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Strongly interacting systems have been conjectured to spontaneously develop current carrying ground states
under certain conditions. We demonstrate the existence of a commensurate staggered interlayer current phase
in a bilayer model by using the recently discovered quantum Monte Carlo algorithm without the sign problem
for fermionic system#\ pseudospirBU(2) algebra and the corresponding anisotropic spin-1 Heisenberg model
are constructed to show the competition among the staggered interlayer current, rung singlet, and charge
density wave phases.
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Strongly correlated systems can spontaneously breatecently discovered fermionic quantum Monte Ca@MC)
symmetries of the microscopic Hamiltonian. A particularly algorithm without the sign probleth can also be applied
interesting class of ground states spontaneously break theere at and away from half-filling. Thus we can conclusively
time reversal symmetry and carry a persistent current in thdemonstrate the existence of a current carrying ground state
ground state. Such states are known by different synonymss illustrated in Fig. 1 with staggered interlayer currents
e.g. the orbital antiferromagnetic phase, the staggered flugSIC) between the bilayers and alternating source to drain
(SP), or theD-density wavgDDW) phase. In the context of currents within the bilayers. Viewed from the top, this cur-
high T. superconductivity, these current carrying groundrent pattern has aswave symmetry. While the DDW cur-
states have been proposed as competing states for tignts are divergence-free within the layer, the SIC current is
pseudogap phase? The SF or the DDW phase has the at- curl-free within the layer. These two patterns can be consid-
tractive feature that the nodal quasiparticles have an energyed as dual to each other in two dimensions. In this paper,
spectrum similar to that of thé-wave superconducting state. \ye shall first discuss the physics of the SIC phase by map-
The incommensurate SF phase_ was also_ propose7d to exPIa;_i;'fhg onto an effective spin one antiferromagneti&F)
the hidden order phenomenon in the UBi system: Heisenberg model, and then proceed with the QMC results.

to establsh for which microscopic Hamitonian such states., M. Hamitonian for the SZH modd! generaized
P traightforwardly to the bilayer system reads

are realized. Because of the availability of reliable analyticaF
and numerical methods, the ladder system has been used as
theoretical laboratory to investigate the DDW phase. Weak
coupling bosonization methods combined with the renormal-
ization group analysis on extended two-leg Hubbard ladders
show the existence of a commensurate DDW phase a
half-filling®° and incommensurate power law fluctuating
DDW order away from half-filling'%12 While the DDW
state does not appear to be the ground state oftibhe (a)
ladder!®14 numerical works using the density matrix renor-
malization group found commensurate DDW order at
half-filling® and incommensurate DDW order at low
doping® in a ladder model first proposed by Scalapino,
Zhang, and Hank#, which is commonly referred as to the
SZH model. The work of Schollwockt al. has generated
significant interest in connection with the DDW proposal for
the cuprates.

To the best of our knowledge, the existence of a current
carrying ground state has not been conclusively demon-
strated in any higher dimensional models. We investigate the fiG. 1. (a) Sketch of a SIC phase. For clarity, we do not show
current carrying ground state in a bilayer version of the SZHne hottom layer current. By conservation, each site acts as a source
model, which was constructed and extensively investigatedr drain for the current within the bilayergb) The top view of the
because of the exa@Q55) symmetry when coupling con- the bilayer.(c) A sketch of the SF or the DDW current pattern for
stants satisfy a simple relatidf?* Here we show that the comparison.
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T ‘ these two phases could result in the DDW phase. In view of
this insight, let us consider the following operators:

- (i) =172 {chi)d, (i) — df (i)e, ()},

‘ l ng(i) = 1723 {c}(i)d, (i) + d(i)c, (i)},
(a) {b) (c) o
FIG. 2. The double occupancy sta@sndc and the rung sin- N =L.e=1/2> 1t e (i) - dii)d ().
gletb (a), (b) and(c) are spinSU(2) singlets and form the triplet Q)= Lis g{ o(1Co(1) = dy(D)d, ()}

representation of the pseudos|8t2) group. . .
P P M group These operators describe rung currém, rung kinetic en-

ergy (ns), and the CDW order parameté®), which form a

H=- tuz {chej, +dld,+H.c.}- hz {c],dis pseudospirBU(2) algebra and commutes with the sighi(2)
@ ! algebra. The three-spin singlet rung states shown in Fig. 2
+H.c.}- #E {CiTaCi ot di‘rgdi S+ > é . é g fé)rrri aospiri—l representation of this algebra with eigenvalues
I I ] ) .
At half-filling and under the condition that mex,V
+ UE (N e 12)(y o= L2 + (N1 g— LN | g -3/43) <min(V+J/4,U+2V,U/2+V), these states are the
! three lowest energy states, which become degenerdte at
—1/2+V2 (N .~ (N 4= 1), (1)  =V-3/4J. In the strong coupling limit, we can construct an
i ’ ' effective pseudospin-1 antiferromagnetiaF) Heisenberg
L . model as
wherec andd denote fermionic operators in the upper and
the lower layers, respectively, andcorresponds to up and HeX:JpE {ng()ns(j) + Ny (Hmy(j) + QHQG)},  (3)
down spins. At half-filling,.x=0, and the model is particle- (i.j)

hole symmetrict,=1 sets the unit of energy. The SZH model
was known to have 8Q5) symmetry whend=4(U+YV) and
©#=0, which unifies antiferromagnetism with super-
conductivity!” Remarkably, it also has anoth&8Q(5) sym-
metry in the particle-holép-h) channel when

with Jp:2tf/(v+%J). Several terms break the pseudospin
SU2) symmetry. The intrarung hopping term acts as an
uniform external magnetic field which couples ng Also,

the deviation ofU from V-3/4J removes the degeneracy
between tha, c, andb states. These can be described by the

J=4U-V), t, =0 (2) on site part as

is valid for all filling factors. We denote the former particle- Hon= > {~ 2t ng(i) + AU[Q?(i) — 1/2]} (4)
particle SQ5) symmetry as SQ5),, and the later i

p-h SA5) symmetry asSQA5),,. The mathematical structure \ypere AU=U-(V-3/4J). The nonzero value oAU also
associated with theSQ5),, algebra, not necessarily the giyes different corrections to the three exchange terms at the

symmetry itself, plays a crucial role in constructing the fer-grder ofJ,AU/U, which are small compared to theJ term
mionic QMC algorithm without minus sign problem. and thus neglected.H=H+H,, describes a two-

We  construct a four component fermion field dgimensional2D) AF spin one Heisenberg model in an uni-
¥={c,,d,}. Using the five Dirad’, matrices given in Ref. form magnetic fieldt,, with either easy axi§AU<O0) or

22, we construct the fermion bilinears easy planéAU > 0) anisotropy.
T, Tap For the easy axis case, the effective Hamiltonian reduces
na=‘I’TE\I’ Lab=‘I’T?‘I’. to an Ising model withQ=+1 states, in a transverse mag-

netic field as in Refs.10 and 17. Fbr=0 andAU >0, the

It is straightforward to check thgH,L,,]=0 when Eq(2)is  rung singlet statéb) has the lowest energy. However, there
satisfied, thus demonstrating the ex&(5),, symmetry. is a competition between theU term and the exchangs,
The SZH model can be mapped exactly to the spin 3/2 Hubterm. ForAU>zJ,, wherez=4 is the coordination number,
bard modeP? by the identification c;=czp,, ¢;=c;pp, d;  the ground state can be described as a product of each rung
=C_yp, d,=C_g;, and theSQ5),, symmetry maps exactly singlet state. On the other hand, fatJ<zJ, it is more _
onto theSQ(5) symmetry of the spin 3/2 Hubbard model. favorable to develop a staggered ground state expectation
Thanks to this mapping, we are able to use the QMC algovalue of (n;) and (ns) spontaneously. In this case with
rithm discovered in Ref. 22, which has no minus sign prob=0, the pseudospin vector can lie along in any direction in
lem in a large parameter regime the (ny,ns) plane. On the other hand, AtJ=0, a finite value

Scalapincet al.identified the phases where either the rungof t; >0 corresponds to a pseudospin magnetic field along
singlet state[Fig 2(b)], or the charge-density way€DW) the ns direction, which creates an easy,;,Q) space. The
states[Figs. da) and 2c)] are the lowest energy stat¥ls. staggered component of the pseudospin lies in(theQ)
References 15 and 16 reveal that the competition betweeplane, while the uniform one points along the direction.
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@ Cbw | | FIG. 4. (Color onling Parameters ar¢, =0.1,U=0, V=0.5,
0 1 0 1 9 3 andJ=2.0 and correspond 1©9=0.25,g9’ =0, andU.=0. The scal-
ing of J(Q)/N andJ(L/2,L/2) vs 1/L shows almost no finite-size
U/V effects and proves long-range order in the thermodynamic limit.

(The inset shows the convergenceﬂf@)/N with the projection
FIG. 3. (Color online Phase diagram in the strong coupling Parameter. Typically the GS value is obtained fa=20)
limit. Two SQ5) lines are shown as well as QMC region with no
minus sign problem for any fillinghatched argag>0, g’ >0, and Now we proceed to discuss the QMC calculation of the

Uc>0. There is also another region with<0 (not shown. Inthe  S|C phase. We first express the interaction terms of the SZH
yellow region, the low-energy bosonic states areb, andc as  model as

shown in Fig. 2. This is where we expect the competition between
the SIC and the rung-singlet phase. Black dots correspond to where 9,5, o 9,5, - L, U
the QMC simulations are performed. Hine =~ E(nl +ng) - E(nz +N3+ng) - ?C(n -2)?, (6)

The pseudospin moment becomes fully polarized when Wwith 4U;=-U-3V+3J/4, 49=V-U+3J/4 and 4'=U-V
>(2/2)J,, and the AF component vanishes beyond thistJ/4. The SQ5),, symmetry is recovered whegrg', i.e.,
point. We see that, >0 favors the(n;, Q) easy plane, while U=V+J/4. We now introduce auxiliary Hubbard-
AU<z], favors the(ny,ns) easy plane. Therefore, when Stratonovich fields to decouple each of the three terms
both conditions are present, the intersection between the waPove. Wu, Hu, and Zhafjhave shown that the QMC al-
easy planes, namely the easy axis, is selected. This is gorithm is free of the minus sign problem provided all three
exactly the staggered interlayer current order. Combining alfoefficients:g, g, and U are positive. It corresponds to a

these considerations, we can summarize the subtle criter¥€dge in the phase diagram shown in Fig. 3, and most re-
for the SIC phase as markably, it includes a region with purely repulsive interac-

tions, whereU, V, andJ are all positive. A simpler case

3 J containing onlynf1 interaction, which explicitly breaks the
V- ZJ <U< min<V+ Z'2V>’ V>0 SU(2) spin rotation invariance, has been studied in another

context?® The ground-stat€GS) properties of our model are

conveniently studied with the projector auxiliary field QMC
1 —— algorithm. The basic idea is to apply the operator

t < EZJp\"l —(AU/zY)%, AU <z], (5 exp(-6H) to a trial state. Whem becomes large enough and
with a proper normalization, this state converges exponen-

The first two robust conditions ensure that theb, andc tial:cy to the GS. Details of the algorithm may be found in
ef. 24.

states are the three lowest energy states, while the last W i
conditions are the rough mean field estimates discussed e compute correlations between rung currents) and

above. perform its Fourier transform
In Fig. 3, we show some specific regions on the phase 1
diagram in the strong coupling limit. There are two addi- J(G) = NE 9> (ny(i)ny(i +1)). 7
F i

tional axes fort; andt, . If t, and/ort, gets larger, we can

expect some phases to have larger or smaller extensions. In ) ) ) )

the case of ladders, a similar phase diagram has bee-Ehe strongest signal in the Fourier transform is found for

proposed?®®In order to obtain significant current correla- Q=(, ), suggesting a staggered current pattern as shown
tions, one should be close enough from the IlMeU in Fig. 1. This quantity converges to its GS value as the
+3/4J where states, b, andc become degenerate. projector parametef increases as shown in the inset of Fig.
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06— T T T T with size, as expected in an Ising-like phase. Both the largest
0—o (i) distance real-space correlatiofid./2,L/2) and the Fourier
o—a (i) ] transformj(é)/N converge to the same finite val@eithin
004 o—o (ili) error barg, meaning long-range order in the thermodynamic
=T ] limit.
< As expected from our analytical estimateq%), if AU or
g t, gets too large, long-range order disappear as shown in Fig.

5. Since we can also perform the QMC simulation at finite
002 | T doping without the sign problem, we have chosen to work at
1/8 doping for some parameters shown on Fig. 5. Again,
rung-current correlations vanish in the thermodynamic limit
since the Fermi surface is not nested anymore.
h 003 o o.|15 . sz . OA'25 — From the a_nalytlcal estimates based on the mapping to the
UL spin one antiferromagnetic Heisenberg model and the de-
tailed fermion QMC calculations without the sign problem,
FIG. 5. Finite-size scaling of the current correlatiqigQ)/N ~ We can demonstrate the existence of the SIC phase at half-
showing no long-range order in the thermodynamic limit. The pa.fl”lng ina bilayer model. We have also shown that this rather
rameters ardi) the same as Fig. 4 except for=0.5; (i) U=V  subtle phase can be easily destabilized by lasgand dop-
=0.3,J=1.6, andt, =0.5 at half-filling; (i) U=0.75,v=0,J=1, ing; therefore, the findings of this work severely constrain
andt, =0 at 1/8 doping. Typically the GS value is obtained for the possibility of current carrying ground states in the high
=20. T, cuprates. The parameter range of stability discovered in
this work could guide the search of the current carrying

4. In order to obtain information_ in the thermodynamic Iimit, ground states in other strongly correlated systems, for ex-
one has to make an extrapolation of these GS values with Zmple, the heavy fermion systems.

1/L finite-size scaling, wheré is the linear sizgL=4, 6,

and 8 in our simulations Note that the total number of sites ~ This work is supported by the NSF under Grant No.

is N=2L2. DMR-0342832 and the US Department of Energy, Office of
Following our previous mean-field arguments, in order toBasic Energy Sciences under Contract No. DE-ACO03-

prefer a phase with staggered current, we cha@psg’ and  76SF00515. S.C. thanks IDRI®rsay and SLAC (Stan-

U.=0, with a smallt,. As shown on Fig. 4 fold=0,V  ford) for allocation of CPU time. C.W. is also supported by

=0.5, andJ=2, andt, =0.1, our values are rather constant Stanford University.
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