry such as SU(4)60, and the limit with a higher symmetry
may provide a new solvability of this complicated but
realistic model.
In the above derivation of the Kugel-Khomskii model, the orbital

degeneracy is not actually required. As long as the crystal field
splitting between the orbitals is small or comparable to the
exchange energy scale, one needs to seriously include the orbitals
into the description of the correlation physics for the local
moments in the Mott regime. This would clear up the unnecessary
constraint of the Kugel-Khomskii physics for the Mott systems to
have an explicit orbital degeneracy. A perfect orbital degeneracy
requires a high crystal field symmetry and is not quite common.
The clearance of this constraint would already expand the
applicability of the Kugel-Khomskii physics in the transitional
metal compounds.
From the above example, one could readily extract some of the

essential properties for the Kugel-Khomskii model and the related
physics for the multiflavor Mott insulators with active spins and
orbitals. As the orbitals have the spatial orientations in the real
space, the electron hopping between the orbitals from the
neighboring sites depends strongly on the bond orientation and
the orbital configurations. The resulting Kugel-Khomskii model is
anisotropic in the orbital sector, and the exchange interaction
depends on the bond orientations7. Because the spin and the
orbital are disentangled in the parent Hubbard model and the
spin-orbit coupling is not considered, the spin interaction in the
spin sector, however, remains isotropic in the Kugel-Khomskii
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model and is described by the conventional Heisenberg interac-
tion. For the relevant transition metal compounds, the common
orbital degrees of freedom can be eg and t2g orbitals. In the case of
the eg orbitals, an effective pseudospin-1/2 operator is often used
to label the orbital state7, and this corresponds to the situation in
the above example. For the t2g orbitals, a pseudospin-1 operator is
used to operate on the three t2g orbitals61,62, and the correspond-
ing Kugel-Khomskii model is much more involved than the eg
case. The local physical Hilbert space is significantly enlarged by
the spin and orbital states. The Kugel-Khomskii model operates
quite effectively in this enlarged local Hilbert space. As it was
mentioned more generally in the Introduction, this operation is
quite different from the spin-only Mott insulators with a large-S
local spin moment where the orbital degree of freedom is
quenched. Although the physical Hilbert space is enlarged with a
large-S local spin moment, the simple Heisenberg spin model
merely changes the spin quantum number by 1 with one
operation. In contrast, the Kugel-Khomskii spin-orbital model is
more effectively in delocalizing the spin-orbital states in the
enlarged physical Hilbert space and thus enhances the quantum
fluctuations. The fluctuation-driven orders and/or exotic quantum
states can be stabilized in this fashion5,12,63.

Modern quantum material realization of emergent Kugel-
Khomskii physics
In the previous part, we have demonstrated that the traditional
Kugel-Khomskii model can be derived from an extended Hubbard
model with multiple orbitals for the multiflavor Mott insulators.
The orbital degeneracy is often assumed in the literature but not
necessarily required. If the orbital separation is of the similar
energy scale as the superexchange energy scale, then one should
carefully include these orbitals into the modeling. Depending on
the electron filling, the spin moment can be spin-1/2 and spin-1,
and the pseudospin for the orbital sector can be pseudospin-1/2
(for eg degeneracy, or two-fold t2g degeneracy) and pseudospin-1
moment (for three-fold t2g degeneracy). The spin and orbitals are
disentangled in this model.
A well-known example would be the Fe-based superconduc-

tors64–66. Although the parent materials behave mostly like a bad
metal and are thus modeled by an extended Hubbard model with
multiple electron orbitals, many important physics such as the
magnetic excitations and spectra may be better understood from
the local moment picture. This was used to interpret the magnetic
excitations in FeSe that is believed to be the most “Mott”-like Fe-
based superconducting system67,68. The active orbital degree of
freedom in FeSe, however, has not been included into the analysis
of the magnetic properties and the excitations69. Thus, FeSe can
be a good application of the original Kugel-Khomskii model for
the understanding of the magnetism, the orbital physics and the
nematicity70–72.
While the Kugel-Khomskii model is proposed for the multiflavor

Mott insulators with the disentangled spin and orbitals, we explain
its broad application to other systems below, where the Kugel-
Khomskii physics emerges from the multiflavor Hilbert space with
effective orbitals and thus differs from the traditional Kugel-
Khomskii model.

Breathing magnets and cluster magnets. Breathing magnets (and
cluster magnets) represent a new family of magnetic materials
whose building blocks are not the magnetic ions, and can find
their applications in many organic magnets73,74 and even
inorganic compounds75. Instead, the systems consist of the
magnetic cluster units as the building blocks, and these magnetic
cluster units provide the elementary and local degrees of freedom
for the magnetism. To understand the physics of these systems,
one ought to first understand the local physics on the cluster unit
and find the relevant low-energy states. From the perspective of

the multiflavor Mott insulators, the local states of the magnetic
cluster unit contribute to the multiple flavors of states in the local
Hilbert space. The many-body model for the system should be
constructed from these relevant local low-energy states. To
illustrate the point above, we notice that the early spin liquid
candidate κ-(ET)2Cu2(CN)3 can actually be placed into the category
of the cluster magnets76. In κ-(ET)2Cu2(CN)3, each (ET)2 molecular
dimer hosts odd number of electrons. As the molecular dimers
form a triangular lattice, it was proposed that this model realizes
the triangular lattice Hubbard model at the half filling. The basis of
the Hamiltonian is the Wannier functions associated with the
antibonding states of the highest occupied molecular orbitals on
each (ET)2 dimer77. More generally, the local energy levels of the
magnetic clusters should be understood or classified from the
irreducible representation of the local symmetry group, and the
effective orbital degrees of the freedom on the cluster is then
interpreted as the local basis of the irreducible representa-
tion20,21,28.
To deliver the idea of the effective orbital degree of freedom,

we start from the breathing kagomé lattice (see Fig. 1), and
assume the simple Heisenberg interactions with alternating
couplings,

H ¼ J
X
hiji24

Si � Sj þ J0
X
hiji25

Si � Sj; (13)

where “△” ("▽”) refers to the up (down) triangles. The word
“breathing” refers to the fact that the “△” triangles are of different
size from the “▽” triangles and was first used in the context of the
breathing pyrochlore magnets78. In the strong breathing limit with
J � J0, one should first consider the local states on the up
triangles and couple these local states together through the
J0-links on the down triangles. On each up triangles, there are
three spin-1/2 local moments. With the antiferromagnetic inter-
actions, the ground states have four fold degeneracies. This can be
understood simply from the spin multiplication relation with

1
2
� 1
2
� 1
2
¼ 1

2
� 1
2
� 3
2
; (14)

where the left hand side refers to the three spin local moments on
the up triangle and the right hand side refers to the spin quantum
number of the total spin of the up triangular cluster. The total spin,
Stot= 3/2, is only favored if the interaction is ferromagnetic. The
antiferromagnetic spin interaction favors a total spin Stot= 1/2,

Fig. 1 The breathing kagomé lattice and the spin singlet
configurations. a The breathing kagomé lattice structure with an
alternating exchange coupling on the triangular cluster. b The three
configurations of the spin singlet occupation on the triangular
cluster. The (blue) dimer refers to the spin singlet of two spins, and
the uncovered site is the dangling spin moment. Two of the three
configurations are linearly independent. There are totally four
ground states of the triangular cluster after including the two fold
degeneracy of the dangling spin.
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that is realized by forming a spin singlet between two spins and
leaving the remaining spin as a dangling spin (see Fig. 1). This
would naively lead to three singlet occupation configurations. It
turns out that only two of them are linearly independent.
Counting the spin-up and spin-down degeneracy of the dangling
spin, there are in total four fold ground state degeneracies on
each up triangular cluster. To make connection with the Kugel-
Khomskii physics, one can simply regard the total spin of the up-
triangle cluster as the effective spin, and regard the two-fold
degeneracy of the spin singlet configuration as the effective
orbital. The later has the spirit of an orbital as both are even under
time reversal. The effective spin-orbital states on the up-triangle
cluster are listed as follows,

sz ¼"; τz ¼"j i ¼ 1ffiffi
3

p #1"2"3j i þ ei
2π
3 "1#2"3j i þ e�i2π3 "1"2#3j i

h i
;

sz ¼"; τz ¼#j i ¼ 1ffiffi
3

p #1"2"3j i þ e�i2π3 "1#2"3j i þ ei
2π
3 "1"2#3j i

h i
;

sz ¼#; τz ¼"j i ¼ 1ffiffi
3

p "1#2#3j i þ e�i2π3 #1"2#3j i þ ei
2π
3 #1#2"3j i

h i
;

sz ¼#; τz ¼#j i ¼ 1ffiffi
3

p #1"2"3j i þ e�i2π3 "1#2"3j i þ ei
2π
3 "1"2#3j i

h i
:

The above four states define the four flavors of the local states for
the local triangular unit if one views the system as the multiflavor
Mott insulator with the up-triangle cluster as the effective lattice
site. One then includes the J0 interaction between the up-
triangular clusters, and the resulting model is a Kugel-Khomskii
model that is of the following form79,

lKK ¼ 4J0
9

P
hrr0 i

ðsr � sr0 Þ 1
2 � ðαrr0τ�r þ α�rr0τ

þ
r Þ

� �
´ 1

2 � ðβrr0τ�r0 þ β�rr0τ
þ
r0 Þ

� �
;

(15)

where r refers to the center of the up-triangular cluster, and sr
defines the total spin on the up-triangular cluster at r. The
parameters αrr0 and βrr0 are the bond-dependent phase factors
that are consistent with the orbital-like nature of the pseudospin τ.
It is found that79, the factor αrr0 equals to 1, ei4π/3, or ei2π/3 when
the J0-coupled bond connects two neighboring up-triangles at r
and r0 from the spin 1, 2, 3 on the r triangle, respectively. Similarly,
the factor βrr0 equals to 1, ei4π/3, or ei2π/3 when the J0-coupled bond
connects two neighboring up-triangles at r and r0 to the spin
1, 2, 3 on the r0 triangle, respectively. Since the centers of the up-
triangular clusters form a triangular lattice, the emergent Kugel-
Khomskii model is then defined on the triangular lattice.
Apart from the breathing kagomé magnet here, the breathing

pyrochlore magnet can also be understood in a similar fashion. A
recent interest of the breathing pyrochlore magnet is
Ba3Yb2Zn5O11 that is in the strong breathing limit. Due to the
strong spin-orbit coupling of the Yb 4f electrons, the local
Hamiltonian on the smaller tetrahedron is not a simple Heisenberg
model. Nevertheless, the understanding from the irreducible
representation of the tetrahedral group should still be applicable
and has already been applied to the experiments31. The similar
breathing structure occurs in the lacunar spinels80,81 where many
distinct and interesting properties emerge from the clusterization
of electrons and the effective J-moments on the tetrahedra.

Rare-earth magnets with weak crystal field. It is a bit hard to
imagine that the rare-earth magnets are described by the Kugel-
Khomskii model. Usually, the rare-earth local moments are
described by some effective spin-1/2 degrees of freedom, and
this two-fold degeneracy is protected by time reversal symmetry
and Kramers theorem for the Kramers doublet, and by the point
group symmetry for the non-Kramers doublet. For the rare-earth
local moments, the orbital degrees of freedom have already been
considered from the atomic spin-orbit coupling that entangles the
atomic spin with the orbitals and leads to total moment “J”. The
effective spin-1/2 doublet arises from the crystal field ground state

levels of the total moment J. The low-energy magnetic physics is
often understood from the interaction between the effective spin-
1/2 local moments. This paradigm works rather well for the
pyrochlore rare-earth magnets and the triangular lattice rare-earth
magnets82–86. The reason for the success of the paradigm is due to
the large crystal field gap between the ground state doublet and
the excited ones in the relevant materials. If this precondition
breaks down, then we need to think about other resolution.
For the Tb3+ ion in Tb2Ti2O7 and Tb2Sn2O7

34–38,87–89, it is known
that the crystal field energy gap between the ground state
doublet and the first excited doublet is not very large compared to
the Curie-Weiss temperatures in these systems (see Fig. 2). Thus
the ground state doublet description is insufficient to capture the
low temperature magnetic properties. This regime is quoted as
“weak crystal field magnetism” in ref. 39. Both the ground state
doublet and the first excited doublet in the left energy diagram of
Fig. 2 should be included into the microscopic model, and these
low-energy doublets contribute to the multiple flavors of local
Hilbert space in this rare-earth version of the multiflavor Mott
insulator. To think along the line of the Kugel-Khomskii physics,
we assign the energy levels with the effective spin and the
effective orbital configurations according to Fig. 2. Here the two
effective orbitals are separated by a crystal field energy gap. The
exchange interaction between the local moments would be of the
Kugel-Khomskii-like. We expect other rare-earth magnets beyond
Tb2Ti2O7 and Tb2Sn2O7 could share a similar physics from the
perspective of Kugel-Khomskii and the multiflavor Mott insulators.

J= 3/2 Mott insulator. What is “J= 3/2 Mott insulator”? To
present this notion, we begin with the notion of “J= 1/2 Mott
insulator” that seems to be quite popular in recent years62,90–92.
The J= 1/2 Mott insulator was proposed to be relevant to various
iridates, α-RuCl393, and even the Co-based 3d transition metal
compounds94–98. This can be understood from the Ir4+ ion under
the octahedral crystal field environment62,91. The t2g and eg levels
for single electron states are splited by a large crystal field gap.
When the spin-orbit coupling (SOC) is switched on, the t2g orbital
is entangled with the spin degree of freedom, leading to an upper
J= 1/2 doublet and a lower J= 3/2 quadruplet (see Fig. 3). The
Ir4+ ion has a 5d5 electronic configuration such that the lower
quadruplet is fully filled and the upper doublet is half-filled. In the
Mott insulating phase, the local moment is simply described by
the spin-orbit-entangled J= 1/2 doublet. The candidate materials
are often referred as “J= 1/2 Mott insulators”. As the orbital is
implicitly involved into the moment, the exchange interaction
inherits the orbital character and depends on the bond
orientations and the components of the moments. Thus, the
exchange interaction is usually not of Heisenberg like. A
consequence of this anisotropic interaction is the Kitaev interac-
tion that was popular and led to the development of the field of
Kitaev materials. The major advantage of “J= 1/2 Mott insulators”

Fig. 2 The assignment of the effective spin and orbital to the local
crystal field states of rare-earth moments. This applies to the Tb3+

ion in Tb2Ti2O7, Tb2Sn2O7 and others. The left depicts the crystal
field energy levels of the Tb3+ ion, and the right assigns the effective
spin and orbital states.
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on the model side is to provide extra interactions beyond the
simple Heisenberg interaction, and these extra interactions could
provide more opportunities to realize interesting quantum phases
and orders. While it may be fashionable to name these extra
interactions as Kitaev interactions and/or others, we stick to the
old convention by Moriya so that the comparison can be a bit
more insightful. The exchange interaction for the spin-1/2
operators is always pairwise and quadratic. According to
Moriya3,99, these interactions are classified as (symmetric) Heisen-
berg interaction, (antisymmetric) Dzyaloshinskii-Moriya interac-
tion, and (symmetric) pseudo-dipole interaction.
The “J= 3/2 Mott insulator” is realized when one single

electron is or three electrons are placed on the lower t2g
quadruplet and the system becomes Mott insulating28,40–45 as
well as the lacunar spinels in the cluster localization limit80.
Despite the popularity of the “J= 1/2 Mott insulators”, the
“J= 3/2 Mott insulators” did not receive much attention. We do
not have any bias towards either of them, and simply address
and explain what the nature could provide to us. What are the
new features of the “J= 3/2 Mott insulators” from the model
side? First of all, J= 3/2 local moments provide a larger local
Hilbert space with more flavors of local states than J= 1/2 and
allow more possibilities for interesting and unusual quantum
phases and orders, thereby making the “J= 3/2 Mott insulator”
an perfect example of the multiflavor Mott insulator. It was
conventionally believed that large spin local moments like the
spin 3/2 tend to behave more classically. This conventional
belief, however, does not really apply to J= 3/2 Mott insulators.
More specifically, this would come to our second point below.
The conventional Heisenberg model does not generate strong
quantum fluctuations as it only changes the spin quantum
number by ± 1, and thus the large spin magnets with a simple
Heisenberg model usually behave rather classically. For the
J= 3/2 Mott insulators, more operators beyond Jx, Jy, Jz are
generated in the superexchange processes and interactions due
to the inclusion of the orbital degrees of freedom in the J= 3/2
local moments via the SOC. These operators are actually
generators of the SU(4) group that are “4 × 4” Γ matrices. These
Γ matrix operators allow the system to fluctuate more
effectively between different spin states and generate stronger
quantum fluctuations. This point is similar to the one that has
been invoked more generally in the introduction part. Thirdly,
similar to the “J= 1/2 Mott insulators”, the exchange interaction
of the “J= 3/2 Mott insulators” is highly anisotropic and
depends on the bond orientation.
Finally, we make a remark that the Γ matrix model for the

“J= 3/2 Mott insulators” can be regarded as a parent model for
various anisotropic models for the effective spin-1/2 local
moments. This is understood by introducing the single-ion
anisotropic term and reducing the Γ matrix model into the low-
energy manifold favored by the single-ion spin term. This
process may be made an analogy with the models for the free-
electron band structure topology. The Luttinger model100–107,
that uses the Γ matrices for the k. p theory and gives rise to the
Luttinger semimetal with a quadratic band touching in three

dimensions, can be regarded as a parent model for generating
other models for three-dimensional (3D) topological insulators
and 3D Weyl semimetal upon introducing strains and magnet-
ism.
In the next part, we will focus on the J= 3/2 Mott insulator on

the triangular lattice structure and explicitly derive the Kugel-
Khomskii model for this multiflavor Mott insulator.

Kugel-Khomskii model in J= 3/2 Mott insulator. Even though the
J= 3/2 Mott insulator widely exists in many materials, we here
consider a J= 3/2 Mott insulator in the triangular lattice for the
specific demonstration purpose. It is relevant for the [111] interface
of the transition metal oxide heterostructure. As we have explained
in the previous part, the requirement for the magnetic ions is to
have a 4d1 or 5d1 electron configuration in an octahedral
environment where the SOC is active. To build up a physical
model for this triangular lattice J= 3/2 Mott insulator, we first
specify the degree of freedom. Before including the effect of the
SOC, the local moment is described by a localized spin-1/2 electron
on the three-fold degenerate t2g orbitals at each magnetic ion site.
The interaction between the local moments is understood as a
standard Kugel-Khomskii superexchange model for the t2g systems.
Including the atomic SOC, we express the full model as

H ¼ HKK þ HSOC; (16)

where the first term describes the standard Kugel-Khomskii
superexchange interaction, and the second term is the on-site
atomic SOC. For the z bond in Fig. 4(a), the superexchange
interaction has the following form,

Hz
KK ¼

X
hiji

J Si;xy � Sj;xy þ
1
4
ni;xynj;xy

� �
; (17)

where Si,xy defines the electron spin on the xy orbital with
Si,xy= Si ni,xy, and ni,xy defines the electron occupation number on
the xy orbital. As the xy orbital gives a dominant σ-bonding for the z
bond, the superexchange interaction is primarily given by the
exchange process along this σ-bonding. The electron hoppings to
other orbitals or between other orbitals are expected to be quite
weak and are neglected here. To keep things simple, the other
Kanamori parameters such as the Hund’s coupling and the pair
hopping are further neglected as they are comparably weaker than
the Hubbard interaction. These approximations result in the primary
contribution in the above equation for our demonstration purpose.
The exchange interactions on the x and y bonds can be written down
from a simple cubic permutation. Interestingly, the Kugel-Khomskii
superexchange interaction for the disentangled spin-orbital states in
Eq. (17) is not quite related to the emergent Kugel-Khomskii physics
for the spin-orbit-entangled J= 3/2 quadruplets that is shown below.
The atomic SOC has the expression,

HSOC ¼
X
i

�λ li � Si; (18)

Fig. 4 The interfacial triangular lattice of the [111] transition
metal oxide heterostructure. a The triangular lattice with “x, y, z”
bond assignment for the nearest neighbors. b The [111] layer of the
transition metal oxide interfaces. The coordinate system defines the
coordinate system for the spin and the orbitals.

Fig. 3 The splitting of the single electron state under the spin-
orbit coupling. The left is the crystal field scheme in the octahedral
environment with the cubic symmetry. The right is the crystal field
scheme under the inclusion of the spin-orbit coupling (SOC). The
energy separation between the J= 1/2 doublet and the J= 3/2
quadruplet is set by the SOC.
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where li is the effective orbital angular momentum for the t2g
orbital with l= 1, and Si is the spin-1/2 operator for the
localized electron. As it is shown in Fig. 3, the HSOC term splits
the 6-fold spin and orbital degeneracy of the single-electron
states into the upper doublet with J= 1/2 and the lower
quadruplets with J= 3/2. To demonstrate how the Kugel-
Khomskii physics emerges in this context, we need to compare
the energy scales of SO coupling λ and the superexchange J. In
many 4d/5d systems, the atomic SOC is often of similar energy
scales as the electron bandwidth and the electron correlation.
In the Mott insulating regime, however, what is available for a
meaningful comparison is the superexchange coupling. This
coupling is usually much weaker than the atomic SOC for the
4d/5d materials. In the sense of perturbation theory, the atomic
SOC is treated as the main Hamiltonian and the superexchange
is regarded as the perturbative term. For the J= 3/2 Mott
insulator with one electron per site, the atomic SOC entangles
the orbital angular momentum l with the spin S, leading to a
J= 3/2 quadruplet for each site. The superexchange interaction
then operates on the degenerate manifold of the J= 3/2 local
moments.
Following the spirit of the degenerate perturbation theory,

we project the superexchange model on the degenerate
manifold,

Heff ¼
Y
i

X
mi

mij i mih j � HKK �
Y
j

X
mj

mj

�� �
mj
	 ��; (19)

where mi (mj) is the quantum number of the Jzi (J
z
j ) operator and

takes the values of ± 1/2, ± 3/2. As we explained in the previous
part, the effective Hamiltonian can be expressed into a
quadratic form in terms of the Γ matrices at each site. The Γ-
matrix expression, however, hides the original physical mean-
ing. In the following, we first express the effective model in the
J-basis, and then explain the emergent Kugel-Khomskii physics
by expressing it into the form of Kugel-Khomskii interaction. In
terms of the J operators, the effective model has the
expression,

Hz
eff ¼

X
hiji

J ~Si;xy � ~Sj;xy þ
1
4
~ni;xy � ~nj;xy

� �
; (20)

where we have

~S
x
i;xy ¼ P3

2
Sxi;xy P3

2
¼ Jxi

4
� Jzi J

x
i J

z
i

3
; (21)

~S
y
i;xy ¼ P3

2
Syi;xy P3

2
¼ Jyi

4
� Jzi J

y
i J

z
i

3
; (22)

~S
z
i;xy ¼ P3

2
Szi;xy P3

2
¼ 3Jzi

4
� Jzi J

z
i J

z
i

3
; (23)

~ni;xy ¼ P3
2
ni;xy P3

2
¼ 3

4
� ðJzi Þ

2

3
: (24)

Unlike the simple Heisenberg model that only involves the
linear spin operators, the effective model involves the spin
products with two or three “J” operators. These operators are high
order magnetic multipolar moments and are able to switch the
local spin state from one J state to any other states, and thus
quantum fluctuations are strongly enhanced. In terms of the “J”
operators, the effective model is rather difficult to be tackled with,
and the conventional wisdom cannot provide more physical
intuition. Instead, we turn to the perspective of the emergent
Kugel-Khomskii physics where the previous knowledge and
theoretical techniques about the Kugel-Khomskii model can be
adapted3,4,12,108–110. For this purpose, we merely need to show the
Kugel-Khomskii structure and reduce the effective model into the
standard Kugel-Khomskii form.

We first make the following mapping between the effective
spin states and the fictitious spin and orbital states,

Jzi ¼ þ 3
2

����



� szi ¼ þ 1
2
; τzi ¼ þ 1

2

����


; (25)

Jzi ¼ þ 1
2

����



� szi ¼ þ 1
2
; τzi ¼ � 1

2

����


; (26)

Jzi ¼ � 1
2

����



� szi ¼ � 1
2
; τzi ¼ � 1

2

����


; (27)

Jzi ¼ � 3
2

����



� szi ¼ � 1
2
; τzi ¼ þ 1

2

����


: (28)

To distinguish from the physical spin “S”, we use the little “s” to
label the fictitious spin, and use “τ” to label the fictitious orbital.
Although τ is labeled as the “orbital”, the transformation under the
time reversal differs from the usual orbital degree of freedom. This
is because T Jzi ¼ m

�� �
¼ i2m Jzi ¼ �m

�� �
and T does not modify the

orbital degree of freedom for the usual real orbital wavefunctions.
Here, the Jzi ¼ 3=2

�� �
and Jzi ¼ 1=2

�� �
have a different sign structure

under the time reversal operation. This is the case even if we
switch the assignment in Eq. (27) and Eq. (28). With the
assignment in the above equations, the original J related
operators can be expressed as

~S
x
i;xy ¼

1
3
sxi ð1� 2τzi Þ; (29)

~S
y
i;xy ¼

1
3
syi ð1� 2τzi Þ; (30)

~S
z
i;xy ¼

1
3
szi ð1� 2τzi Þ; (31)

~ni;xy ¼
1
3
ð1� 2τzi Þ: (32)

Collecting all the interactions, we obtain the emergent Kugel-
Khomskii model, and the interaction on the other bonds can be
generated likewise. This interaction now carries the basic features
of the conventional Kugel-Khomskii model with the following
expression,

Hz
eff ¼

X
hiji

4J
9

si � sj þ
1
4

� �
1
2
� τzi

� �
1
2
� τzj

� �
: (33)

The couplings on the remaining bonds can be obtained by the
symmetry transformation. The understanding from the Kugel-
Khomskii physics can then be applied. As the model from the
J= 3/2 Mott insulators can be regarded as the parent model for
many anisotropic spin-1/2 models, one can show that, with the
strong easy-plane single-ion anisotropy like þDðJxi þ Jyi þ Jzi Þ

2
, the

effective spin-1/2 model carries a Kitaev-like interaction in
addition to other anisotropic interactions.

Remarks for and beyond Kugel-Khomskii physics. We here give a
few remarks based on the emergent Kugel-Khomskii physics for
the multiflavor Mott insulators in quantum materials. The
identification and separation of the effective spin and orbital
degrees of freedom in these systems already indicates the distinct
physical properties of these effective degrees of freedom. For
instance, the effective spin is odd under time reversal and is
usually related to the magnetic moment, while the effective
orbital is often even under time reversal. In the case of the
ordering phenomena, the effective spin and the effective orbital
do not have to order at the same time111–113, which is already
feasible from the Ginzburg-Landau sense40. Thus, one could have
separate ordering transitions with different transition tempera-
tures for the effective spin and orbital, respectively.
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Due to the discrete lattice symmetry, the orbital ordering is
often associated with the change of the crystal structure, leading
to the lattice distortion and the phonon anomaly112,113. This can
be a useful experimental diagnosis of the effective orbital
ordering. Like the traditional Kugel-Khomskii physics, the orbital
order would reconstruct the spin model, the orientations of the
orbital ordering then give rise to the spatially-anisotropic spin
models that are often quite rare for the conventional mag-
nets114–116. For example, the quasi-one-dimensional Heisenberg
chain physics in KCuF3 was expected to arise from the orbital
order that enhances the spin coupling along one lattice
direction114. Such dimensional reduction is particularly useful to
link the low-dimensional physics with the high-dimensional
models and systems. The one-dimensional spin-1 Haldane-chain
physics (and the symmetry protected topological order) was
invoked for FeSe upon nematic or orbital ordering69 and certain
spin-1 honeycomb lattice Kugel-Khomskii model117.
Even in the ordered phases, the elementary excitations for these

multiflavor Mott insulators are fundamentally different from the
conventional magnets in the large-S limit. The latter is the simple
spin-wave excitation. In contrast, the former is characterized by
many branches of spin-wave-like excitations. For the conventional
magnets with the large-S moment, the simple quadratic spin
interaction merely creates the magnon excitation with the ±1
change of the spin quantum number and thus supports one spin-
wave branch for each magnetic sublattice. In the multiflavor Mott
insulators, the effective model could excite the system from the
ordered flavor of state to all other flavor of states if the system is
simply ordered to one flavor of state40. For the emergent Kugel-
Khomskii model with the spin-1/2 and the pseudospin-1/2
moments, there would be three branches of spin-wave-like
excitations for each sublattice60. These excitations are sometimes
referred as the flavor-wave excitations.
It was previously argued that, the more exotic quantum states

could be stabilized by the enhanced quantum fluctuations due to
the enlarged local Hilbert space and the involved multiflavor
interactions for the multiflavor Mott insulators. It has been shown
that, the flavor ordered stripe state118, the valence bond
crystal119–121, Dirac spin liquid45,122, spinon Fermi surface state123

and chiral spin liquids56,119,120,122,124 could be stabilized by the
enhanced quantum fluctuations and the large symmetry group like
SU(N). The candidate systems are Ba3CuSb2O9

125–127, the J= 3/2
Mott insulators like ZrCl345,128, the double moiré layers with
transition metal dichalcogenides or graphenes, as well as the
ultracold atom contexts with the more exact symmetries that will
be discussed later. The double moiré layers with transition metal
dichalcogenides or graphenes have the enlarged symmetry like
SU(4) or SU(8) from their spin, valley and layer freedom124,129,130.
Some of the results for the multiflavor Mott insulator of this
context overlap with the ones from the ultracold atoms, and we do
not give much discussion here.
In general, the multiflavor Mott insulator provides a feasible

platform to study the exotic quantum states. To manipulate and
probe these exotic quantum states and excitations, one necessarily
has to understand the role of different degrees of freedom and
how they are coupled to the external probes such as electric field,
magnetic field, strains, electric currents and so on. The identifica-
tion and separation of the degrees of freedom becomes much
more meaningful for this practical purpose. For example, the
selective coupling with the spin/magnetic excitations instead of
the orbital modes or non-magnetic excitations in the neutron
scattering and NMR measurements is crucial to understand the
excitation structures for the conventional Kugel-Khomskii systems
and other multiflavor Mott insulators131. The presence of the layer
degrees of freedom in the multiflavor Mott insulators for the
double moiré layers with transition metal dichalcogenides or
graphenes allows the design of dragging type of transport

measurements for the interlayer transport behaviors in the exotic
quantum phases130.

SU(N) and Sp(N) magnetism with ultracold fermions
Fermionic systems with large internal degrees of freedom not only
exist in quantum material as multiflavor Mott insulators, but also
include large-spin alkali and alkaline-earth fermions. These atoms
often exhibit large hyperfine spins, whose 2S+ 1 hyperfine atomic
levels certainly form a high representation of the SU(2) group. As
we have mentioned in the Introduction, theoretically it was
proposed to study such systems from the perspective of exact
high symmetries such as SU(N) and Sp(N)47,49,132, in which the
high symmetries greatly enhance the connectivity among
different internal components. Consequently, they share very
similar features in quantum magnetism in their Mott-insulating
states to the Kugel-Khomskii systems despite the huge difference
between their energy scales47–52,55,56,124,133–136. The unprece-
dented exact high symmetries of the ultracold alkaline and
alkaline-earth atom systems allow us to access many unconven-
tional theoretical models and quantum phases that are a bit
difficult to realize in quantum materials and only occur under the
theoretical idealization. Unlike the previous discussion about the
multiflavor Mott insulators and the Kugel-Khomskii physics in
quantum materials, our review below will explore the models and
the consequences from the high symmetries in the Mott
insulating regime for the ultracold atoms.
For the alkaline-earth atoms, their hyperfine-spins completely

come from the nuclear spins since their atomic shells are filled.
Interactions from atomic scatterings are independent from spin
components since the nuclei are deeply inside. This is the
microscopic reason of their SU(N) interactions. Nevertheless, for
the alkali high spin atoms, generally speaking, their interactions
are spin-dependent. In this case, the SU(N) symmetry is not
generic, and the Sp(N) symmetry is the next highest47,48,51,52,55. As
a concrete example, below we will use the simplest case of large
spin ultra-cold fermions, i.e., spin-3/2 fermions (e.g. 132Cs, 9Be,
135Ba, 137Ba, 201Hg). It can be proved that such systems possess an
exact and generic symmetry of Sp(4), or, isomorphically SO(5).
Various many-body orders including quantum magnetism in
different tensor channels, pairing and density-wave orders47,48.
The generic Sp(4) symmetry here plays the role of the SU(2)
symmetry in the spin-1/2 systems.
Such a high symmetry group of the ultracold atom systems

requires a fine-tuning of the parameters for the Kugel-Khomskii
model in quantum materials. For instance, the symmetry can be
tuned to SU(4) for the eg orbitals. In this limit, the Kugel-Khomskii
model in the quantum materials is connected to the SU(N= 4)
model in the ultracold atom context in the narrow sense of the
model relation. For the t2g orbitals in quantum materials, more
complicated operators are involved in the Kugel-Khomskii model7,
and less symmetries are explicitly present. On the contrary, there
were efforts49 that introduce two atomic orbitals for the alkaline
earth atoms such that the resulting model is the SU(N > 2)
extension of the original the Kugel-Khomskii model where the
SU(2) spin is replaced by the SU(N > 2) spin while the orbital sector
of the electrons is replaced by the atomic orbitals on the optical
lattices.
The “baryon-like” quantum magnetism is further reviewed. In

quantum chromodynamics (QCD), quarks form the fundamental
representation of the SU(3) group. Three quarks of all the R, G, B
components form a baryon, a color singlet, while, two quarks
cannot form a color singlet. Similarly, the SU(N) fermion systems
are characterized by the N-fermion correlations, which leads to the
multi-fermion SU(N) singlet clustering ordering134,137,138. Similarly,
the physics of an SU(N) quantum magnet can also be beyond the
SU(2) case which is often studied condensed matter systems.
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In spite of the huge difference of energy scales, the large-spin cold
fermions could exhibit similar physics to that in QCD133,135,139,140.

The spin-3/2 Hubbard model–the generic Sp(4) symmetry. We
generalize the spin-1/2 Hubbard model to spin-3/2 case. Only the
standard spin SU(2) symmetry is assumed at the beginning, and
the hidden Sp(4) symmetry will be explained. The free-fermion
part H0 reads,

H0 ¼ �t
X
hiji;σ

ψy
iσψjσ þ h:c:

� �
� μ

X
i

nðiÞ; (34)

where ψσ is the 4-component fermion spinor operator and σ
represents the eigenvalues of sz with σ= ± 3/2, ± 1/2; 〈ij〉 denotes
the nearest neighboring bonding; n ¼ ψy

σψσ is the particle-number
operator. If two spin-3/2 fermions are put on the same site, their
total spin is either 0 (singlet) or 2 (quintet). Then the onsite
interactions are represented in the spin SU(2) language as

Hint ¼ U0

X
i

Py0ðiÞP0ðiÞ þ U2

X
i;�2	m	2

Py2mðiÞP2mðiÞ; (35)

where Py0 and Py2;m are the pairing operators in the singlet and
quintet channels, respectively. Their interaction strengths are
denoted as U0 and U2, respectively.
In fact, the Hamiltonian of Eqs. (34) plus (35) possesses an Sp(4)

symmetry, which is the double covering group of SO(5). For
simplicity, we will use Sp(4) and SO(5) interchangeably below. The
Sp(4) algebra is constructed below. In addition to spin and charge,
spin quadrupole and octupole operators are necessary in the spin-
3/2 system. As shown in Methods, the five spin quadrupole
matrices are actually the Dirac Γ-matrices denoted as Γa(1 ≤ a ≤ 5),
and their commutators are defined as
Γab ¼ i

2 ½Γ
a; Γb
ð1 	 a < b 	 5Þ. The spin-quadrupole operators na

are defined as

na ¼
1
2
ψy
αΓ

a
αβψβ; ð1 	 a 	 5Þ: (36)

On the other hand, spin and spin octupole operators, in total 10
operators, can be reorganized as47,132

Lab ¼ � 1
2
ψy
αΓ

ab
αβψβ: (37)

Lab’s span the Sp(4), or, isomorphically, SO(5) group, and na’s
transform as a 5-vector of SO(5). Lab and na together span the
algebra of the SU(4) group, which is isomorphic to SO(6) group.
Hence, Sp(4) is a subgroup of SU(4). Among them, three diagonal
operators commute with each other:

L15 ¼ 1
2 ðn3

2
þ n1

2
� n�1

2
� n�3

2
Þ;

L23 ¼ 1
2 ðn3

2
� n1

2
þ n�1

2
� n�3

2
Þ;

n4 ¼ 1
2 ðn3

2
� n1

2
� n�1

2
þ n�3

2
Þ:

(38)

Now it is ready to reveal the hidden Sp(4) symmetry. ψα is a
4-component spinor of SU(4) and n is an SU(4) scalar. Hence, H0 is
in fact SU(4) invariant, of course, Sp(4) invariant. It is enlightening
to formulate Eq. (35) as

Hint ¼
3U0 þ 5U2

16

X
i

nðiÞ � 2½ 
2 þ U0 � U2

4

X
i;1	a	5

n2aðiÞ: (39)

Since the na operators form a 5-vector, Eq. (39) is also Sp(4)
invariant.

The superexchanges at quarter-filling. Under sufficiently strong
repulsive interactions, spin-3/2 Hubbard model will enter the
Mott-insulating state even at 1/4-filling, i.e., one fermion per site.
In principle, the magnetic superexchange interaction can be
expressed in terms of the bi-linear, bi-quadratic and bi-cubic SU(2)
Heisenberg terms of Si ⋅ Sj, ðSi � SjÞ2, ðSi � SjÞ3, respectively.

Nevertheless, the superexchange exists in the bond-spin singlet
and quintet channels, respectively. Hence, only two of these three
terms are independent, which corresponds to the Sp(4)
symmetric case.
The above situation is similar to the spin-1 Heisenberg model

with both bi-linear and bi-quadratic terms. Its general form is
controlled by the parameter angle θ,

Hspin1 ¼ J
X
hiji

cos θ ðSi � SjÞ þ sin θ ðSi � SjÞ2
� �

: (40)

Eq. (40) exhibits two different types of SU(3) symmetries, a “uniform”
one and a “staggered” one. The “uniform” one appears at θ= π/4
and 5π/4, i.e., every site lies in the fundamental representation. The
“staggered” one appears at θ= π/2 and 3π/2, in which two
sublattices lie in the fundamental and anti-fundamental representa-
tions, respectively. They are explained in Methods.
It is enlightening to express the superexchange model of spin-3/2

fermions in the explicitly Sp(4) invariant form133,

Hex ¼
X
hiji

JL
X

1	a<b	5

LabðiÞLabðjÞ þ JN
X5
a¼1

naðiÞnaðjÞ
( )

: (41)

Each site lie in the fundamental representation of Sp(4), i.e., a
4-component spinor. JL= (J0+ J2)/4 and JN= (3J2− J0)/4, and J0
and J2 are exchange strength in the singlet and quintet channels,
respectively. At the level of the 2nd order perturbation theory,
they are

J0 ¼ 4t2=U0; J2 ¼ 4t2=U2: (42)

Sp(4) is a rank-2 Lie algebra. Hence, it has three good quantum
numbers, i.e., one more compared to those of SU(2). They are
defined as

C ¼
X

1	a<b	5

X
i

LabðiÞ
( )2

; (43)

Ltot15 ¼
X
i

L15ðiÞ; Ltot23 ¼
X
i

L23ðiÞ: (44)

C is the Sp(4) Casimir in analogy to total spin square of an SU(2)
system; Ltot15 and Ltot23 are the analogies to the total Sz.

The uniform and staggered SU(4) symmetries. Similar to the spin-1
model of Eq. (40), Eq. (41) exhibits two different types of SU(4)
symmetries. The first case takes place at J0= J2, or, equivalently,
U0= U2, denoted as SU(4)A below. Eq. (41) is reduced to the SU(4)
Heisenberg model

HA ¼ J
X
hi;ji

LabðiÞLabðjÞ þ naðiÞnaðjÞf g; (45)

for which each site lies in the fundamental representation of SU(4),
and J= J0/2= J2/2. HA is equivalent to the SU(4) Kugel-Khomskii
type model7,139,141–143 as reviewed in the previous parts, which is
similar to the “uniform” case of SU(3).
The second SU(4) symmetry is similar to the “staggered” case of

SU(3), which takes place in a bipartite lattice and in the limit of
U2→+∞, i.e., J2= 0. To see this explicitly, the particle-hole
transformation ψα ! Rαβψ

y
β is performed to one sublattice, and

the other sublattice is left unchanged, where R is the charge
conjugation matrix

R ¼
0 iσ2

iσ2 0

� �
: (46)

Under this operation, the fundamental representation of SU(4)
transforms to its anti-fundamental representation whose Sp(4)
generators and vectors become L0ab ¼ Lab and n0a ¼ �na . The Sp(4)
generators remain invariant under the particle-hole
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transformation is due to its pseudo-reality. Then Eq. (41) can be
recast to

HB ¼ J0
X
hi;ji

L0abðiÞLabðjÞ þ n0aðiÞnaðjÞ

 �

; (47)

where J0 ¼ J0=4. Eq. (47) is SU(4) invariant again.
These two SU(4) symmetries imply fundamentally different

physics. Both of them have high energy analogies: The “uniform”
SU(4)A is baryon-like, while that of SU(4)B is meson-like. In the
former case, every site belongs to the fundamental representation.
At least 4 sites are required to form an SU(4) singlet with the
wavefunction represented by

1ffiffiffiffi
4!

p ϵαβγδψ
y
αð1Þψ

y
βð2Þψ

y
γð3Þψ

y
δð4Þ Ωj i; (48)

where 1 ~ 4 are site indices, ϵαβγδ is the rank-4 fully antisymmetric
tensor, and Ω is the vacuum. Hence, dramatically different from
the SU(2) case, two sites across a bond cannot form a singlet.
Quantum magnetism based on HA exhibits strong features of the
4-site correlation, i.e., a baryon-like state.
For the case of SU(4)B, two sites are sufficient to form an SU(4)

singlet via the charge conjugation matrix as

1
2
Rαβψ

y
αð1Þψ

y
βð2Þ Ωj i: (49)

This can be viewed as a large-N version of the usual spin-1/2 SU(2)
Heisenberg model.

Quantum magnetism of an Sp(4) spin chain. The Sp(4) quantum
magnetism occurs in the strong repulsive interaction regime at 1/
4-filling, i.e., one particle per site. For the 1D system, the
bosonizaiton study shows that the charge gap opens due to the
relevancy of the 4kf-Umklapp process at the Luttinger parameter
0 < Kc < 1/2132,134. Then the low energy physics is captured by the
Sp(4) superexchange process described by Eq. (41).
The 1D phase diagram is sketched in Fig. 5. A quantum phase

transition takes place at the SU(4) symmetric point of J0= J2, or,
U0= U2: When J0 > J2 (U0 < U2), the system develops a spin gap
with the presence of the spin Peierls distortion, while at J0 ≤ J2
(U0 ≤ U2), the system enters a gapless spin liquid phase and
maintains the translation symmetry132. The nature of this
transition is Kosterlitz-Thouless like. For convenience, a parameter
angle θ is employed to represent J0,2 as

J0 ¼
ffiffiffi
2

p
cos θ; J2 ¼

ffiffiffi
2

p
sin θ: (50)

Hence, the gapless spin liquid phase lies at 0 ≤ θ ≤ 45∘, while the
spin Peirerls phase exhibiting dimerization lies at 45∘ < θ ≤ 90∘.
The above field-theoretical analysis was confirmed by the

density-matrix-renormalization-group (DMRG) simulations136. The

ground state spin gap Δsp is defined as the energy difference
between the ground state and the lowest Sp(4) multiplet. The
DMRG results show that for the cases of θ > 45∘, i.e., J2/J0 < 1, Δsp’s
saturate as enlarging the lattice size, which signatures the opening
of spin gap. On the other hand, Δsp’s vanish at θ ≤ 45∘

demonstrating gapless ground states. These results show that
the phase boundary is located at θ= 45∘ with the SU(4)A
symmetry, on which the system is also gapless.
The spin gapped and gapless phases exhibit different

characteristic oscillations. The DMRG results of the nearest
neighbor (NN) correlations of the Sp(4) generators are calculated
with the open boundary condition. As an example, 〈L15(i)L15(i+ 1)〉
is shown in Fig. 6 and those of other Sp(4) generators are the
same. In the spin gapped phase, say, at θ= 60∘, a characteristic
2-site oscillation, corresponding to a dimer pattern, is pinned by
the open boundary condition. It does not decay as moving to the
center of the chain implying the presence of long-range-ordering
in the thermodynamic limit. This is consistent with the 4kf charge-
density-wave ordering, exhibiting as dimerization. In contrast, in
the gapless region 0 ≤ θ ≤ 45∘, the open boundary induces a
power-law decay. For example, at θ∘= 30∘, it approximately
exhibits a 4-site oscillation, and the periodicity is the same for
0 ≤ θ ≤ 45∘. This is in agreement with the dominant 2kf spin
correlations in the bosonization analysis.
In the gapless phase, i.e., 0 ≤ θ≤ 45∘, the decay powers of the

two-point correlation functions are discussed below. The correla-
tion can be expressed asymptotically as

hOði0ÞOðiÞi /
cos π

2 ji0 � ij
ji0 � ijκ ; (51)

Fig. 5 Phase diagram of the 1D Sp(4) spin chain in terms of J0 and
J2 with tan θ ¼ J0=J2. The SU(4)A and SU(4)B symmetries are located
along the lines of θ= 45∘ and 90∘, respectively. The dimerized spin
Peierls phase appears at 90∘ ≥ θ > 45∘, and the gapless spin liquid
phase is located at 45∘ ≥ θ ≥ 0∘. Figure is adapted from ref. 136.

Fig. 6 The DMRG results of the nearest neighbor correlations of
〈L15(i)L15(i+ 1)〉 under the open boundary condition. The para-
meter values are θ= 60∘ in (a) and θ= 30∘ in (b). A 2-site periodicity
appears in (a) and a 4-site periodicity with a power-law decay shows
up in (b). Figures are adapted from ref. 136.
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where the operator O= L, or, n represents an operator in the 10-
generator channel, or, the 5-vector channel of the Sp(4) group,
respectively. The critical exponents for L and n along the SU(4)A
line (θ= 45∘) should be the same, as fitted by κ ≈ 1.52, which is in a
good agreement with the value of 1.5 from the bosonization
analysis134,144,145. As away from the SU(4)A line, the degeneracy
between L and n is lifted. The simulations show that the critical
exponent for L shows κL < 1.5, while that for n exhibits κn > 1.5.

The 2D Sp(4) magnetism – Exact diagonalization results. The 2D
Sp(4) magnetism based on Eq. (41) is very challenging, whose
global phase diagram remains unsolved. Especially, in the region
of 0 < θ ≤ 45∘, the phase is dominated by the baryon-type physics
which is quite different from the SU(2) quantum magnetism133,142.
On the other hand, the physics along the SU(4)B line, i.e, θ= 90∘, is
relatively clear. Quantum Monte Carlo simulations (QMC) show a
long-range Néel ordering with a much weaker Néel moment
compared to the SU(2) case146. However, except this special case,
the sign-problem appears and no conclusive results are known.
Along the SU(4)A line, it is likely that there exist a strong plaquette-
like correlation as proposed by Bossche et. al.139,140. Such a state is
a baryon-like state, exhibiting the plaquette type correlations, and
each plaquette is a 4-site SU(4) singlet state.

Below we review the ground state correlations via the exact
diagonalization (ED) method. Even though it can only be applied
to a small 4 × 4 cluster, the associated ground state profiles at
different values of θ still yield valuable information to speculate
the thermodynamic limit. Based on the ED result, a phase
transition would be expected as follows: A Néel order-like state
breaking the Sp(4) symmetry appears at large values of θ, in
particular close to 90∘; while an Sp(4) singlet ground state breaking
the translation symmetry exits as lowering θ to smaller values.
We use structure factors to describe the ground state properties.

A structure factor converges to a finite value in the thermodynamic
limit in the presence of long-range ordering146,147. Nevertheless, for
a small cluster, the tendency of ordering is reflected as the peak of a
structure factor at a characteristic momentum. The following
structure factors will be employed,

SOðqÞ ¼
1
N

X
i;j

eiq�ðri�rjÞhGjOðiÞOðjÞjGi; (52)

where O= L referring to an operator of the Sp(4) generators, and
O= n referring to an operator of the Sp(4) vectors. For later
convenience, we use the following symbols to represent the
crystal momenta Γ= (0, 0), X= (π, 0), and M= (π, π).
Previous QMC simulations show the Néel long-range order of

the SU(4) Heisenberg model defined in the fundamental and anti-
fundamental representations in two sublattices146. It corresponds
to the SUB(4) case with θ= 90∘, which ensures the relation of

SnðqÞ ¼ SLðqþMÞ; (53)

due to the staggered definition of Sp(4) vectors na in Eq. (47). Back
to the spin language, as θ= 90∘ the classic energy can be
minimized by arranging the two components of Sz= ± 3/2, or, of
the other two components of Sz= ± 1/2 in a staggered way. These
different configurations are equivalent under the Sp(4) transfor-
mations.
The SUB(4) relation still approximately holds when θ is close to

90∘. The Néel type correlation of Lab also extends to a finite regime
as θ deviates away from 90∘, and in the same regime, na exhibits
the uniform correlations. When 90∘ ≥ θ≳ 60∘, the structure factor
SL(q) of the 10-generator channel peaks at the M-point, i.e., the
nesting wavevector (π, π), as shown in Fig. 7(a). On the other hand,
Sn(q) of the 5-vector channel is shown in Fig. 7(b), which peaks at
the Γ-point, roughly in the same parameter range that SL(q)
develops a peak at the M-point.
In contrast, at θ≲ 60∘, SL(q) distributes relatively smooth over all

momenta without dominant peaks. The distribution of Sn(q) also
becomes smooth in a similar way to that of SL(q). Nevertheless, at
small values of θ < 18∘, it becomes to peak at the M-point, i.e., at
the momentum (π, π). In the case of SU(4)A, i.e., θ= 45∘, the
5-vector and the 10-generator channels become degenerate,
hence, Sn(q)= SL(q) for each q. As θ deviates away from 45∘, SL and
Sn evolve differently.
To test the possibility towards a dimerized ground state, the

susceptibilities of translation and rotational symmetry breakings
are defined below. Two perturbations are added to the
Hamiltonian Eq. (41), i.e.,

ÔdimðQÞ ¼
X
i

cosðQ � riÞHexði; i þ x̂Þ; (54)

Ôrot ¼
X
i

½Hexði; i þ x̂Þ � Hexði; i þ ŷÞ
: (55)

The former breaks the translation symmetry and the latter breaks
the rotation symmetry.
The ED results of susceptibilities associated with Ôdim and Ôrot

show that both of them exhibit a peak in the interval of
60∘ < θ < 70∘136. Although no real divergences exist due to the
finite size, sharp peaks would imply the tendency of long-range
ordering. Hence, the results imply a tendency to break both

Fig. 7 The structure factors for the 4 × 4 cluster with (a) SL(q) in
the Sp(4) generator sector and (b) Sn(q) in the Sp(4) vector sector.
The expressions of SL and Sn are defined in Eq. (52). The inset in (a) is
the comparison between SL(π, 0) and SL(π, π) versus θ. Figures are
adapted from ref. 136.
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translational and rotational symmetries, which is consistent with a
columnar dimerization in the thermodynamic limit. In contrast, the
plaquette ordering does not break the 4-fold rotational symmetry,
which is not favored in this regime.
The tendency of the plaquette type ordering, i.e., the SU(4)

analogy to the baryon state, shows up at small values of θ, i.e.,
θ < 50∘ ~ 60∘. To characterize such a state, the plaquette Sp(4)
Casimir centered at r is defined as

CðrÞ ¼ hGj
X

1	a<b	5

X
i

LabðiÞ
( )2

jGi; (56)

where i runs over the four sites of this plaquette. A similar method
was used for the SU(2) case to characterize the competing dimer
and plaquette orders148.
The relation of C versus θ is calculated under the open

boundary condition. Based on the symmetry analysis, the values of
C for three non-equivalent plaquettes A, B, and C are shown in
Fig. 8. C(rA) of the corner plaquette is significantly about one order
smaller than C(rB) and C(rC) of the other two plaquettes at small
values of θ. This suggests that an Sp(4) plaquette tendency is
pinned down by the open boundary. As θ increases above 60∘, the
contrast decreases which means that the plaquette-type pattern is
weakened. It is likely that there exists a strong plaquette-like
correlation at small values of θ but significantly beyond the SU(4)A
line. It covers the entire region of θ < 45∘ and also extends slightly
above 45∘. Nevertheless, further larger scale calculations are
necessary for a conclusion.

Quantum plaquette model for the 3D SU(4) magnetism. The SU(4)A
plaquette state discussed above has been shown as the exact
solution to the ground state of a 2-leg ladder model of spin-3/2
fermions133. However, due to the geometric constraint, it cannot
resonate and is a valence-bond-solid type state.
The resonating quantum plaquette model (QPM) model was

constructed in three dimensions135,149, which is analogous to the
quantum dimer model for the SU(2) magnet150,151. The quantum
dimer model has a gauge theory description to the Rohksar-
Kivelson (RK) Hamiltonian, which is a compact U(1) gauge
theory151. QPM also has a similar description as reviewed below,
which is a high order gauge field theory. Recently it has received
considerable attention in the context of fracton physics152.
Consider a three-dimensional (3D) cubic lattice SU(4) model in

the limit that each plaquette has a strong tendency to form a local
SU(4) singlet. The effective Hilbert space is spanned by all the
plaquette configurations. They are subject to the constraint that
every site belongs to one and only one plaquette.
Each unit cube possesses three flippable configurations: the

pairs of plaquettes of left and right, top and bottom, and front and

back denoted as A, B and C in Fig. 9, respectively. A Rokhsar-
Kivelson (RK) type Hamiltonian is constructed as150:

H ¼ �t
P

each cube
Aj i Bh j þ Bj i Ch j þ Cj i Ah j þ h:c:f g

þ V
P

each cube
Aj i Ah j þ Bj i Bh j þ Cj i Ch jf g; (57)

where t is assumed to be positive, and v/t is arbitrary. By defining

Q1;2

�� �
¼ Aj i þ e± i23π Bj i þ e ∓ i23π Cj i; (58)

Eq. (57) is reformulated as

H ¼ t
P

each cube
Q1j i Q1h j þ Q2j i Q2h jð Þ

þ ðV � 2tÞ
P

each cube
Aj i Ah j þ Bj ihBþ jCi Ch jð Þ: (59)

The RK point here corresponds to V= 2t.
The ground state to Eq. (59) is the equal weight superposition of

all the plaquette configurations within the same topological sector
that can be connected by local flips. The classical Monte Carlo
simulation shows that a crystalline order of resonating cubes at
this RK point149. At V/t < 2, the system favors flippable cubes. For
example, as shown in Ref. [149], at v/t≪− 1, the ground state
exhibit the columnar ordering. At v > 2t, both terms in Eq. (59) are
positive-definite. Hence, all the configurations without flippable
cubes are the ground states. All the transitions between different
phases are of the first order.
It is often useful to extract the low energy physics of strong

correlated systems by mapping it to gauge theory models. In fact,
the effective gauge theory of the QPM was constructed as a
special one - a high order gauge theory.
Each square face is denoted by the location of its center:

i þ 1
2 ûþ 1

2 v̂, where û ¼ x̂; ŷ and ẑ. Each face is associated with a

number n and a strong local potential Uðniþ1
2μ̂þ1

2ν̂
� 1

2Þ
2 in the limit

of U→∞, such that the low-energy sector has only either n= 1
corresponding to an SU(4) singlet occupation, or n= 0, otherwise.
The constraint is that the summation of n over all the 12 faces
connecting to the same site equals to 1. A rank-2 symmetric
traceless tensor electric field is defined as

Ei;μν ¼ ηðiÞ niþ1
2μ̂þ1

2ν̂
� 1
2

� �
; (60)

Fig. 8 The local Casimir C(r) defined in Eq. (56) versus θ. The
plaquettes (A, B, C) are depicted in the right.

C

BA

Fig. 9 Three flippable configurations in one cube. Figure is
adapted from ref. 135.
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where η(i)= ± 1 depends on the sublattice that i belongs to. The
constraint is simply reduced to

∇x∇yExy þ ∇y∇zEyz þ ∇z∇xEzx ¼ 5ηðiÞ; (61)

where∇ is the lattice derivative. The canonical conjugate variable
of Ei,μν is the vector potential Ai,μν, satisfying

½Ei;μν;Aj;ρσ
 ¼ iδijðδμρδνσ þ δμσδνρÞ: (62)

Ai,μν can be expressed by the phase variable θiþ1
2μ̂þ1

2ν̂
, which is the

canonical conjugate variable to n as Ai;μν ¼ ηðiÞ θiþ1
2μ̂þ1

2ν̂
. Because Eμν

only takes integer values, Aμν is an compact field with period of 2π.
The plaquette flipping process changes the plaquette occupa-

tions. For this purpose, eiAj;νσ is employed which changes the
eigenvalue of Ei,μν by 1 since

½Ei;μν; eiAj;νσ 
 ¼ ðδμρδνσ þ δμσδνρÞeiAj;νσ : (63)

The flipping term is represented as

Ht ¼ �t cosð∇zAxy � ∇xAyzÞ þ cosð∇xAyz � ∇yAzxÞ
�

þ cosð∇yAzx � ∇zAxyÞ
�
:

(64)

The associated gauge invariant transformation is

Aμν ! Aμν þ ∇μ∇νf ; (65)

where f an arbitrary scalar function. The low-energy Hamiltonian
of the system can be written as

H ¼ Ht þ
P

each cube
U½E2xy þ E2yz þ E2zx 

n

þ V ½ð∇xEyzÞ2 þ ð∇yEzxÞ2 þ ð∇zEzxÞ2

o
;

(66)

under the constraint of Eq. (61).
The above formulation is a compact high order gauge theory,

and the non-local topological defect excitations is crucial to
determine whether its ground state is gapless or gapped. The
standard analysis is the mapping to a height model, such that
topological defects are represented by the vertex operators135.
Due to the proliferation of topological defects, the system is
generally gapped for the whole phase diagram of the quantum
model, which corresponds to crystalline orders. It would be
interesting to further explore the possiblity of the 3D power-law
phases as the analog to the Kosterlitz–Thouless transition152.

Summary and future perspective
In summary, we have reviewed a class of Mott insulators, namely,
the multiflavor Mott insulators, in both quantum materials and
ultracold atom systems. In both cases, the local Hilbert states in
each unit cell of the multiflavor Mott insulators consist of more
than two flavors in contrast to the conventional spin-1/2 Mott
insulators, and also differs fundamentally from the conventional
magnets with large S moments. They bear similarities to the
orbital-active Mott-insulators but typically do not demand the
explicit orbital degeneracy. These include the breathing/cluster
magnets, the J= 3/2 Mott insulators in various transition metal
oxides and rare-earth systems, twisted moiré heterostructures, the
ultracold atom fermion systems with large hyperfine-spins, and
various other physical contexts.
The study of the multiflavor Mott insulators will certainly

broaden the research scope of quantum magnetism, and further
enrich the activity of exploring exotic quantum states of matter. As
the consequence of the large local Hilbert space, this class of Mott
insulators exhibit the common feature of enhanced quantum
fluctuations. Instead of being viewed from the large-S perspective,
the appropriate viewpoint should be large-N. The low-energy
superexchange models typically go beyond the SU(2) large-S
Heisenberg models, and bear similarities to the Kugel-Khomskii
models. They are expected to exhibit a variety unusual physics
including the spin-multipolar ordering, the “baryon-like” like

physics, and even more exotic spin-liquid states. Quantum
magnetism associated with large symmetries could exhibit certain
similarities to QCD in spite of dramatically different energy scales.
If each lattice site belongs to the fundamental representation of
SU(N) with N > 2, the SU(N) singlet typically involves more than
two sites leading to the “baryon-type” physics.
The review mainly focuses on the multiflavor Mott insulating

states and the associated pairwise interactions with and without
the enlarged symmetries in the strong Mott regime where the
charge fluctuation is suppressed. In many cases, the system could
be proximate to the Mott transition and in the weak Mott regime.
In this regime, the charge fluctuation is strong, and the more
appropriate description of the underlying physics would be in
terms of the multiflavor Hubbard model or the exchange model
involving the multiflavor ring exchange interactions. It is well-
known that, the strong charge fluctuation of the weak Mott
insulators or proximity to the Mott transition could stabilize
various exotic quantum phases even for the spin-1/2 degrees of
freedom153,154. The multifavor Mott insulators actually bring a bit
more interesting phenomena with their multiple favors of degrees
of freedom. One well-known consequence is the Pomeranchuk
effect or Pomeranchuk cooling that has been observed in magic-
angle graphene155,156 and been used to cool to much lower
temperatures in the SU(N) alkaline-earth atoms54,157. Although
both the strong charge fluctuation and the multiflavor Hilbert
space could drive to exotic quantum phases and phenomena, the
exotic phases that are favored by them, however, can be
different123,158,159. There has not been much systematic study in
this direction. Potentially this can be an interesting direction for
both theories and experiments. In the ultracold atom systems, the
strength of correlation can be effectively tuned experimentally to
access both strong and weak Mott regimes. With the modern
fabricating and controlling technology, one can effectively tune
many physical properties of the transition metal dichalcogenide
(moiré) heterostructures such as the correlation and doping, and
drive the system through the Mott transition33. In fact, the type of
charge fluctuations in the early study of the Hubbard model is
mostly concerned about the physical processes above the Mott
gap that involve the double occupation153. The existence of large
numbers of correlated moiré systems and the partially-filled
correlated materials supports the cluster localization for which the
possibility of the sub-Mott-gap charge fluctuations can be
relevant20,22,29,160. Distinct charge fluctuations would bring rather
distinct physics and consequences on the remaining spin and
orbital degrees of freedom, especially since the charge sector
often has a higher energy scale than the spin and orbital and thus
may be considered first. The combination of distinct charge
fluctuations and high symmetries is another direction to go. When
the charge sector is incorporated as one extra flavor of the
multiflavor Mott systems, not only the physics becomes richer
from the interplay of more degrees of freedom, but also the scope
of multiflavor Mott insulators can be further broadened. Thus, the
multiflavor Mott systems and physics are not limited to the
contents and the classification in the current review, and many
more systems may be recast into this topic. We expect many
exciting and new results to emerge in this field in the near future.

METHODS
The SU(3) viewpoint to the spin-1 Heisenberg model with the
bi-quadratic interaction
The two-band Hubbard model described by Eq. (1) exhibits
different types of Mott-insulating states depending on the filling
factor. The case of quarter-filling exhibiting the orbital degree of
freedom is already discussed in the main text, whose low-energy
physics is described by a variant of the SU(4) Kugel-Khomskii
model. On the other hand, for the case of half-filling, i.e., two
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electrons per site, each orbital is occupied by one electron.
Therefore, the orbital degree of freedom is quenched, and only
the spin degree of freedom remains. The Hund’s rule coupling
aligns two electron spins and forms the spin-1 moment.
In this case, the leading order super-exchange process across a

bond is the switching of one pair of electrons, which is at the level
of the second order perturbation theory. It gives rise to the
standard bi-linear Heisenberg superexchange term as

Hbl ¼ J2
X
hiji

Si � Sj : (67)

Moreover, the fourth order perturbation theory yields the bi-
quadratic superexchange term as

Hbq ¼ J4
X
hiji

Si � Sj
� �2

: (68)

Based on their perturbation orders, J2 and J4 are estimated at

J2 /
t2

U
; J4 /

t4

U3 : (69)

Hence J4 is much smaller than J2. The other microscopic
mechanism for the bi-quadratic interaction is the spin-lattice
coupling. This happens when the direct exchange dominates and
depends sensitively on the bond length. Integrating out the
bonds, one can obtain the bi-quadratic spin interaction161. This
has been applied to the Cr-based pyrochlores CdCr2O4 and
HgCr2O4. As far as we are aware of, the sign of the bi-quadratic
spin interaction is often negative and ferromagnetic-like.
The dominance of the bi-linear super-exchange process applies

to even higher spin systems in quantum materials. The onsite
SU(2) multiplets are denoted as SSzj i with S ≥ Sz ≥− S. The bi-
linear superexchange can only connect these states via a one-
dimensional weight diagram as

S� Sj i $ S� Sþ 1j i¼ $ SSj i: (70)

Hence, spin flipping between S� Sj i $ SSj i takes 2S successive
steps, which is at the 4S-th order perturbation theory. Therefore,
no matter how large the total spin is, quantum spin fluctuations
are basically a 1/S-effect.
The bi-quadratic term in Eq. (68) and bi-linear on in Eq. (67) can

be treated at equal footing as controlled by the parameter angle θ
as shown in Eq. (40). Although for physical systems of transition
metal oxides, 0 < ∣θ∣ ≪ π/2, below the entire parameter space will
be considered.
For one bond 〈ij〉, according to the SU(2) structure, the bond

Hilbert space is divided into the singlet, triplet and quintet states.
Their energies are denoted as Es, Et and Eq, respectively. It is
straightforward to show that

Es=J ¼ �2 cos θþ 4 sin θ;

Et=J ¼ � cos θþ sin θ;

Eq=J ¼ cos θþ sin θ:

(71)

At two special angles, degeneracy patterns appear beyond the
SU(2) multiplet: A 6-fold degeneracy appears at θ= π/4 and 5π/4,
and an 8-fold degeneracy appears at θ= π/2 and θ= 3π/2. They
imply the hidden high symmetries of two different types of SU(3).
To show the SU(3) symmetry explicitly, the common represen-

tation of the Gell-mann matrix is adopted:

λ1;ij ¼ δi1δj2 þ δi2δj1; λ2;ij ¼ �iδi1δj2 þ iδi2δj1
λ4;ij ¼ δi3δj1 þ δi1δj3; λ5;ij ¼ �iδi3δj1 þ iδi1δj3
λ6;ij ¼ δi2δj3 þ δi3δj2; λ7;ij ¼ �iδi2δj3 þ iδi3δj2
λ3;ij ¼ diag 1;�1; 0ð Þ;
λ8;ij ¼ 1ffiffi

3
p diag 1; 1;�2ð Þ:

(72)

It is convenient to employ the representation that the spin-1
matrices are purely imaginary, i.e.,

ðSiÞjk ¼ �iϵijk ; (73)

which are just the three purely imaginary matrices of Eq. (72),

Sx ¼ λ7; Sy ¼ �λ5; Sz ¼ λ2: (74)

In this representation, Sz is off-diagonal, instead, λ3 and λ8 are
diagonal. They are spin-quadrupole operators as

λ3 ¼ �ðS2x � S2yÞ; λ8 ¼ � 1ffiffiffi
3

p ðS2x þ S2y � 2S2z Þ: (75)

1
2 λ3;

1
2 λ8 span the Catan subalgebra of SU(3). Their common

eigenstates are just spin-1 states in the polar bases aj i with
a= x, y and z, defined as

Sa aj i ¼ 0: (76)

Each state can be represented in terms of their eigenvalues of
ðλ32 ;

λ8
2 Þ as

xj i : 1
2
;

1

2
ffiffiffi
3

p
� �

; yj i : � 1
2
;

1

2
ffiffiffi
3

p
� �

; zj i : 0;� 1ffiffiffi
3

p
� �

: (77)

They are vertices of an equilateral triangle in the plane of ðλ32 ;
λ8
2 Þ,

which is just the weight diagram of the fundamental representa-
tion of the SU(3) group. In other words, xj i, yj i, and zj i play the
role of three colors of quarks. They can represented as [1], i.e., the
single box in terms of the Young tableau.
In this representation, Eq. (40) becomes

H
J ¼ 1

2 sin θ
P

a¼1;3;4;6;8

P
hiji

λaðiÞλaðjÞ

þ cos θ� 1
2 sin θ

� � P
a¼2;5;7

P
hiji

λaðiÞλaðjÞ:
(78)

At θ ¼ 1
4 π and 5

4 π, this Hamiltonian exhibits an explicit SU(3)
symmetry as

H
J
¼ ±

ffiffiffi
2

p

4
J
X8
a¼1

X
hiji

λaðiÞλaðjÞ; (79)

with each site belonging to the fundamental representation of
SU(3). The 6-fold degeneracy comes from the decomposition of,

½1
 � ½1
 ¼ ½1
� � ½2
; (80)

in terms of the Young tableau, where [1]* is the complex
conjugation representation of [1], and [2] is 6D representation of
one row with two boxes.
On the other hand, a staggered type of the SU(3) symmetry

appears at θ= π/2 and 3π/2. In this case, Eq. (78) becomes

H
J
¼ ±

1
2

X
hiji

X
a¼1;3;4;6;8

λaðiÞλaðjÞ �
X

a¼2;5;7

λaðiÞλaðjÞ
 !

;

in which the terms of the real and imaginary Gell-mann matrices
exhibit the opposite signs. For a bipartite lattice, it can be cast into

H=J ¼ ∓
1
2

X
i2A;j¼i ± 12B

λaðiÞ �λaðjÞð Þ�; (81)

where A and B represent two sublattices. Since �λ�a is the
generators of [1]*, Eq. (81) is also SU(3) symmetric in which two
sublattices lie in the fundamental and anti-fundamental repre-
sentations, respectively. The 8-fold degeneracy arises from the
decomposition of [1]⊗ [1]*= •⊗ [2, 1], where • means the SU(3)
singlet and [2, 1] is the 8D adjoint representation of the
SU(3) group.
The above two different types of SU(3) symmetries lead to

different types of physics. In 1D, the spin-1 chain Eq. (40) with the
bilinear and bi-quadratic Heisenberg terms exhibit a variety of
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quantum phases. Along the line of θ= π/4, each site lies in the
fundamental representation of SU(3). The system is a gapless state
who critical properties are described by the SU(3)1 Wess-Zumino-
Witten model162. On the other hand, at θ=− π/2, the system is
dimerized breaking the translation symmetry, while two sub-
lattices belong to the fundamental and anti-fundamental repre-
sentations, respectively. In contrast, at θ= 0, i.e., the spin-1
Heisenberg model with only the bi-linear interaction, the system
exhibits the Haldane gap without translation symmetry breaking.

Γ-matrices as quadrupoles of spin-3/2
The spin quadrupole matrices are constructed as follows,

Γ1 ¼ 1ffiffi
3

p SxSy þ SySx
� �

;

Γ2 ¼ 1ffiffi
3

p SzSx þ SxSzð Þ;

Γ3 ¼ 1ffiffi
3

p SzSy þ SySz
� �

;

Γ4 ¼ S2z � 5
4 ;

Γ5 ¼ 1ffiffi
3

p S2x � S2y
� �

:

(82)

Remarkably, when Sx,y,z are spin-3/2 matrices, the Γ-matrices
defined above anticommute with each other, {Γa, Γb}= 2δab,
forming a representation of the Dirac Γ-matrices. Their commu-
tators are defined as

Γab ¼ � i
2
½Γa; Γb
 ð1 	 a; b 	 5Þ: (83)
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