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Strongly interacting systems have been conjectured to spontaneously develop current carrying ground states
under certain conditions. We demonstrate the existence of a commensurate staggered interlayer current phase
in a bilayer model by using the recently discovered quantum Monte Carlo algorithm without the sign problem
for fermionic systems. A pseudospinSUs2d algebra and the corresponding anisotropic spin-1 Heisenberg model
are constructed to show the competition among the staggered interlayer current, rung singlet, and charge
density wave phases.

DOI: 10.1103/PhysRevB.70.220505 PACS number(s): 74.20.Mn, 71.10.Fd, 71.10.Hf, 71.30.1h

Strongly correlated systems can spontaneously break
symmetries of the microscopic Hamiltonian. A particularly
interesting class of ground states spontaneously break the
time reversal symmetry and carry a persistent current in the
ground state. Such states are known by different synonyms,
e.g. the orbital antiferromagnetic phase, the staggered flux
(SF), or theD-density wave(DDW) phase. In the context of
high Tc superconductivity, these current carrying ground
states have been proposed as competing states for the
pseudogap phase.1–6 The SF or the DDW phase has the at-
tractive feature that the nodal quasiparticles have an energy
spectrum similar to that of thed-wave superconducting state.
The incommensurate SF phase was also proposed to explain
the hidden order phenomenon in the URu2Si2 system.7

Whenever new ground states are proposed, it is important
to establish for which microscopic Hamiltonian such states
are realized. Because of the availability of reliable analytical
and numerical methods, the ladder system has been used as a
theoretical laboratory to investigate the DDW phase. Weak
coupling bosonization methods combined with the renormal-
ization group analysis on extended two-leg Hubbard ladders
show the existence of a commensurate DDW phase at
half-filling8–10 and incommensurate power law fluctuating
DDW order away from half-filling.9,11,12 While the DDW
state does not appear to be the ground state of thet-J
ladder,13,14 numerical works using the density matrix renor-
malization group found commensurate DDW order at
half-filling15 and incommensurate DDW order at low
doping16 in a ladder model first proposed by Scalapino,
Zhang, and Hanke,17 which is commonly referred as to the
SZH model. The work of Schollwöcket al. has generated
significant interest in connection with the DDW proposal for
the cuprates.5

To the best of our knowledge, the existence of a current
carrying ground state has not been conclusively demon-
strated in any higher dimensional models. We investigate the
current carrying ground state in a bilayer version of the SZH
model, which was constructed and extensively investigated
because of the exactSOs5d symmetry when coupling con-
stants satisfy a simple relation.18–21 Here we show that the

recently discovered fermionic quantum Monte Carlo(QMC)
algorithm without the sign problem22 can also be applied
here at and away from half-filling. Thus we can conclusively
demonstrate the existence of a current carrying ground state
as illustrated in Fig. 1 with staggered interlayer currents
(SIC) between the bilayers and alternating source to drain
currents within the bilayers. Viewed from the top, this cur-
rent pattern has ans-wave symmetry. While the DDW cur-
rents are divergence-free within the layer, the SIC current is
curl-free within the layer. These two patterns can be consid-
ered as dual to each other in two dimensions. In this paper,
we shall first discuss the physics of the SIC phase by map-
ping onto an effective spin one antiferromagnetic(AF)
Heisenberg model, and then proceed with the QMC results.

The Hamiltonian for the SZH model17 generalized
straightforwardly to the bilayer system reads

FIG. 1. (a) Sketch of a SIC phase. For clarity, we do not show
the bottom layer current. By conservation, each site acts as a source
or drain for the current within the bilayers.(b) The top view of the
the bilayer.(c) A sketch of the SF or the DDW current pattern for
comparison.
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wherec and d denote fermionic operators in the upper and
the lower layers, respectively, ands corresponds to up and
down spins. At half-filling,m=0, and the model is particle-
hole symmetric.ti=1 sets the unit of energy. The SZH model
was known to have aSOs5d symmetry whenJ=4sU+Vd and
m=0, which unifies antiferromagnetism with super-
conductivity.17 Remarkably, it also has anotherSOs5d sym-
metry in the particle-holesp-hd channel when

J = 4sU − Vd, t' = 0 s2d

is valid for all filling factors. We denote the former particle-
particle SOs5d symmetry as SOs5dpp and the later
p-h SOs5d symmetry asSOs5dph. The mathematical structure
associated with theSOs5dp-h algebra, not necessarily the
symmetry itself, plays a crucial role in constructing the fer-
mionic QMC algorithm without minus sign problem.

We construct a four component fermion field
C=hcs ,dsj. Using the five DiracGa matrices given in Ref.
22, we construct the fermion bilinears

na = C†Ga

2
C Lab = C†Gab

2
C.

It is straightforward to check thatfH ,Labg=0 when Eq.(2) is
satisfied, thus demonstrating the exactSOs5dph symmetry.
The SZH model can be mapped exactly to the spin 3/2 Hub-
bard model,22 by the identification c↑=c3/2, c↓=c1/2, d↑
=c−1/2, d↓=c−3/2, and theSOs5dph symmetry maps exactly
onto theSOs5d symmetry of the spin 3/2 Hubbard model.
Thanks to this mapping, we are able to use the QMC algo-
rithm discovered in Ref. 22, which has no minus sign prob-
lem in a large parameter regime

Scalapinoet al. identified the phases where either the rung
singlet state[Fig 2(b)], or the charge-density wave(CDW)
states[Figs. 2(a) and 2(c)] are the lowest energy states.17

References 15 and 16 reveal that the competition between

these two phases could result in the DDW phase. In view of
this insight, let us consider the following operators:

n1sid = i/2o
s

hcs
†siddssid − ds

†sidcssidj,

n5sid = 1/2o
s

hcs
†siddssid + ds

†sidcssidj,

Qsid = L15 = 1/2o
s

hcs
†sidcssid − ds

†siddssidj.

These operators describe rung currentsn1d, rung kinetic en-
ergy sn5d, and the CDW order parametersQd, which form a
pseudospinSUs2d algebra and commutes with the spinSUs2d
algebra. The three-spin singlet rung states shown in Fig. 2
form a spin-1 representation of this algebra with eigenvalues
Q=1, 0, −1.

At half-filling and under the condition that maxsU ,V
−3/4Jd,minsV+J/4 ,U+2V,U /2+Vd, these states are the
three lowest energy states, which become degenerate atU
=V−3/4J. In the strong coupling limit, we can construct an
effective pseudospin-1 antiferromagnetic(AF) Heisenberg
model as

Hex= Jpo
ki,jl

hn5sidn5s jd + n1sidn1s jd + QsidQs jdj, s3d

with Jp=2ti
2/ sV+ 3

4Jd. Several terms break the pseudospin
SUs2d symmetry. The intrarung hoppingt' term acts as an
uniform external magnetic field which couples ton5. Also,
the deviation ofU from V−3/4J removes the degeneracy
between thea, c, andb states. These can be described by the
on site part as

Hon = o
i

h− 2t'n5sid + DUfQ2sid − 1/2gj s4d

where DU=U−sV−3/4Jd. The nonzero value ofDU also
gives different corrections to the three exchange terms at the
order ofJpDU /U, which are small compared to theDU term
and thus neglected.H=Hex+Hon describes a two-
dimensional(2D) AF spin one Heisenberg model in an uni-
form magnetic fieldt', with either easy axissDU,0d or
easy planesDU.0d anisotropy.

For the easy axis case, the effective Hamiltonian reduces
to an Ising model withQ= ±1 states, in a transverse mag-
netic field as in Refs.10 and 17. Fort'=0 andDU.0, the
rung singlet statesbd has the lowest energy. However, there
is a competition between theDU term and the exchangeJp
term. ForDU.zJp, wherez=4 is the coordination number,
the ground state can be described as a product of each rung
singlet state. On the other hand, forDU,zJp, it is more
favorable to develop a staggered ground state expectation
value of kn1l and kn5l spontaneously. In this case witht'

=0, the pseudospin vector can lie along in any direction in
the sn1,n5d plane. On the other hand, atDU=0, a finite value
of t'.0 corresponds to a pseudospin magnetic field along
the n5 direction, which creates an easysn1,Qd space. The
staggered component of the pseudospin lies in thesn1,Qd
plane, while the uniform one points along then5 direction.

FIG. 2. The double occupancy statesa andc and the rung sin-
glet b (a), (b) and (c) are spinSUs2d singlets and form the triplet
representation of the pseudospinSUs2d group.
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The pseudospin moment becomes fully polarized whent'

. sz/2dJp, and the AF component vanishes beyond this
point. We see thatt'.0 favors thesn1,Qd easy plane, while
DU,zJp favors the sn1,n5d easy plane. Therefore, when
both conditions are present, the intersection between the two
easy planes, namely then1 easy axis, is selected. This is
exactly the staggered interlayer current order. Combining all
these considerations, we can summarize the subtle criteria
for the SIC phase as

V −
3

4
J , U , minSV +

J

4
,2VD, V . 0

t' ,
1

2
zJp

Î1 − sDU/zJpd2, DU , zJp, s5d

The first two robust conditions ensure that thea, b, and c
states are the three lowest energy states, while the last two
conditions are the rough mean field estimates discussed
above.

In Fig. 3, we show some specific regions on the phase
diagram in the strong coupling limit. There are two addi-
tional axes forti and t'. If ti and/or t' gets larger, we can
expect some phases to have larger or smaller extensions. In
the case of ladders, a similar phase diagram has been
proposed.10,16 In order to obtain significant current correla-
tions, one should be close enough from the lineV=U
+3/4J where statesa, b, andc become degenerate.

Now we proceed to discuss the QMC calculation of the
SIC phase. We first express the interaction terms of the SZH
model as

Hint = −
g

2
sn1

2 + n5
2d −

g8

2
sn2

2 + n3
2 + n4

2d −
Uc

2
sn − 2d2, s6d

with 4Uc=−U−3V+3J/4 , 4g=V−U+3J/4 and 4g8=U−V
+J/4. TheSOs5dph symmetry is recovered wheng=g8, i.e.,
U=V+J/4. We now introduce auxiliary Hubbard-
Stratonovich fields to decouple each of the three terms
above. Wu, Hu, and Zhang22 have shown that the QMC al-
gorithm is free of the minus sign problem provided all three
coefficients:g, g8, and Uc are positive. It corresponds to a
wedge in the phase diagram shown in Fig. 3, and most re-
markably, it includes a region with purely repulsive interac-
tions, whereU , V, and J are all positive. A simpler case
containing onlyn4

2 interaction, which explicitly breaks the
SUs2d spin rotation invariance, has been studied in another
context.23 The ground-state(GS) properties of our model are
conveniently studied with the projector auxiliary field QMC
algorithm. The basic idea is to apply the operator
exps−uHd to a trial state. Whenu becomes large enough and
with a proper normalization, this state converges exponen-
tially to the GS. Details of the algorithm may be found in
Ref. 24.

We compute correlations between rung currentsn1srWd and
perform its Fourier transform

JsqWd =
1

N
o

rW
eiqW·rWo

i

kn1sidn1si + rWdl. s7d

The strongest signal in the Fourier transform is found for

QW =sp ,pd, suggesting a staggered current pattern as shown
in Fig. 1. This quantity converges to its GS value as the
projector parameteru increases as shown in the inset of Fig.

FIG. 3. (Color online) Phase diagram in the strong coupling
limit. Two SOs5d lines are shown as well as QMC region with no
minus sign problem for any filling(hatched area): g.0, g8.0, and
Uc.0. There is also another region withV,0 (not shown). In the
yellow region, the low-energy bosonic states area, b, and c as
shown in Fig. 2. This is where we expect the competition between
the SIC and the rung-singlet phase. Black dots correspond to where
the QMC simulations are performed.

FIG. 4. (Color online) Parameters aret'=0.1, U=0, V=0.5,
andJ=2.0 and correspond tog=0.25,g8=0, andUc=0. The scal-

ing of JsQW d /N andJsL /2 ,L /2d vs 1/L shows almost no finite-size
effects and proves long-range order in the thermodynamic limit.

(The inset shows the convergence ofJsQW d /N with the projection
parameteru. Typically the GS value is obtained foru=20.)
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4. In order to obtain information in the thermodynamic limit,
one has to make an extrapolation of these GS values with a
1/L finite-size scaling, whereL is the linear size(L=4, 6,
and 8 in our simulations). Note that the total number of sites
is N=2L2.

Following our previous mean-field arguments, in order to
prefer a phase with staggered current, we chooseg.g8 and
Uc=0, with a small t'. As shown on Fig. 4 forU=0, V
=0.5, andJ=2, andt'=0.1, our values are rather constant

with size, as expected in an Ising-like phase. Both the largest
distance real-space correlationsJsL /2 ,L /2d and the Fourier

transformJsQW d /N converge to the same finite value(within
error bars), meaning long-range order in the thermodynamic
limit.

As expected from our analytical estimates in(5), if DU or
t' gets too large, long-range order disappear as shown in Fig.
5. Since we can also perform the QMC simulation at finite
doping without the sign problem, we have chosen to work at
1/8 doping for some parameters shown on Fig. 5. Again,
rung-current correlations vanish in the thermodynamic limit
since the Fermi surface is not nested anymore.

From the analytical estimates based on the mapping to the
spin one antiferromagnetic Heisenberg model and the de-
tailed fermion QMC calculations without the sign problem,
we can demonstrate the existence of the SIC phase at half-
filling in a bilayer model. We have also shown that this rather
subtle phase can be easily destabilized by largeU and dop-
ing; therefore, the findings of this work severely constrain
the possibility of current carrying ground states in the high
Tc cuprates. The parameter range of stability discovered in
this work could guide the search of the current carrying
ground states in other strongly correlated systems, for ex-
ample, the heavy fermion systems.
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FIG. 5. Finite-size scaling of the current correlationsJsQW d /N
showing no long-range order in the thermodynamic limit. The pa-
rameters are(i) the same as Fig. 4 except fort'=0.5; (ii ) U=V
=0.3, J=1.6, andt'=0.5 at half-filling; (iii ) U=0.75,V=0, J=1,
and t'=0 at 1/8 doping. Typically the GS value is obtained foru
=20.
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