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Summary 

We explicitly describe the theoretical method to compute the band structure of a single 

particle in a two-dimensional square lattice potential. We also present a simple model 

using coupled rate equation to describe the dynamics and the mode competition. Both 

near-field wavefunction and far-field population distribution are computed in the case of 

a strong lattice potential with a 3-by-3 site as a comparison to our weak potential case 

presented in the main text.  

Band structure of a two-dimensional square lattice potential 

We solve the single particle Schrödinger equation with an effective lower polariton 
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0V  is the potential depth, and a is the lattice constant.  In our experiment system, a = 4 

μm, and r0 = 2 μm. The characteristic energy scale is defined as 
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meV with the first Brillouin zone edge, a/2 . Experimentally we have found that the 

potential strength is ~ 200 μeV, which corresponds to V0 = 0.2 E0.  

We employ the standard method using the plane wave basis for this weak 

periodic potential lattice. The general reciprocal lattice vectors 21 bnbmGmn
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are integers) are represented in terms of the reciprocal lattice vector bases, 
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plane wave wavevector k


 is limited within the first Brillouin zone. The Hamiltonian 

operator, ),(ˆˆ
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H 
 , is expressed in a matrix form by computing 

mnmn GkHGk


 ˆ  and diagonalized. Along the three high-symmetry points, Γ, X 

and M in a reciprocal lattice space, the band structure is computed with V0 = 0.2 E0 

shown in Fig. 1b in the main text.  

At the high symmetry points Γ, X and M, the weak lattice potential lifts the 

degeneracy of the Bloch eigenstates according to their properties under the four-fold 

lattice symmetry transformation. For example, at the M point, the lowest nearly 

degenerate four Bloch eigenstates transform according to the s-, px-, py-, dxy -

symmetries, respectively. The values of the band gap energy are determined by the 

potential strength and they are in the range between 4 – 40 % of V0 depending on their 

symmetry indices.  

Near-field and far-field wavefunctions in a strong potential lattice  

In the case of the strong lattice potential, the Bloch wave band eigenstates can be 

studied from the tight-binding model. Energy levels with different orbital symmetry 

indicdes  (e.g., s, px, py, dxy) inside one lattice site is broadened into orbital energy bands. 

At the high symmetry points in the Brillouin zone, these orbital symmetry indices play 

the same role of the point-group symmetry indices in the weak-coupling potential. 

3 

Below we present an illustration of the orbital symmetry of condensate wavefunction in 

the strong lattice from the perspective of orbital energy bands. 

The orbital symmetry of near-field wavefunctions in a square lattice is readily captured 

in the case of the strong parabolic trap potential due to the localization of wavefunctions 

per each site. Figure S1 shows the near-field wavefunctions and far-field intensities 

formed by a 3-by-3 square lattice array with an individual strong parabolic potential 

profile. It is also clearly seen the in-phase and anti-phase arrangement of wavefunction 

between sites. Namely, both px- and d-orbital wavefunctions are -phase shifted with 

respect to the nearest neighbour site. With these near-field wavefunctions, the far-field 

intensities are calculated by taking Fourier transform. Since the finite lattice array and 

the localization, there are stronger side peaks beyond the first Brillouin zones unlike the 

case of the weak potential lattice in Fig. 3. 

Dynamics and mode competition 

The dynamics of the preferred orbital states can be easily explained by the simple rate 

equations with the population of four states: (1) the reservoir exciton-polaritons injected 

by the pump laser, np, (2) the s-wave ground state n  at  Γ, (3) the px-wave state nX at X, 

and (4) the d-wave state, nM at M. We introduced the radiative decay rate i, of the state 

i and the transition rate ij from i-state to j state. The four coupled rate equations are set 

up as: 
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From the phenomenological behaviour measured in experiments, we choose the 

following numerical values for the decay rate and the transition rates: p  = 1/300 (ps-1),  

M  = 1/10 (ps-1), X  = 1/10 (ps-1),   = 1/5 (ps-1), pM  = 1/20 (ps-1),  pX  = 1/100 (ps-1), 

p  = 1/100 (ps-1), MX  = 1/20 (ps-1), M  = 1/100 (ps-1), and X  = 1/40 (ps-1). The 

obtained result is presented in Fig. 2b. 

 

 

Supplement Figure 1. 

 

Figure S1. Theoretical near-field (NF) and far-field (FF) patterns in a weak 

potential.  The calculation is performed using single-particle plane-wave bases in a 

weak periodic lattice potential, and the NF (up panel) wavefunctions and FF intensity 

distributions (bottom panel) for the 1s (a), 2px (b), 3dxy (c) -orbital condensates are 

presented, where the white (violate) color indicates positive (negative) amplitudes in 

real space wavefunctions and the red (blue) color indicates high (low) positive intensity 

values in momentum space. The positions of circular traps (apertures) on the device 

surface are drawn with black circles by the removed background color. Whereas 1s-

orbital wavefunctions are connected in-phase between lattice sites, both 2px, 3dxy 

wavefunctions are connected with anti-phased manner. The anti-phased 2px, 3dxy 

wavefunctions in real space induce interference peaks at X and M points, respectively, 

in the momentum space. The relatively delocalized wavefunctions over a shallow 

potential landscape in the finite size lattice exhibit only the first-order interference peaks 

in comparison to the significant multiple-side peaks in the FF patterns for strong 

parabolic trap cases in Fig. 3. 

 
Supplement Figure S2. 

Figure S2. Energy-momentum dispersion characteristics. The cross-sectional 

energy-momentum dispersion relations are measured at P/Pth = 1 (Pth = 7 mW) (a) and 

5 

P/Pth ~ 7 (b), along the line 3 indicated in (c). It provides the energy values and the 

population of 2px condensate states. 
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