
px,y-orbital counterpart of graphene: Cold atoms in the honeycomb optical lattice

Congjun Wu1 and S. Das Sarma2

1Department of Physics, University of California, San Diego, California 92093, USA
2Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

�Received 27 December 2007; revised manuscript received 12 May 2008; published 11 June 2008�

We study the ground-state properties of the interacting spinless fermions in the px,y-orbital bands in the
two-dimensional honeycomb optical lattice, which exhibit different features from those in the pz-orbital system
of graphene. In addition to two dispersive bands with Dirac cones, the tight-binding band structure exhibits
another two completely flat bands over the entire Brillouin zone. With the realistic sinusoidal optical potential,
the flat bands acquire a finite but much smaller bandwidth compared to the dispersive bands. The band flatness
dramatically enhanced interaction effects giving rise to various charge and bond ordered states at commensu-
rate fillings of n= i

6 �i=1–6�. At n= 1
6 , the many-body ground states can be exactly solved as the close-packed

hexagon states which can be stabilized even in the weakly interacting regime. The dimerization of bonding
strength occurs at both n= 1

2 and 5
6 , and the latter case is accompanied with the charge-density wave of holes.

The trimerization of bonding strength and charge inhomogeneity appear at n= 1
3 , 2

3 . These crystalline orders
exhibit themselves in the noise correlations of the time-of-flight spectra.
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I. INTRODUCTION

There has been tremendous progress during the past de-
cade in cold atom physics. In the early days, Bose-Einstein
condensation was first realized in magnetic traps by using
dilute alkali atoms,1,2 where interaction effects are weak.
Later on, important achievements have been made to realize
strongly correlated systems by using optical lattices. The ma-
jor advantage of optical lattices is the excellent controllabil-
ity of interaction strength. For example, the superfluid to
Mott insulator transition of bosons has been experimentally
observed.3 Recently, cold atom physics in optical lattices is
merging with condensed-matter physics, which provides a
wonderful opportunity to explore new states of matter.

An important aspect of strongly correlated systems is or-
bital physics, which studies an additional degree of freedom
independent of charge and spin. In many transition-metal
oxides, the d orbitals are partially filled, which enables the
orbital degree of freedom to be active. Orbital physics is
characterized by orbital degeneracy and spatial anisotropy of
orbital orientation. The interplay between orbital, spin, and
charge degrees of freedom gives rise to many interesting
phenomena such as metal-insulator transitions, superconduc-
tivity, and colossal magnetoresistance.4–6

Orbital degrees of freedom also exist in optical lattices.
Although most of current research of cold fermions and
bosons focuses on the lowest s-orbital bands, large progress
has been made in high orbital bands. An important advantage
of optical lattices is the rigidity of lattices. They are free
from the Jahn-Teller-type lattice distortion which often oc-
curs in transition-metal oxides and quench the orbital de-
grees of freedom. Orbital physics in optical lattices exhibits
other features which are not usually realized in solid-state
systems. Recently, the properties of bosons in the first-
excited p-orbital bands have been attracting a great deal of
attention.7–14 Scarola and Das Sarma7 proposed to realize the
supersolid state by using bosons in the high orbitals to gen-
erate the next-nearest-neighbor interaction. Isacsson and

Girvin8 investigated the subextensive Z2 symmetry of the
p-orbital bosons in the square lattice and its consequential
nematic superfluidity. Liu and Wu9 and Kuklov10 studied the
antiferromagnetic ordering of the on-site orbital angular-
momentum moment. It was also proposed in Ref. 9 to en-
hance the lifetime of p-orbital bosons by using a Bose-Fermi
mixture to reduce the available phase space of decay process
of bosons. Wu et al.11 further investigated the superfluid and
Mott-insulating states of p-orbital bosons in the frustrated
triangular lattice and found a novel stripe phase of orbital
angular momentums. Xu and Fisher12 studied a model of
bond algebraic liquid phase and phase transitions in the an-
isotropic xy models13 in the context in the p-orbital boson
systems.

On the experimental side, the progress of orbital physics
with cold atoms has also been truly exciting, which opens up
the new opportunity to study orbital physics. Browaeys et
al.15 and Kohl et al.16 demonstrated the population of high
orbital bands with both bosons and fermions. Furthermore,
Sebby-Strabley et al.17 successfully pumped bosons into the
excited bands in the double-well lattice. More recently, ex-
citing progress has been made by Muller et al.18 to realize
the metastable p-orbital boson systems by using the stimu-
lated Raman transition to pump bosons to high orbital bands.
The spatially anisotropic phase coherence pattern has been
observed in the time-of-flight �TOF� experiments. This opens
up an experimental direction to investigate condensates of
bosons in the excited p bands.

On the other hand, fermions in the p-orbital bands also
possess interesting behaviors.19–22 Recently, Wu et al.19 stud-
ied the flat band structure in the px,y-orbital physics in the
honeycomb lattice. Compared to the pz-orbital system of
graphene, which has been attracting tremendous attention
since the discovery of the quantum Hall effect therein,23–25

the px,y-orbital honeycomb systems exhibit even richer phys-
ics. In graphene, the active bands near the Fermi energy are
“�” type, composed of the pz orbital directly normal to the
graphene plane, thus graphene is not a good system to inves-
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tigate orbital physics. In contrast, it is the other two p orbit-
als �px,y� that lie in plane and exhibit both orbital degeneracy
and spatial anisotropy, giving rise to the interesting flat band
physics.19 In solid-state systems of graphene and MgB2, px,y
orbitals hybridize with the s orbital, resulting in the
�-bonding �the sp2 hybridization� band. This � band is fully
filled and inert in graphene but is partly filled and contributes
to the two-band superconductivity in MgB2.26 Due to the
large s-orbital component, the essential feature of orbital
physics, orbital anisotropy, is not prominent in these two
systems. In contrast, the px,y-orbital bands in optical lattices
are well separated from the s band with negligible hybridiza-
tion, providing a unique opportunity to study the pure
px,y-orbital physics in the honeycomb lattice. This research
will provide us another perspective in the honeycomb lattice
and is complementary to the recent research focus on the
single band system of graphene. Other works of the p-orbital
fermions include the investigation of orbital exchange phys-
ics in the Mott-insulating states finding various orbital order-
ing and frustration behaviors20,22 and the study of the possi-
bility to enhance the antiferromagnetic ordering of fermions
in the p orbital of three-dimensional cubic lattices.21

Interaction effects in the px,y-orbital honeycomb optical
lattices can be much stronger than those in the pz-orbital
graphene systems. In real graphene the dimensionless cou-
pling constant rs=e2 / ���v� has a maximum value of 2.3
in vacuum �and rs�1 for the current available graphene
samples on SiO2 or SiC substrates�, taking v=106 cm /s.
Thus graphene is very far from the rs=39 regime needed for
Wigner crystallization.27 Much of graphene interaction
physics is described by perturbative weak-coupling renor-
malizations of the quasiparticle spectral function, as shown
both theoretically and experimentally.28–30 Furthermore,
real graphene physics is complicated by electron-phonon
interactions.31 In contrast, in the px,y-orbital honeycomb lat-
tice systems, the flat band quenches the kinetic energy, and
thus interaction physics is nonperturbative and generic, lead-
ing to qualitatively orbital physics phenomena, e.g., Wigner-
Mott physics, which can show up easily.19

This paper works as an expanded version of a previous
publication of Ref. 19, with results and all the theoretical
details of the behavior of spinless fermions in the px,y-orbital
bands in the honeycomb lattice. The current work is moti-
vated by considerations of using the optical lattices to go
beyond what can be achieved in solid-state systems, i.e., ob-
tain exotic strongly correlated orbital quantum phases which
have not yet been studied in condensed-matter physics. The
paper is organized as follows. In Sec. II, we analyze the band
structures in both the simplified tight-binding model and the
realistic optical potential constructed from three coplanar la-
ser beams.32 The band structures contain both Dirac cones in
two dispersive bands and other two nearly flat bands over the
entire Brillouin zone �BZ� whose flatness becomes exact if
the � bonding is neglected. Special attention is paid for the
orbital configurations of the localized Wannier-type eigen-
functions in the flat bands and also at the Dirac points. In
Sec. III, the interacting Hamiltonian is introduced and meth-
ods of enhancing the Hubbard-type on-site interaction are
proposed. In Sec. IV, the interaction effect in the partially
filled flat band is discussed. The situation is somewhat analo-

gous to that in the fractional quantum Hall effect of electrons
in the lowest Landau level. When the flat band is partially
filled, the effects of interactions are entirely nonperturbative.
We obtain the exact many-body plaquette Wigner-crystal
state at filling �n�= 1

6 , which is the close-packed hexagon
state and is stable even in the weak-interaction regime. In
Sec. V, we present various charge and bond ordered states,
including dimerized and trimerized states at higher commen-
surate fillings in the strong-interaction regime. In Sec. VI,
the noise correlation in the time-of-flight experiments is dis-
cussed. Conclusions and outlook for future research are dis-
cussed in Sec. VII.

II. px,y-ORBITAL BAND STRUCTURE
IN THE HONEYCOMB LATTICE

In this section, we will give a detailed analysis to the
px,y-orbital band structure in the two-dimensional �2D� hon-
eycomb lattice which is featured by the interesting properties
of both flat bands and Dirac cones. We will first discuss the
experimental construction of such a lattice and then solve the
band structure by using both the simplified tight-binding
model and the realistic sinusoidal optical potential.

A. Construction of the optical honeycomb lattice

The honeycomb optical lattice was realized experimen-
tally by using three laser beams with coplanar propagating
wave vectors q� i�i=1�3� quite some time ago.32 The magni-
tudes of these wave vectors are the same and their directions
form an angle of 120° with each other. Assuming that the
polarizations of the electric fields of the three beams are all
along the z direction, the optical potential distribution can be
expressed as

V�r�� = V0 �
i=1–3

cos�p� i · r�� , �1�

where p�1=q�2−q�3, p�2=q�3−q�1, and p�3=q�1−q�2. In the case of
blue detuning, V0 is positive and the potential minima form a
hexagonal lattice, as depicted in Fig. 1. In contrast, the red
detuning laser beams generate a 2D triangular lattice. In both
cases, the lattice is topologically stable against the phase
drift of the laser beams, which only causes an overall shift
but not the distortion of the lattice. Figure 1�b� depicts the
potential distribution in one unit cell of the honeycomb lat-
tice, where a potential maximum locates in the center and six
potential minima sit around. Without loss of any generality,
we take p�1,2= p��

�3
2 êx+ 1

2 êy� and p�3=−pêy, where p= 4�
3a and

a is the distance between the nearest-neighbor site in the
honeycomb lattice. We define the recoil energy in such a
lattice system as Er= �2p2

2m , where m is the mass of the atom.

B. Tight-binding model

The optical potential around the center of each site is
approximately an anisotropic harmonic well. We assume that
the vibration frequencies along the x, y, and z directions
satisfy �z	�x=�y =�xy, and thus the energy of the pz orbital
is much higher than that of the px,y-orbital bands. When the
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lowest s band is fully filled and thus inert, the active orbital
bands will be of the px,y. Due to the spatial orientation of the
p orbitals, the hopping processes in the p orbitals can be
classified into the �- and �-type bondings. The former de-
scribes the hopping between p orbitals on neighboring sites
with the orientation along the bond direction, while the latter
describes the hopping between p orbitals perpendicular to the
bond direction. In other words, the � bonding is of the “head
to tail” type, while the � bonding is of the “shoulder by
shoulder” type. Typically, the amplitude of the � bonding is
much smaller than that of the � bonding because of the
strong orientational anisotropy.

The structure of the honeycomb lattice is depicted in Fig.
2�a�. Each unit cell in the honeycomb lattice contains two
sites depicted as A and B. We define three unit vectors from
site A to its three neighboring sites B as

ê1,2 = �
�3

2
êx +

1

2
êy, ê3 = − êy �2�

and their differences b� i=
1
2�ijk�êj − êk� as

b�3 = �3êx, b�1,2 = −
�3

2
êx �

3

2
êy . �3�

The projections of the p orbitals along the ê1,2,3 directions
are defined as

p1,2 = �
�3

2
px +

1

2
py, p3 = − py . �4�

Only two of them are linearly independent. In the realistic
optical potential depicted in Fig. 1�a�, the potential distribu-
tion inside each optical site is only approximately isotropic
in the xy plane. Away from the center, the potential exhibits
a threefold rotational anisotropy. The point-group symmetry
with respect to the center of each site is reduced into C3V
including the threefold rotation and reflection. Nevertheless,
as required by this symmetry, px,y remain degenerate and
each of p1,2,3 defined above is still an on-site eigenstate with
the orientation along the corresponding bond direction. How-
ever, they are no longer purely parity odd due to the breaking
of the inversion symmetry with respect to the center of each
optical site. �The overall inversion symmetry with respect to
the center of each potential maximum is still preserved, but

this involves the transformation among different sites.�
The �-bonding part in the kinetic energy reads

H0 = t� �
r��A,i=1–3

	pr�,i
† pr�+aêi,i

+ H.c.
 − 
 �
r��A�B

nr�, �5�

where the summation over r� in the first term is only on the A
sublattice, a is the nearest-neighbor distance, and nr�=nr�,x
+nr�,y is the total particle number in both px and py orbitals at
the site r�. t� is positive due to the dominant odd-parity com-
ponent of the p orbitals and is set to 1 below. Equation �5�
neglects the much smaller �-bonding t� terms which in prin-
ciple exist, and their effects will be discussed in Sec. II E.

Next we discuss the spectrum of the tight-binding Hamil-
tonian �Eq. �5��. In momentum space, we define a four-
component spinor as

��k�� = �pAx�k��,pAy�k��,pBx�k��,pBy�k���T, �6�

where each component is the Fourier transform of the px,y
orbit in site A or B. Then Eq. �5� becomes

H0 = t��
k

��
†�k��	H�
�k�� − 
��

�
�k�� , �7�

where the matrix kernel H�
�k�� takes the structure as

B

B B

12

3

a)

A
ê

ê

ê

K2

K2

yk

kx

O
K1

M

b)

FIG. 2. �a� The two sublattice structure �A and B� of the honey-
comb lattice. �b� The hexagon Brillouin zone with edge length
4� / �3�3a�.
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FIG. 1. �Color online� �a� The contour plot of
the optical potential of the 2D honeycomb lattice
described by Eq. �1�. �b� The optical potential
distribution around the potential maximum in one
unit cell.
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0 0

3

4
�eik�·e�1 + eik�·e�2�

�3

4
�eik�·e�1 − eik�·e�2�

0 0
�3

4
�eik�·e�1 − eik�·e�2�

1

4
�eik�·e�1 + eik�·e�2� + eik�·e�3

H.c. 0 0

0 0

� .

Its spectrum is symmetric with respect to zero because the
sign of the t� term can be flipped by changing the sign of the
px,y orbitals in one sublattice but not the other. The disper-
sion relations of the four bands read

E1,4 = �
3

2
t�, E2,3 = �

t�

2�3 + 2�
i

cos k� · b� i, �8�

as shown in Fig. 3. Interestingly, the band structure exhibits
two flat bands E1,4 over the entire 2D Brillouin zone. The
corresponding eigenvectors can be found analytically as

�1,4�k�� =
1

�N0�k��
� 1

�3
�f23

� �k�� − f31
� �k���, − f12

� �k��,

�
1
�3

�f23�k�� − f31�k���, � f12�k���T

, �9�

where f ij =eik�·êi −eik�·ê j and the normalization factor reads

N0�k�� =
8

3�3 − �
i

cos k� · b� i� . �10�

On the other hand, the E2,3 bands are dispersive exhibiting
the Dirac cone structure, whose bandwidth is determined by
t�. We construct a set of basis which is orthogonal to �1,4�k��
and spans the subspace for the E2,3 bands as

��k�� =� 2

N0
� f12�k��,

1
�3

�f23�k�� − f31�k���, 0, 0� ,

���k�� =� 2

N0
�0, 0, f12

� �k��,
1
�3

�f23
� �k�� − f31

� �k���� .

�11�

Then the Hamiltonian becomes the same as in graphene,

H23�k�� = −
t�

2
 0 �
i

e−ik�·êi

�
i

eik�·êi 0 � . �12�

Two Dirac cones appear at K1,2= �� 4�

3�3a
,0�. The eigenvec-

tors of the bands E2,3�k�� read

�2,3�k�� =
1
�2

	��k�� � ei�k���k��
 , �13�

with the angle of �k�

�k = arg��
i

eik�·êi� . �14�

C. Localized eigenstates

The complete flatness of the E1,4 bands means that these
eigenstates can be represented as a linear superposition of a
set of degenerate localized states. The construction of this
localized state is depicted in Fig. 4. For each hexagon

plaquette denoted by its center position R� , there exists one
such eigenstate for the bottom band E1,

��R�� = �
j=1

6

�− � j−1	cos � j�pj,x� − sin � j�pj,y�
 , �15�

where j is the site index and � j = �j−1� �
3 . The localized

eigenstates of the E4 band can be obtained by flipping the
signs of the p orbits on sites 2, 4, and 6 and keeping those on
sites 1, 3, and 5 unchanged. The p-orbital configuration on
each site is perpendicular to the links external to the hexago-
nal loop, thus the � bonding forbids the particle to directly
hop outside through these links. Furthermore, the amplitudes
for the particle to hop to the p orbital in the radial direction

�2

0

2
kx

�2

0

2ky

�1.5

�1

�0.5

0

�2

0

2
kx

�2

0

ky

FIG. 3. �Color online� Dispersion of the two-lowest px,y-orbital
bands E1,2. The band E1 is completely flat, while E2 exhibits Dirac
points at K1,2= �� 4�

3�3a
,0�. The other two bands are symmetric with

respect to E=0 �from Wu et al. �Ref. 19��.

+

+
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−5

4
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3

R
+

−

−

+

− +

− +

1
6

FIG. 4. �Color online� The Wannier-type localized eigenstate for
the lowest band. The orbital configuration at each site is oriented
along a direction tangential to the closed loop on which the particle
is delocalized. The absence of the � hopping and the destructive
interference together ensure such a state as an eigenstate.
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from the neighboring sites vanish due to the destructive in-
terference, as shown in Fig. 4. The particle is trapped in the
plaquette without “leaking” to the outside, and thus ��R�� is
the eigenstate with the energy of E1. The states ��R�� are all
linearly independent apart from one overall constraint
�R� ��R��=0 under periodic boundary conditions. The localized
states on two neighboring edge-sharing plaquettes are not
orthogonal to each other.

The Bloch wave states in the flat band E1 are constructed
as

��1,k� =
1

�Nk
�

k

eik�·R� ��R�� �k� � �0,0�� . �16�

The doubly degenerate eigenstate at k� = �0,0� cannot be con-
structed from the above plaquette states. They are
��k�=�0,0��1,2=�r��A�px�y�,r��−�r��B�px�y�,r��.

D. Orbital configuration at k� =(0 ,0) and K1,2

The major difference between the physics of px,y-orbital
bands and that of graphene is the orbital degree of freedom.
The orbital configuration for each band varies as lattice mo-
mentum k� changes in the Brillouin zone. Around the center
of the Brillouin zone k� = �0,0�, the Hamiltonian can be ex-
panded as

H =
3

2
�1 � I −

3

4
ky�2 � �3 −

3

4
kx�2 � �1, �17�

where Pauli matrices �1,2,3 describe the px,y-orbital degrees
of freedom and �1,2,3 describe the sublattices A ,B degrees of
freedom. The eigenvectors of �1,2,3,4 can be approximated as

�1,4�k�� =
1

�2�k�
	− ky,kx, � ky, � kx
 ,

�2,3�k�� =
1

�2�k�
	kx,ky, � kx, � ky
 . �18�

Thus around k� = �0,0�, the orbital configuration is polarlike,
i.e., a real combination of px,y. The orbital orientation in each
site is either parallel or perpendicular to k�.

Now let us investigate the orbital configurations around
the vertices of K1,2 of the Brillouin zone. Around K1, the
Hamiltonian can be expanded as

H�k�� = −
3

4
�kx�1 � I +

3

4
�ky�2 � I − �3

4
+

3

8
�kx��1 � �3

−
3

8
�ky�2 � �3 −

3

8
�ky�1 � �1 − �3

4
−

3

8
�kx��2 � �1,

�19�

where �k� =k� −K� 1 and g��k��=�kx� i�ky. The eigenvectors of
the flat bands E1,4 can be approximated as

�1,4�k�� =
1

2
�1 +

g+�k��
2

, − i�1 −
g+�k��

2
�,

� �1 +
g−�k��

2
�, � i�1 −

g−�k��
2

��T

. �20�

Similarly, the eigenvectors of the dispersive bands E2,3 are
approximated as

�2,3�k�� =
1

2
�1 −

g−�k��
2

, i�1 +
g−�k��

2
�,

� ei�k�1 −
g+�k��

2
�, − i�1 +

g+�k��
2

��T

,

�21�

where �k is the angle defined in Eq. �14�. Thus the orbital

configuration at k� =K� 1 on each site is the axial state px� ipy,
as depicted in Fig. 5. This is in contrast to the polar configu-

ration at k� = �0,0�. The orbital configuration at k� =K� 2 can be
obtained by performing time-reversal transformation.

E. �-bonding term and other perturbations

The �-bonding term in principle exists in the realistic
optical lattices. We define the projections of px,y orbitals per-
pendicular to the ê1,2,3 directions as

i ω2

−ω2 ω2

ω2−i

iω

ω−i

1

−i

1

−1
−i

i
1−1

a) ψ

i

ω−ω

−ω2

ω2−i

iω

ω−i
ω2

i ω2

1−1

b)

ω−ω

ψ

i

−i

i

−i
−1 1

2

FIG. 5. �Color online� The orbital configurations of eigenstates
at K1, which are of px� ipy type. The phase of each lobe is pre-

sented ��=ei�2�/3��. �a� �1�K� 1� �E1=− 3
2 t��. �b� �2�K� 1� with �k=0

�E2=0�.
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p1,2� = −
1

2
px �

�3

2
py, p3� = px. �22�

The �-bonding term can be written as

H� = − t� �
r��A,i=1–3

	pr�,i�†pr�+aêi,i
� + H.c.
 . �23�

Please note that the hopping integral of the � bonding has
the opposite sign to that of the � bonding. In this case, the
bottom and top bands E1,4 are no longer rigorously flat but
develop a narrow width 3t�, as depicted in Fig. 6. The E1
and E2 bands still touch at the center of the Brillouin zone.
This can be understood from the structure of the localized
eigenstates in Fig. 4. The �-bonding term causes the particle
leaking off the plaquette and thus correspondingly develops
the bandwidth. Nevertheless we will show in Sec. II F that in
the realistic optical potential such an effect is negligibly
small.

Next we discuss the case that the A and B sites are with
different on-site potentials. In the graphenelike systems, this
corresponds to a mass term in the Dirac point. In the
px,y-orbital systems, such a term can be described as

H = �E��
r��A

nr� − �
r��B

nr�� . �24�

The spectrum is depicted in Fig. 7 with the opening of a gap
of �E in the Dirac points as usual. Interestingly, the flat band
feature remains unchanged. This can be understood in terms
of the localized eigenstate picture. In this case, the localized
eigenstates of the E1 band still possess a similar configura-
tion as in Fig. 4, but their wave functions distribute with
different weights on A and B sublattices.

F. Band structure from the continuum optical potential

We numerically calculate the band structure in the realis-
tic optical potential of Eq. �1�. The band Hamiltonian be-
comes

H = −
�2�r

2

2m
+ V0 �

i=1–3
cos�p� i · r�� . �25�

Since this is a nonsingular sinusoidal potential, we use the
plane-wave basis to calculate the matrix elements �k��H�k���,
where k��=k� � p� i �i=1–3�. For each k� in the Brillouin zone,
we truncate the matrix up to the 120 plane-wave basis, which
should be sufficient for the lowest several bands.

The band dispersions along the path from O to K1, M, and
K2 are depicted in Fig. 8. The locations of O, K1,2, and M in
the Brillouin zone are depicted in Fig. 2. The lowest two
bands are of the s orbital exhibiting Dirac cones at K1 and
K2. The next four are of the px,y orbitals. The band flatness is
largely preserved even with the realistic optical potential of
Eq. �1�. In Fig. 8�a� with V /Er=5, the bottom one of the four
p-orbital bands is nearly flat with the width of 7�10−3Er
which is only 2% of that of the second one which is 0.35Er.
The width of the top band is 4�10−2Er which is still small
but considerably larger than that of the bottom one. The third
band is the widest one with the width of 0.62Er. As we can
see, the particle-hole symmetry in the tight-binding model is
no longer kept because of the unavoidable hybridization with
other bands and long-range hoppings. The spectra become
more symmetric with a strong optical potential, as shown in
Fig. 8�b� �V /Er=10� in which the tight-binding model is a
better approximation and long-range hoppings can be ne-
glected. The widths of the beginning six bands �the s- and
px,y-orbital bands� as a function of the V0 /Er are depicted in
Fig. 9.

III. INTERACTIONS IN THE px,y-ORBITAL
SPINLESS FERMIONS

In the following, we will mainly consider interacting spin-
less fermions in the px,y-orbital bands in the honeycomb lat-
tices and leave the research for spinful fermions to future
publications. The preparation of spinless fermions can be
controlled by cooling the system in the external Zeeman
field. Due to the lack of a spin-relaxation mechanism in cold
atom systems, the system will remain in the spin polarized
state. The spinless fermions have been realized in many ex-

�2

0

2kx

�2
0

2
ky

�1.5

�1

�0.5

0

�2

0

k

�2
0

FIG. 6. �Color online� Dispersion of the two-lowest px,y-orbital
bands E1,2 in the presence of the �-bonding t�. The bottom band is
no longer rigorously flat but acquires a narrow width of t�.
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FIG. 7. �Color online� Dispersion of the two-lowest px,y-orbital
bands E1,2 in the presence of the on-site potential.
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periments. In particular, the strongly correlated polarized
spinless fermion systems have been realized by using the
p-wave Feshbach resonance.33–36 Therefore, in contrast to
solid-state electronic systems, where spin is almost always
an important quantum dynamical variable, the cold atom fer-
mionic systems created by Feshbach resonance can be pre-
pared as spinless �i.e., spin polarized�, and consequently, our
current spinless theory applies to such systems without any
modifications. Of course, the problem of creating a labora-
tory px,y-orbital graphene system in cold atomic gases still
remains, but given the rapid current experimental develop-
ments in fermionic cold atom matter, we are optimistic that
our proposed system should soon be realized in practice.

Because of the orbital degeneracy, the on-site interaction
for spinless fermions remains Hubbard-type,

Hint = U�
r�

nr�,xnr�,y , �26�

where the on-site interaction U is

U =� dr�1dr�2V�r�1 − r�2�	��px
�r�1��py

�r�2��2

− ��px
�r�1��py

�r�1��px
�r�2��py

�r�2��
 . �27�

Due to Paul’s exclusion principle, the s-wave scattering van-

ishes, and thus the p-wave scattering is the leading-order
contribution which is typically weak for low energy par-
ticles. The p-band fermions have high kinetic energy, and
thus their p-wave scattering might not be small. To enhance
U, we can use the p-wave Feshbach resonances among spin-
less fermions �e.g., 40K �Refs. 33 and 36� and 6Li �Ref. 35��.
Although we do not want the system staying too close to the
resonance because of the large atom loss rate there, an en-
hancement of U to the order of the recoil energy ER while
maintaining the stability of the system is still reasonable.

Another possible method is to use atoms with large mag-
netic moments which interact through magnetic-dipole-
dipole interactions as

V�r�1 − r�2� =
1

r3 	m� 1 · m� 2 − 3�m� 1 · r̂��m� 2 · r̂�
 , �28�

where r= �r�1−r�2� and r̂= �r�1−r�2� /r. The fermionic atom of
53Cr is a good candidate whose magnetic moment is mCr
=6
B �Bohr magneton�. The spin polarization can be con-
trolled by an external magnetic field. Below we give an es-
timation of U from the magnetic-dipole interaction. The vi-
bration frequency in each site can be obtained as �x,y

=�3
2V0Er. The length scale of the px,y orbitals �lx,y

=�� /m�x,y� is typically one order smaller than a. For ex-
ample, we estimate that lx,y /a�0.2 at V0 /Er=5. Assuming
strong confinement in the z axis lz� lx,y, the vector r�1−r�2
linking two atoms in px and py orbits almost lies in the xy
plane. When the fermion spin is polarized along the z axis,
the interaction is repulsive and U can be approximately esti-
mated as

U �
mCr

2

�r3�
�1 − 3�cos2 ��� , �29�

where � is the angle between r�1−r�2 and the z axis. We esti-
mate �r�=�2lxy

2 + lz
2 and cos �= lz /r and find that U can reach
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FIG. 8. Band structures for the realistic optical potential in Eq.
�1� along the path from O→K1→M→K2 in the Brillouin zone
with �a� V /Er=5 and �b� V /Er=10.
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the order of Er. For example, if we use the laser wavelength
��0.8 
m, V /Er=5 �so that lx,y �0.2a�, and lz=0.2lx,y, we
arrive at U=2.2 KHz or approximately 100 nK. Increasing
V /Er can further increase U and suppress t�, thus driving the
system into an even stronger correlation regime. U can be
adjusted from repulsive to attractive by tuning the polariza-
tion direction from perpendicular to parallel to the xy plane.

IV. WIGNER-CRYSTAL STATE AT 1
6 FILLING

In this section, we discuss interaction effects in the
px,y-orbital systems. When the flat band is partially filled,
interaction effects dominate the physics. In particular, a
Wigner-crystal state is stabilized even with the shortest-range
on-site interaction. We will mainly study the spinless fermion
system below, and also give a brief discussion on the boson
systems, but leave the study of the spinful fermion systems
to a future publication.

A. Close-packed plaquette state

Due to the complete suppression of the kinetic energy in
the flat band, the effect of interactions is nonperturbative
when the flat band is partially filled. Interestingly, at suffi-
ciently low particle density n�

1
6 , the exact many-body

ground state can be easily constructed as follows. Each indi-
vidual particle localizes into a plaquette state depicted in Fig.
4. Any arrangement of these plaquette states avoiding touch-
ing each other is the kinetic-energy ground state and costs
zero interaction energy. Since the interaction is repulsive,
this class of states also minimizes the interaction energy and
thus they constitute the many-body ground states. If we fix
the particle density at n�

1
6 , the ground-state configurations

have large degeneracy corresponding to all the possible ways
to arrange these hard hexagons.

Another class of systems exhibiting similar behavior is
the frustrated magnets near full polarization in a large exter-
nal magnetic field. The Holstein-Primakoff magnons, which
are bosons, have a dispersionless flat band over the magnetic
Brillouin zone. Interactions among magnons result in the
magnon crystal state and magnetization plateau37 near the
full polarization. However, this flat band behavior is difficult
to observe because a very strong magnetic field to drive the
system close to the full polarization is required. This means
that the Zeeman energy reaches the exchange energy J which
is typically larger than the order of meV. The flat band phe-
nomenon also appears in systems of “fermion condensation”
where strong interactions drive an originally dispersive band
to flat within a finite width around the Fermi energy.38 This
has been proposed to explain the Curie law behavior of the
magnetic susceptibility in the itinerant heavy fermion com-
pound CeCoIn5 system.39

The close-packed plaquette pattern without overlapping
each other, is depicted in Fig. 10 corresponding to the filling
of n= 1

6 . The completely filled lowest flat band corresponds
to n= 1

2 ; thus, this close-packed plaquette pattern corresponds
to 1

3 filling of the flat band. This state breaks the lattice trans-
lational symmetry and is threefold degenerate. The other two
equivalent states can be obtained by translating the state in

Fig. 10 along the x axis in the right or left direction at one
lattice constant.

B. Stability of the Wigner-crystal state

The above Wigner-crystal state is a gapped state. We can
give a rough estimation for an upper limit of the charge gap
by constructing a trial wave function for putting an extra
particle in the close-packed state in Fig. 10. In the weak-
interaction case �U / t� �1�, we can put the extra atom in the

plaquette state located at R� which is adjacent to three occu-

pied plaquettes R� 1,2,3. Since there is already 1
6 atom on aver-

age per site, the cost of the repulsion is U
6 . On the other hand,

in the strong-coupling case �U / t� 	1�, we put the particle

into an excited state of the occupied plaquette R� 1 while fixing
the orbital configuration on each site. Because fermions are
spinless, the cost of energy comes from the kinetic part with
the value of 3

4 t�. Thus we obtain the upper limit for the
charge gap which is determined by interaction at small val-
ues of U and by kinetic energy t� at large values of U as

� � min�1

6
U,

3

4
t�� . �30�

The above intuitive picture can be made more rigorous by
performing a self-consistent mean-field treatment to the
Hamiltonian described below.

We decouple Eq. �26� both in the direct and exchange
channels as

�R3

�R1

�R �R2

FIG. 10. �Color online� The configuration of the close-packed
Wigner-crystal state for both bosons and fermions at n= 1

6 . Each
thickened plaquette has the same configuration as in Fig. 4 �from
Wu et al. �Ref. 19��.
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Hmf,int = U �
r��A�B

�nr�,x� �nr��
2

− �nr�,1�� + nr�,y� �nr��
2

+ �nr�,1��
− pr�x

† pr�y��nr�,2� − i�nr�,3�� − H.c.� , �31�

nr�,1 =
1

2
�pr�x

† pr�x − pr�y
† pr�y� ,

nr�,2 =
1

2
�pr�x

† pr�y + H.c.� ,

nr�,3 =
1

2i
�pr�x

† pr�y − H.c.� , �32�

where n1,2,3 are the pseudospin operators. nr�,1 ,nr�,2 are time-
reversal invariant and describe the preferential occupation of
a “dumbbell-shaped” real p-orbital orientation; nr�,3 is the or-
bital angular momentum and is time-reversal odd. We per-
form a self-consistent mean-field solution to Eq. �31� plus
Eq. �5� for the filling level in the range of �n�=0–1. The
self-consistent equation reads

�nr�,i� = ����nr�,j���nr�,i����nr�,j��� �i, j = 1 – 3� , �33�

where ���nr�,j�� is the mean-field ground state with the speci-
fied configuration of �nr�,j�.

At the mean-field level, we found that �nr�,3� is zero which
means the time-reversal symmetry is kept. We need to take
an enlarged unit cell to allow the spatial variation of the
order parameters. In order to obtain the plaquette order in
Fig. 10, this enlarged unit cell covers six sites around a
plaquette. We present the range of chemical potential 
 for
the 1

6-Wigner-crystal state in Fig. 11, which corresponds to
the excitation gap. The charge gap grows roughly linearly
with U in the weak-interaction regime and saturates at a
value comparable to t� in the strong-interaction regime. Both
agree with the above variational analysis.

Next we discuss the effect of the �-bonding term to the 1
6

state. Such a term gives a width determined by t� to the
originally flat band. Because the 1

6 state is gapped, it should
remain stable if the band is sufficiently narrow. The plaquette

state costs the kinetic energy at the order of t� per particle
while it saves the repulsive interaction at the order of U

6 .
Thus for small values of t�, a stability condition of this state
can therefore be roughly estimated as U�6t�. We have
checked this numerically. For example, setting t� / t� =0.1, we
find that the 1

6 state survives U� t�. In realistic systems, the
ratio of t� / t� is much smaller than 0.1 with reasonable values
of V /Er, as shown in Fig. 9; thus, the 1

6 state can be stabi-
lized at much smaller values of U.

C. Bosonic Wigner-crystal state

In the above hard hexagon state at n= 1
6 , particles are

separated from each other; thus, particle statistics do not play
any role. Such a Wigner-crystal state should also occur with
bosons or Bose-Fermi mixtures with repulsive interactions.
The on-site interaction for p-band bosons reads

Hint =
U

2 �
r�
�nr�

2 −
1

3
Lz,r�

2 � , �34�

where n is the total particle number and Lz is the orbital
angular momentum.9,11 The p-band bosonic systems have
been created experimentally.18 The lifetime of the p-band
bosons is significantly enhanced when the particle density
per site is less than 1, which can be hundreds of times longer
than the hopping timer from one site to its neighbors. Thus
the 1

6 state is also experimentally feasible in bosonic systems.

V. CHARGE AND BOND ORDERINGS
AT COMMENSURATE FILLINGS OF n�

1
6

In this section, we investigate the charge and bond order-
ings at commensurate fillings higher than 1

6 by using the
mean-field theory to solve the interacting Hamiltonian self-
consistently. We will present the result in both weak- and
strong-coupling regimes but leave the detailed investigation
of the physics of orbital exchange at n=1 to future research.
In the following calculation, we confine ourselves to the unit
cell of up to six sites.

A. Weak-coupling regime

When the filling n�
1
6 , exact solutions are no longer avail-

able. Again we perform the self-consistent mean-field solu-
tion to the interacting Hamiltonian. In the weak-coupling re-
gime �U / t� =1�, we plot the relation of the filling �n� vs 
 in
Fig. 12�a�. As 
 passes the charge gap, the system enters a
compressible state. �n� increases with 
 quickly with a finite
but large slope. This means that particles fill in other states in
the flat band. Due to the pre-existing crystalline ordered
background, these states are no longer exactly flat and de-
velop weak dispersions. This corresponds to adding addi-
tional N

6 particles into the background of the 1
6 state, as de-

picted in Fig. 10 �N—the total number of lattice sites�.
Roughly speaking, these particles also go into the localized
plaquette states. When �n�� 1

3 , we see a significant reduction
in density of states compared to those of the flat band, which
still has a finite density of state attributed to the filling of the
dispersive band.

0 2 4 6 8 10
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−1.4
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µ

〈 n 〉 =1/6

FIG. 11. The phase boundary of the incompressible plaquette
Wigner-crystal state of spinless fermions at �n�= 1

6 �from Wu et al.
�Ref. 19��.
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Let us look at the quasiplateau at �n�� 1
3 . Although these

occupied plaquettes can be arranged to avoid each other as
we did before, they unavoidably will touch the preoccupied
ones. As a result, for each occupied plaquette state, three of
its six neighbors are occupied alternatively. The orbital con-
figuration in such a state is as depicted in Fig. 13; for each
bond shared by two occupied plaquettes, the p-orbital orien-
tation is parallel to the bond direction as a compromise be-
tween two neighboring plaquettes. The bonding strength ex-
hibits a dimerized pattern. The ratio between the weakened
and strengthened bonds is approximately 0.44. Compared to
the gapped dimerized phase that will be discussed below in
Sec. V B, this is a relatively weakly dimerized phase.

At �n��
1
2 , all the flat band states are completely filled. In

the weak-coupling regime, interaction effects are no longer
important and crystalline orders vanish. Near �n�=1, the den-
sity of states becomes linear with energy as controlled by the
Dirac cones. Recently, it has been proposed to use the s band
in the honeycomb optical lattice to simulate the Dirac cone
physics.40 The px,y-band Dirac cones described above are
also good for this purpose and have even more advantages.
The velocity of the px,y-Dirac cone is much larger than that
of the s band due to a much larger bandwidth, as shown in
Fig. 9. The large energy scale here renders quantum degen-
eracy and the low-temperature regime much more accessible.

B. Strong-coupling regime at n�
1
6

The physics in the strong-coupling regime is very differ-
ent from that in the weak-coupling regime. Much more crys-
talline ordered states appear in the strong-coupling regime at
commensurate fillings exhibiting rich structures of dimeriza-
tion and trimerization orders. The relation of the filling �n� vs

 at U / t=10 is depicted in Fig. 12�b�. A series of plateaus
occurs at commensurate fillings of �n�= i

6 �i=1–6�, which
correspond to a set of charge and bond ordered insulating
states. The charge gap for each insulating state is at the order
of t� except for that at �n�=1 which is at the order of U. Since
these gapped states appear at the strong-interaction regime,
they are not sensitive to a small t�. The band structure de-
scribed in Secs. I–IV is completely changed by the strong
interactions. Roughly speaking, at �n��

1
6 , the preoccupied

plaquette states exert strong effects to the extra particles and
vice versa. The remaining part of the flat band disappears
and the Dirac cone structure is also destroyed.

At �n�= 1
3 , the strong-coupling crystalline ordering pattern

is different from that in the weak-coupling regime depicted
in Fig. 13. The system exhibits a trimerized pattern, as de-
picted in Fig. 14. Each trimer is repented as two thickened
bonds and contains one particle. In other words, each hexa-
gon plaquette in the �n�= 1

6 case is occupied by two particles.
Such a state is also threefold degenerate, and the other two
equivalent states can be obtained by translating the system
one lattice constant to the right and left directions. Let us
consider one plaquette unit cell and describe the orbital con-
figuration. We mark the six sites as 1–6. The p-orbital con-
figurations at sites 1, 6, and 2 are px, cos �px�sin �py��
=158.4°�, and those at 4, 5, and 3 are related by a reflection
operation with respect to the x axis. In other words, the oc-
cupied p orbital at site 1 is parallel to the x axis and that at
site 6 is almost along the direction of bond �1,6� with a small
deviation of 8.4°. The particle densities at each site are
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FIG. 12. The filling �n� vs the chemical potential 
 for spinless
fermions for �a� weak and �b� strong interactions. Due to the
particle-hole symmetry, only the part with 
 from the band bottom
− 3

2 t� to U /2 is shown. Only one plateau appears in �a� at n= 1
6 , while

a series of plateaus appears in �b� at n= 1
6 , 1

3 , 1
2 , 2

3 , 5
6 , and 1 �from

Wu et al. �Ref. 19��.
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FIG. 13. �Color online� Bonding strength dimerization can occur
at both �n�= 1

3 in the weak-coupling regime and �n�= 1
2 in the strong-

coupling regime as depicted by the thickened �red� bonds. The or-
bital orientation in the dimer is along the bond direction. In the
weak-coupling case ��n�= 1

3 �, the thickened bonds correspond to the
shared edges of two neighboring plaquette states in the flat band. In
the strong-coupling case ��n�= 1

2 �, each dimer contains one particle
as an entangled state of occupied and empty sites.
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n6,2,3,5=0.27 and n1,4=0.46. The bonding strength between
neighboring sites i , j is defined as Bij =−��pi

†êij��pjêij�
+H.c.�. There are four nonequivalent bond strengths: �i , j�
= �2,1�, �2,3�, �2,5��, and �1,4��, where 4� and 5� are the
equivalent sites of 4 and 5 in the neighboring plaquettes. We
have B2,1=0.58t�, B2,3=0.04t�, B2,5�=0.14t�, and B1,4�=0.
The average bonding energy per site can be evaluated from
the above bonding strengths as 0.446t�. Instead of the above
trimer pattern, one might also think of the dimer covering
with filling 1

3 in which only two-third of the sites are covered
by dimers. However, a rough estimation of the average bond-
ing energy per site is approximately 1

3 t�, which is less ener-
getically favorable because particles are more localized in
the dimer configuration.

The crystalline order pattern at the filling of �n�= 2
3 is

similar to that at �n�= 1
3 with each trimer containing two par-

ticles. In this case, the parameters above change to �=153°,
n6,2,3,5=0.76 and n1,4=0.49, and B2,1=0.70t�, B2,3=0.07t�,
B2,5�=0.12t�, and B1,4�=0.02t�.

At �n�= 1
2 , the system exhibits a dimerized pattern similar

to that of �n�= 1
3 in the weak-coupling regime, as illustrated

in Fig. 13. The major difference is that the dimerized state
here is an incompressible insulating state while that in the
weak-coupling regime is with a small but still nonvanishing
compressibility. The dimer is represented by a thickened
bond in which one particle hops back and forth. It can be
considered as a superposition of the two states of two sites
where one is occupied and the other is empty. There are only
two nonequivalent bonding strengths: B1,6=0.95t� and B1,2
=0.1t�. The former is about one order larger that the latter,
thus the system is in the strong dimerization limit. As shown
in Fig. 12�b�, the energy scale of this dimerized phase is set
by t�, which is much larger than the usual one in dimerized
magnetic systems with t�

2 /U.
The low energy physics in the dimer phase should be

described by a quantum dimer model,41 which includes the
quantum resonance of different patterns of dimer coverings.
Although in the physical parameter regime the dimer crystal
configuration in Fig. 13 is stabilized, it would be interesting
to further investigate how to enhance quantum fluctuations to
achieve the quantum disordered dimer liquid phase. The cor-
responding possible orbital liquid state in the px,y-orbital sys-
tems would be an exciting state for a future study.6

The ordering pattern at another commensurate filling of
�n�= 5

6 , as shown in Fig. 15. The p-orbital configurations at
sites 1, 6, and 2 are py, cos �px�sin �py with �=150.2°, and
those at 4, 5, and 3 are related by a reflection operation with
respect to the x axis. The particle densities at each site are
n6,2,3,5=0.94 and n1,4=0.62. The four nonequivalent bond
strengths read B2,1=0.36, B2,3=0.08, B2,5�=0.08, and B1,4�
=0.83. The 5

6-filling state can be considered as doping the
insulating state of one particle per site with 1

6 holes. Holes
are mainly concentrated on the positions of sites 1 and 4 in
each unit cell. The corresponding bonds have the largest
bonding strength. Such a state is the dimerized state of holes.

VI. TIME-OF-FLIGHT SPECTRA

Noise correlation has become an important method to de-
tect the ordering in cold atom systems in optical lattices.42,43

In all the Mott-insulating states at commensurate fillings de-
scribed in Figs. 10 and 13–15, the enlarged unit cell contains
six sites forming a plaquette. They should exhibit themselves
in the noise correlation of the TOF signals. In the presence of
the charge and bond orders, the reciprocal wave vectors of

the reduced Brillouin zone become G� 1�= � 4�

3�3a
,0�= −1

3 G� 1

+ 2
3G� 2 and G� 2�= � −2�

3�3a
, 2�

3a �= 2
3G� 1− 1

3G� 2, where G� 1,2 are the re-
ciprocal wave vectors for the original Brillouin zone. The
correlation function is defined as

Ct�r�,r��� = �n�r��n�r����t − �n�r���t�n�r����t, �35�

where t is the flying time.
For the close-packed hexagon state at �n�= 1

6 , Eq. �35� can
be easily calculated. We have �n�r��t�= � m

�t �
3���k���2, where k�

=mr� / ��t� and ��k�� is the Fourier transform of the plaquette-
Wannier state depicted in Fig. 4. Thus

Ct�r�,r��� = �
N

6
�m

�t
�6

���k���2���k����2�
G� �

��k� − k�� − G� �� ,

�36�

where � ��� is for fermions �bosons�, respectively, G� �

=mG� 1�+nG� 2� with m ,n integers, and k��=mr�� / ��t�. After a
spatial averaging and normalization, we find
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FIG. 14. �Color online� The trimerized states at fillings �n�
= 1

3 , 2
3 in the strong-coupling regime as described by thickened

bonds. Each trimer contains one particle at �n�= 1
3 and two particles

at �n�= 2
3 .
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5

2

3

FIG. 15. �Color online� The orbital configuration at the filling
�n�= 5

6 exhibits the dimerized state of holes in the strong-coupling
regime. The holes mainly distribute on the position of sites 1 and 4
in each unit cell with a large bonding strength.
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Ct�d�� =� dr�
Ct�r� + d�

2 ,r� − d�

2�
�n�r� + d�

2��t�n�r� − d�

2��t

� � �
G� �

��k� − G� �� ,

�37�

where k� =md� / ��t�. All the � peaks are with equal weight
because of the cancellation of the Fourier transform of the
Wannier function and the sixfold rotational symmetry in Fig.
4.

For the crystalline ordering of fermions at other commen-
surate fillings, the noise correlation functions still exhibit the
� peaks located at the same reciprocal wave vectors of the
reduced Brillouin zone. However, the form factors are more
complicated. Generally, �n�r��� and Ct�r� ,r��� can be calculated
as

�n�r��t� � �

�

�

� �k�����k�����p


† �k��p��k����� ,

Ct�r�,r��� � − ��

�

�

� �k�����k������p


† �k��p��k�������2

� �
G� �

��k� − k�� − G� �� , �38�

where the Greek indices 
 and � denote the Wannier func-
tions for the 12 px,y orbitals in one plaquette. In particular,
due to the loss of the sixfold lattice rotational symmetry in

Figs. 14 and 15, the noise spectra of Ct�d�� should show the
reduced twofold rotational symmetry. Figure 13 still keeps
the sixfold rotational symmetry, but the weight of the � func-
tions should not be the same as in Eq. �37�.

VII. CONCLUSION AND DISCUSSION

In summary, we have proposed the laboratory analog
simulation of a kind of artificial graphene, unavailable in
nature, where the px,y orbitals are the key, unlike the real
graphene made of the pz orbital. This switching of orbitals,
as shown in this work, leads to strong correlation physics
which cannot be studied in the corresponding solid-state
graphene systems.

We have shown that the band structure of px,y-orbital hon-
eycomb lattices contains both Dirac cones and flat bands.
Particle interactions stabilize various incompressible Wigner-
crystal-like states at commensurate fillings. In particular, we
have described the exact many-body ground state at �n�= 1

6 ,
which exhibits close-packed hexagon plaquette order. Vari-
ous charge and bond orderings appear in the strong-coupling
regime at higher commensurate fillings. These states exhibit
their patterns in the noise correlation of time-of-flight experi-
ments. Taking into account the recent exciting experimental
realization of the p-orbital bosons18 and the fact that the
honeycomb optical lattices were experimentally constructed
quite some time ago,32 the px,y-orbital counterpart of

graphene may be achieved in the laboratory in the near fu-
ture.

Let us compare the Wigner-crystal states in the px,y-orbital
systems with those in the electron-gas systems. Quantum
Monte Carlo simulations show that the Wigner-crystal state
is stable in the very low-density regime at rs�39 in two
dimensions, where rs is the ratio between the average inter-
electron distance and the Bohr radius.27 The long-range Cou-
lomb interactions dominate over the kinetic energy when rs
is large. In contrast, even the shortest-range repulsive inter-
action can stabilize the crystal state in the px,y-orbital honey-
comb lattice due to the suppression of the kinetic energy by
the band flatness. The Wigner-crystal state also occurs in the
fractional quantum Hall systems due to the suppression of
kinetic energy by the magnetic field.44,45 At low filling fac-
tors, crystalline ordered states energetically win over the
Laughlin liquid state. It is also interesting to note the differ-
ence between our system and the pz-orbital system of
graphene, where the characteristic ratio between Coulomb
interaction and kinetic energy e2

�v f
�v f is the slope of the Dirac

cone� is a constant independent of charge-carrier density. As
pointed out in Refs. 28, 31, and 46, interactions in graphene
are not strong enough to stabilize the Wigner-crystal state at
any density.

Many interesting problems still remain open for further
exploration, and we will leave them to future publications.
For example, for the spinful fermions with repulsive interac-
tions, it is natural to expect ferromagnetism due to the flat
band structure. It would be interesting to study the competi-
tion between antiferromagnetic exchange and flat band fer-
romagnetism. If interactions are attractive, the pairing prob-
lem and the corresponding BCS-BEC crossover in the flat
band might prove interesting. On the other hand, if we load
bosons into the flat band beyond the density of �n�= 1

6 , the
frustration effect due to the band flatness to the superfludity
is a challenging problem. Most intriguing is the possibility of
exotic incompressible states analogous to the Laughlin liquid
in the fractional quantum Hall effect. These cannot be cap-
tured within the mean-field approximation used here for n
�

1
6 . If one could devise appropriate variational liquid states

projected into the flat band, these could be compared ener-
getically with the Wigner crystals found here. Given the rich-
ness and surprises encountered in the fractional quantum
Hall effect, flat band physics in optical lattices appears rife
with possibility.

ACKNOWLEDGMENTS

C.W. thanks L. M. Duan, E. Fradkin, and T. L. Ho for
helpful discussions, and especially L. Balents and D. Berg-
man for an early collaboration. C.W. was supported by the
start up funding at University of California, San Diego and
the Sloan Research Foundation. S.D.S. is supported by ARO-
DARPA.

CONGJUN WU AND S. DAS SARMA PHYSICAL REVIEW B 77, 235107 �2008�

235107-12



1 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science 269, 198 �1995�.

2 K. Davis, M. Mewes, M. Joffe, M. Andrews, and W. Ketterle,
Phys. Rev. Lett. 74, 5202 �1995�.

3 M. Greiner, O. Mandel, T. W. Hansch, and I. Bloch, Nature
�London� 419, 51 �2002�.

4 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 �1998�.

5 Y. Tokura and N. Nagaosa, Science 288, 462 �2000�.
6 G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 �2005�.
7 V. W. Scarola and S. Das Sarma, Phys. Rev. Lett. 95, 033003

�2005�.
8 A. Isacsson and S. M. Girvin, Phys. Rev. A 72, 053604 �2005�.
9 W. V. Liu and C. Wu, Phys. Rev. A 74, 013607 �2006�.

10 A. B. Kuklov, Phys. Rev. Lett. 97, 110405 �2006�.
11 C. Wu, W. V. Liu, J. E. Moore, and S. Das Sarma, Phys. Rev.

Lett. 97, 190406 �2006�.
12 C. Xu and M. P. A. Fisher, Phys. Rev. B 75, 104428 �2007�.
13 C. Xu, arXiv:0706.1609 �unpublished�.
14 O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev.

Lett. 95, 030405 �2005�.
15 A. Browaeys, H. Haffner, C. McKenzie, S. L. Rolston, K. Helm-

erson, and W. D. Phillips, Phys. Rev. A 72, 053605 �2005�.
16 M. Kohl, H. Moritz, T. Stoferle, K. Gunter, and T. Esslinger,

Phys. Rev. Lett. 94, 080403 �2005�.
17 J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto,

Phys. Rev. A 73, 033605 �2006�.
18 T. Muller, S. Folling, A. Widera, and I. Bloch, Phys. Rev. Lett.

99, 200405 �2007�.
19 C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev.

Lett. 99, 070401 �2007�.
20 C. Wu, Phys. Rev. Lett. 100, 200406 �2008�.
21 K. Wu and H. Zhai, Phys. Rev. B 77, 174431 �2008�.
22 E. Zhao and W. V. Liu, Phys. Rev. Lett. 100, 160403 �2008�.
23 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

24 Y. Zhang, Y.-W. Tan, H. Stormer, and P. Kim, Nature �London�
438, 201 �2005�.

25 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, arXiv:0709.1163, Rev. Mod. Phys. �to be pub-
lished�.

26 H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie,
Nature �London� 418, 738 �2002�.

27 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 �1989�.
28 S. Das Sarma, B. Y.-K. Hu, E. H. Hwang, and W.-K. Tse,

arXiv:0708.3239 �unpublished�.
29 E. H. Hwang, Ben Yu-Kuang Hu, and S. Das Sarma, Phys. Rev.

Lett. 99, 226801 �2007�.
30 S. Das Sarma, E. H. Hwang, and W. K. Tse, Phys. Rev. B 75,

121406�R� �2007�.
31 W.-K. Tse and S. Das Sarma, Phys. Rev. Lett. 99, 236802

�2007�.
32 G. Grynberg, B. Lounis, P. Verkerk, J. Y. Courtois, and C.

Salomon, Phys. Rev. Lett. 70, 2249 �1993�.
33 J. P. Gaebler, J. T. Stewart, J. L. Bohn, and D. S. Jin, Phys. Rev.

Lett. 98, 200403 �2007�.
34 C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev.

Lett. 90, 053201 �2003�.
35 J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J.

Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F.
Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702�R�
�2004�.

36 C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Phys. Rev. A
69, 042712 �2004�.

37 M. E. Zhitomirsky and H. Tsunetsugu, Prog. Theor. Phys. Suppl.
160, 361 �2005�.

38 V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 533 �1990�.
39 V. A. Khodel, M. V. Zverev, and V. M. Yakovenko, Phys. Rev.

Lett. 95, 236402 �2005�.
40 S.-L. Zhu, B. Wang, and L. M. Duan, Phys. Rev. Lett. 98,

260402 �2007�.
41 D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

�1988�.
42 E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70,

013603 �2004�.
43 A. Imambekov, V. Gritsev, and E. Demler, in Proceedings of the

2006 Enrico Fermi Summer School on “Ultracold Fermi Gases”,
Varenna, Italy, June 2006, edited by M. Inguscio, W. Ketterle,
and C. Salomon �unpublished�.

44 Y. P. Chen, G. Sambandamurthy, Z. H. Wang, R. M. Lewis, L.
W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer, and K. W. West,
Nat. Phys. 2, 452 �2006�.

45 P. D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer,
and K. West, Phys. Rev. Lett. 89, 176802 �2002�.

46 H. P. Dahal, Y. N. Joglekar, K. S. Bedell, and A. V. Balatsky,
Phys. Rev. B 74, 233405 �2006�.

px,y-ORBITAL COUNTERPART OF GRAPHENE: COLD… PHYSICAL REVIEW B 77, 235107 �2008�

235107-13


