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The single-vortex problem in a strongly correlated bosonic system is investigated self-consistently within the
mean-field theory of the Bose-Hubbard model. Near the superfluid–Mott-insulator transition, the vortex core
has a tendency toward the Mott-insulating phase, with the core particle density approaching the nearest
commensurate value. If the nearest-neighbor repulsion exists, the charge-density wave order may develop
locally in the core. The evolution of the vortex configuration from the strong- to weak-coupling regions is
studied. This phenomenon can be observed in systems of rotating ultracold atoms in optical lattices and
Josephson-junction arrays.
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Vortices in charged or neutral superfluids(SF) can be cre-
ated by applying an external magnetic field[1] or by rotating
the system[2]. Properties of vortices are essential for under-
standing superfluidity[3,4]. Generally, vortices are topologi-
cal defects in the SF order parameter with a 2p phase wind-
ing around the core. The SF order is suppressed near the core
in an area characterized by the size of the healing lengthj.
As a result, other orders competing with the SF order may
develop there. In the context of high-Tc superconductors, it
was first proposed in the SO(5) theory that the vortex core is
antiferromagnetic in underdoped samples[5]. This theoreti-
cal prediction has now been confirmed by numerous experi-
ments [6]. Using the physics of the vortex core to study
competing orders of doped Mott insulators is an important
new direction in condensed-matter physics[7].

Quantized vortices have been observed in rotating sys-
tems of dilute ultracold alkali-metal atom gases[8,9], draw-
ing intense attentions both experimentally and theoretically
[10–17]. Most discussions up to now have been based on the
Gross-Pitaevskii-Bogoliubov(GPB) equations, which as-
sume that the particle density is given by the square of the
amplitude of the SF order parameter. Thus, the minimum
particle density is always located at the core, shown experi-
mentally as a dark region in vortex imaging.

Near the SF–Mott-insulator(MI ) transitions, the GPB
method ceases to work well. Theoretically, many investiga-
tions based on the Bose-Hubbard model are available now
[18,19] in the absence of rotation. The MI phases occur at
the commensurate(integer) fillings when the hopping ampli-
tude t is small compared with the Hubbard repulsionU.
Transitions into the SF phase are triggered by either increas-
ing t or changing the chemical potential. In the presence of
the nearest-neighbor repulsionW, the insulating charge-
density wave(CDW) phases appear at half-integer fillings.
However, the vortex configuration in this region has not been
fully investigated. Experimentally, tremendous progress has
been made in realizing the SF-MI transition in ultracold
atomic systems in optical lattices[20,21], as proposed in
Ref. [22]. It would be interesting to further generate vortices

FIG. 1. (a) The ground-state phase diagram for Bose-Hubbard
model atW=0 andV=0. Lines of equal particle densities are plot-
ted with kNl=2.5 to 1.5 from top to bottom.(b) The SF order pa-
rameterkal vs kNl at different values oft /U=0.1 to 0.01 from top
to bottom.
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in such systems. Alternatively, Josephson-junction arrays and
granular superconductors in magnetic fields are also possible
systems to study such vortices, where Cooper pairs behave
like composite bosons.

In this paper, we address the vortex configuration near the
SF-MI and SF-CDW transitions. In the former case, the vor-
tex core is close to the MI phase with a nearly commensurate
filling while the SF dominates in the bulk area. In the latter
case, the superfluid vortex with the CDW core behaves as a
“meron” topological defect of the three-vector pseudospin
order parameter. These strong-coupling configurations
evolve to the weak-coupling GPB vortex smoothly ast /U
increases. Although the discussion below is for the rotating
neutral bosonic system, it is also valid for the charged system
in the magnetic field. Theoretical predictions obtained in this
paper can be tested in these systems.

We study the two-dimensional(2D) Bose-Hubbard model
extended by a nearest-neighbor repulsionW in the rotating
frame
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with m the chemical potential,m the boson mass,VW =Vẑ the
rotation angular velocity, the positionrW related to the axis of

rotation, the vector potentialAW due to the Coriolis force,Vcf
the centrifugal potential, andVex the trapping potential.U is
scaled to 1. For the charged bosonic system in the magnetic

field BW , AW =se* /2"cdBW 3 rW instead and theVcf term is absent.

FIG. 2. Vortex configurations near the SF-MI phase boundary att /U=0.02 with bulk particle densitykNl=1.95 [in (a) and (b)] and
kNl=2.05[in (c) and(d)]. The left-hand sides[(a) and(c)] are the particle density distributions; the right-hand sides[(b) and(d)] are the SF
order distributions.
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This model can be solved self-consistently by the mean-
field (MF) approximation[18,22], by decoupling the intersite
terms as

a†srWidasrW jd < a†srWidkasrW jdl + si ↔ jd − ka†srWidlkasrW jdl,

nsrWidnsrW jd < nsrWidknsrW jdl + si ↔ jd − knsrWidlknsrW jdl.

kasrW jdl, knsrW jdl are expectation values on the MF ground
state, which is approximated by a product wave function of
the form uClG=PrWi

ucsrWidl. We cutoff each single-site Hilbert
space up to ten particles which is sufficient for experimental
valueskNl<1–3 [20]. The SF and CDW order parameters
are defined askasrWidl and s−1drifknsrWidl−kNlg, respectively,
where kNl is the bulk average particle density. This simple
MF theory describes the SF-MI transitions and extrapolates
well into the intermediate coupling region[18,19]. For ex-
ample, the relation of the SF orderkal vs t /U from the MF
theory is in good agreement with that of the Monte Carlo
simulations at both commensurate(integer) and incommen-
surate fillings[23].

Before discussing the vortex problem, it is helpful to re-
call the well-known phase diagram whenV=0 [18] [Fig.
1(a)]. From the equal density contours we can see an ap-
proximate particle-holesp-hd symmetry with respect tokNl
=2 near the phase boundary:m drops or increases with in-
creasingt /U whenkNlù2 or ,2, respectively. These can be
viewed as particle or hole SF, but this difference no longer
exists ast /U becomes large, wherem drops with increasing
t /U for both cases, i.e., the system evolves from the strong-
to weak-coupling region. In Fig. 1(b), SF order vskNl is
shown at different values oft /U. The SF order parameter
increases monotonically withkNl at large t /U, while the
commensurate filling suppresses the SF order prominently at
small t /U, eventually leading to the MI phase. Att /U
<0.08, the suppression disappears even atkNl=1, which
marks the crossover into the weak-coupling region.

We study the single-vortex problem in a 40a0340a0 (a0
being the lattice constant) system around which the circula-

tion of AW is 2p and thusV=h/ s2mL2dsL=40a0d correspond-
ingly. The rotation center is located at the center of the cen-
tral plaquette. We further simplify the problem by dropping
the Vex and Vcf terms, since they behave smoothly near the
center of the trap and they can cancel each other ifV is close
to the trap frequency.

Two typical vortex configurations near the SF-MI transi-
tion are shown in Figs. 2(a)–2(d) with t /U=0.02, where the
particle densities in cores are maximal or minimal, respec-
tively. The vortex core is located at the center of the
plaquette with the reduced SF order on the sites nearby.
Roughly speaking, the square of the superfluid amplitude,
ukalu2, is proportional toukNl−N0u near the transition, where
N0=2 here is the nearest commensurate value. The local par-
ticle density in the core should be closer to the commensu-
rate value in order to suppress the SF order. As a result, the
particle density reaches a maximum or minimum when the
bulk densitykNl is slightly smaller or larger than the com-
mensurate value. The former case can also be understood as

the vortex of the hole superfluid, where the hole density goes
to a minimum at the core. This contrasts with the case of
fermionic superfluidity, where the Cooper pairs are broken
into normal particles in the core with total particle density
almost unchanged, and also with the case of the weak-
coupling bosonic system where the only possibility is the
depletion of the core particle density. As we approach the
vortex core from outside, the hopping process is frustrated
and thus effectivelyt /U becomes small because of the phase
winding of the SF order. As a result, the vortex core is driven
closer to the MI state than the bulk area. We also check the
vortex configuration with integer value ofkNl=2 at the same
value of t /U, where the particle density distribution is uni-
form with suppressed SF order in the core.

We further discuss the evolution of the vortex core con-
figuration from the strong- to the weak-coupling regions. The
bulk particle density is fixed atkNl=1.95 with increasing
t /U as shown in Fig. 3. The SF order increases and the
healing lengthj decreases away from the SF-MI boundary
along this direction of evolution. On the other hand, the

FIG. 3. The evolution of vortex configurations atkNl=1.95 as
increasingt /U. SF amplitudes in(a) and particle densities in(b) are
shown along a path cut from(10,20) to (30,20) in the 40340 sys-
tem. t /U=0.02–0.08 from bottom to top in(a) and top to bottom
in (b).

VORTEX CONFIGURATIONS OF BOSONS IN AN… PHYSICAL REVIEW A 69, 043609(2004)

043609-3



weak-coupling expressionj /a0=Ît / sUkNld states thatj in-
creases with increasingt /U. Thus we can infer thatj’s mini-
mum value appears in the intermediate coupling region. The
vortex core with extra particle density survives untilt /U
<0.05–0.06, after which it crosses over gradually to that
with depleted particle density at larget /U. This transition
agrees with the behavior of the SF order vskNl when the
system is not in rotation. In that case, at the same filling
level, we check that the suppression due to the commensu-
rate filling also vanishes around a similar value oft /U. When
t /U is larger than 0.06, the vortex configuration is already
similar with the weak-coupling case. We also check the
above evolution with fixedkNl=2.05. The feature of SF or-
der is similar with that in Fig. 3(a), and the minimum particle
density is always located in the core. Whent /U is less than
an intermediated value around 0.05, the core particle density
is close to the commensurate value 2.0. Whent /U grows
larger, it drops further. This also agrees with the evolution
picture from strong- to weak-coupling physics.

Another evolution from the particlelike vortex core to the
holelike core with fixedt /U in the strong-coupling region

and varyingkNl is shown in Fig. 4(a). We choose the region
close to the MI phase withkNl=2, where the approximate
p-h symmetry is valid, witht /U fixed at 0.03 andkNl vary-
ing from 2.3 to 1.7. As a result, the difference between the
core particle density and the bulk value changes from nega-

FIG. 4. The evolution of vortex particle density distribution at
fixed t /U=0.03(a) and 0.02(b) with varying bulk valueskNl along
the same path in Fig. 3.(a) From top to bottom,kNl=2.3 to 1.7.(b)
From top to bottom,kNl=1.9 to 1.1.

FIG. 5. (a) Phase diagram of the extended Bose-Hubbard model
with W/U=0.1 aroundkNl=1.5. Lines of equal particle densities
are plotted withkNl=1.6 to 1.4 from top to bottom. The CDW(b)
and SF(c) order distributions in the vortex configuration near the
CDW phase witht /U=0.023 and bulk averagekNl=1.5.
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tive to positive as the bulk density passeskNl=2. This point
is the closest one to the tip of the MI phase along the evo-
lution, where the minimum of the SF order and the maxi-
mum of j also lie. In Fig. 4(b), such evolution is shown
along the patht /U=0.02 connecting two neighboring MI
phases withkNl=2 and 1. The core configuration is close to
the MI phase withkNl=2 on the top, and becomes close to
the MI phase withkNl=1 at the bottom. AroundkNl=1.55,
the density distribution becomes almost uniform. This point
is the maximum of the SF order and the minimum ofj be-
cause it is the farthest point from the MI, which is just op-
posite to Fig. 4(a). In both Figs. 4(a) and 4(b), the tendencies
to MI phase in the vortex core are strong when the average
kNl is close to an integer, and becomes weaker askNl moves
away from commensurate fillings.

Next we turn on the nearest-neighbor repulsionW/U
=0.1. In the absence of rotation, CDW phases appear be-
tween two neighboring commensurate MI phases at half-
integer fillings whent /U is small [24]. At large values of
t /U, SF phases stabilize as usual. Between the CDW and the
SF phases, the mean-field theory gives a small area of the
coexistence of CDW and SF orders, i.e., the supersolid phase
[24]. These are shown in Fig. 5(a) with the equal density
lines aroundkNl=1.5. It is well known that the hard-core
boson model can be mapped into spin-1/2XXZ model in a
magnetic field, and thus the CDW and SF orders can be
unified in a three-vector pseudospin picture. With the releas-
ing of the hard-core constraint, the above mapping is still
approximately valid in the sense that the spin-up and -down
states correspond to two nearest integer number states on
each site. The vortex configuration att /U=0.023 with bulk
particle densitykNl=1.5 is shown in Figs. 5(b) and 5(c). The
SF order dominates outside the core, while the CDW order
develops together with the suppression of the SF order in the
core. In the pseudospin picture, this is a kind of topological
defect called meron, where the pseudospin pointing alongz
axis at the origin gradually changes to lying in thex-y plane
with a winding number 1 around the origin when far from it.

This vortex configuration also evolves to the weak-coupling
one at large value oft /U with the disappearance of the CDW
order in the core. This situation is similar to the behavior of
the superspin in the SOs5d theory of the antiferromagnetic
vortex core[5,6].

In previous experiments, the vortex core with size 2j
<0.4 mm is too small to observe directly by optical meth-
ods. A time-of-flight expansion is needed before optical ab-
sorption imaging[9]. On the optical lattice, the vortex core is
larger. The typical core size in our calculations is estimated
at 5–6 lattice constanta0 (a0=0.426mm in Ref. [20]), i.e.,
about 2mm. The resonant probe laser beam can be focused
to this size at the level of current technology[25]. Thus
without turning off the trap, it is possible to image the core
particle density distribution nondestructively by scanning the
probe laser beam. It would be interesting to find the anoma-
lous vortex with the maximum particle density in the core.
Another possible realization is the Josephson-junction array.
The nonuniform charge distributions in the vortex configura-
tion result in electric fields[26]. Thus it is possible to deter-
mine the filling in the vortex core with respect to the outside
by measuring electric-field distributions.

In summary, we have studied vortex structures of the
strong-coupling boson systems. Near the SF-MI transition,
the vortex core is more strongly coupled compared to the
bulk area and is thus closer to the MI phase with suppressed
SF order. The particle density in the core can be either the
maximum or the minimum of the whole system, always ap-
proaching the nearest commensurate density of the Mott in-
sulator. Near the SF-CDW transition, a superfluid meronlike
vortex is found with a CDW core. All of these strong-
coupling vortex configurations evolve to the conventional
weak-coupling one ast /U increases.
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