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Trion states and quantum criticality of attractive SU(3) Dirac fermions
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We perform the projector quantum Monte Carlo (QMC) simulation to study the trion formation and quantum
phase transition in the half filled attractive SU(3) Hubbard model on a honeycomb lattice. With increasing
attractive Hubbard interaction, our simulations demonstrate a continuous quantum phase transition from the
semimetal to charge-density wave (CDW) at the critical coupling Uc/t = −1.52(2). The critical exponents
ν = 0.82(3) and η = 0.58(4) determined by the QMC simulation remarkably disagree with those of the N = 3
chiral Ising universality class suggested by the effective Gross-Neveu-Yukawa (GNY) theory, but coincide with
the N = 1 chiral Ising universality class. In the CDW phase, we show that on-site and off-site trions coexist
and the off-site trion forms a local bond state. Our work not only illustrates the formation of off-site trions
in two-dimensional Hubbard model but also raises doubts about the extent of applicability of GNY model on
attractive SU(3) Dirac fermions.

DOI: 10.1103/PhysRevResearch.5.023180

I. INTRODUCTION

Optical traps and lattices loaded with ultracold atoms have
become excellent platforms for studying strong-correlation
physics. Interestingly, since the ultracold alkali and alkaline-
earth fermions can carry large hyperfine spins, they provide an
opportunity to study SU(N) (N > 2) symmetries that are typi-
cal in high-energy physics but rare in solids. In recent decades,
fermionic models with SU(N) symmetry have been of great
interest to both experimentalists [1–13] and theorists [14–19]
in the interdisciplinary context of ultracold atom physics and
condensed-matter physics. In particular, the SU(3) model, as a
minimal SU(N) model beyond SU(2), increasingly arouses the
interest of researchers because of its striking resemblance to
the quark matter [20–22]. The SU(3) symmetry can be experi-
mentally realized with ultracold fermionic 6Li atoms [23–26].
Each 6Li atom is in its three lowest hyperfine states, here-
inafter referred to as “colors”. When the three pairwise s-wave
scattering lengths approach a common negative value, the
attractive interactions become SU(3) symmetric [26].

The SU(3) 6Li Fermi gas with tunable interactions is ex-
ceptionally appropriate for studying the three-body bound
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states [27–29]. In few-body spin-1/2 fermion systems, form-
ing three-body bound states by on-site attractions is rather
challenging due to the Pauli exclusion [30–32], although
three-body bound states can be realized with finite-radius
interactions [33]. However, in attractive few-body three-color
fermions, due to an additional internal degree of freedom,
three-body bound states can be formed by on-site attrac-
tions. Specifically, in the attractive SU(3) Hubbard model with
only three fermions on the honeycomb lattice, the three-body
bound states have two configurations under different con-
ditions [34]: when on-site triple occupancy is energetically
favorable, the three-body bound state is an on-site trion, which
consists of three fermions at one site; when on-site triple occu-
pancy takes great energy penalty, the three-body bound state
is an off-site trion, which consists of two fermions at one site
and one fermion at the nearest-neighbor site. In many-body
systems the three-body bound states can develop long-range
order. The variational [35,36], self-energy functional [37,38]
and dynamical mean-field theory (DMFT) [39,40] studies
of the SU(3) Hubbard models on two-dimensional lattices
have predicted a phase transition between the color su-
perfluid and the on-site trion phase, which is reminiscent
of the transition between quark superfluid and baryonic
phase [20–22]. In one-dimensional lattices, the density-matrix
renormalization group (DMRG) studies have observed off-
site trion phase either when on-site triple occupancy is
prohibited in an attractive SU(3) Hubbard model [41] or
when the attractions are color-dependent and thus anisotropic
in a three-color Hubbard model with SU(3) symmetry
breaking [42].
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Quantum Monte Carlo (QMC) simulations of the SU(3)
Hubbard model have long been absent due to the notorious
sign problem. Owning to recent advances in the QMC algo-
rithm [43–46], the QMC simulation of the attractive SU(3)
Hubbard model can be proved to be sign-problem-free in
bipartite lattices at half filling. In this work, we propose
to conduct a projector determinant QMC simulation of the
half filled attractive SU(3) Hubbard model on the honey-
comb lattice. The purpose of this work is twofold: first,
QMC simulations of the attractive SU(3) Hubbard model can
demonstrate the formation of trionic states, and in particular
we shall show that the off-site and on-site trions coexist in this
two-dimensional Hubbard model while previously off-site tri-
ons have only been found in one-dimensional Hubbard model;
and secondly, the QMC simulations of the quantum phase
transition of SU(3) Dirac fermions can be compared with
the Gross-Neveu-Yukawa (GNY) models which is thought
to provide a general description for the criticality of Dirac
fermions in two spatial dimensions [47]. Given the symmetry-
breaking patterns, the GNY descriptions are irrelevant to the
details of the microscopic Hamiltonian, but solely depen-
dent on the number of fermion colors, N . So far, various
QMC calculations are consistent with the GNY models. In
the spinless Dirac fermions, the transition between semimetal
and charge-density-wave (CDW) phases belongs to the
N = 1 chiral Ising universality class [48,49]. In SU(2) Dirac
fermions, the semimetal-CDW, semimetal-antiferromagnet
and semimetal-superconductor transitions fall into the N = 2
chiral Ising [50], chiral Heisenberg [51,52] and chiral XY [53]
universality classes, respectively. In SU(4) Dirac fermions, the
transition between semimetal and valence bond solid (VBS)
belongs to the N = 4 chiral XY universality class, due to an
emergent U(1) symmetry at the critical point [54–56]. More-
over, in SU(N) Dirac fermions with singlet-bond interactions,
the semimetal-VBS transitions fall into the chiral XY univer-
sality classes of N fermion colors [57]. However, we show
that our QMC simulation of the quantum phase transition in
the SU(3) Dirac fermions with attractive Hubbard interactions
surprisingly conflicts with the N = 3 GNY model.

II. MODEL

At half filling, the attractive SU(3) Hubbard model is de-
fined by the lattice Hamiltonian:

H = −t
∑
〈i j〉,α

(
c†

iαc jα+ H.c.
)+ U

∑
i,α<β

(
niα− 1

2

)(
niβ − 1

2

)
,

(1)
where 〈i j〉 denotes the nearest-neighbor sites on a honeycomb
lattice and α, β are the color indices running from 1 to 3.
U < 0 describes the on-site attractive Hubbard interaction,
and niα = c†

iαciα is the particle number operator for color α

at site i. The nearest-neighbor hopping amplitude t = 1 is set
as the energy unit in our simulations.

In the atomic limit t/U = 0, on-site trions are randomly
formed by three fermions on a lattice point in the half filled
model. When the fermion hopping is turned on, the charge
fluctuations induce the CDW order [15]. As shown in Fig. 1,
the energy penalty for adding an extra fermion (hole) to the
half filled system is −U in the atomic limit. At strong coupling

FIG. 1. (upper panel) Energy penalty of adding a hole to the half
filled system in the atomic limit (upper left) and at strong coupling
(upper right). (lower panel) Sketch of a hole hopping process in the
background of on-site trions.

the extra fermion (hole) can hop on a triangular lattice via
second-order perturbation, which expands the energy level
into an energy band. Then the energy gap is �at ≈ −U − W
where W = −3t2/U . At the Mott transition point, the energy
gap vanishes, and then the critical coupling strength is esti-
mated as U at

c /t ≈ −√
3 (see Appendix A).

The determinant formalism of the projector QMC
method [58] will be employed to simulate the attractive SU(3)
Hubbard model, which is sign-problem-free at half filling
when decomposing the Hubbard interaction into the on-site
color-flip channel. Implementation details of the algorithm are
elaborated in Appendix B.

III. TRION FORMATION

For studying the trion formation, we consider the correla-
tion function [41,59],

T (i, j) = 〈ni1n j2n j3〉, (2)

which measures the correlation between the color-1 fermion
at site i and the color-2 and color-3 fermions at site j. Then
the probability of triple occupancy can be defined as

P(3) = 1

2L2

∑
i

T (i, i), (3)

where L is the lattice size of a honeycomb lattice. At strong
coupling, P(3) corresponds to the occupancy probability of
on-site trion.

In the noninteracting limit, the density-density correlation
can be decoupled directly, and thus T (i, i) follows the bi-
nomial distribution, limU/t→0 P(3) = 1

8 . In the atomic limit,
since only on-site trions exist, each site is either fully occupied
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FIG. 2. (a) Probability of the triple occupancy as a function of U
for lattice sizes L = 3, 6, 9, and 12. The black dashed curve is the
plot of Eq. (5). (b) Correlation function T (i, j) as a function of the
distance ri j ≡ |ri − r j |. The lattice size L = 9.

or empty, and then limt/U→0 P(3) = 1
2 . In Fig. 2(a), P(3) is

plotted as a function of U for various lattice sizes L. For L = 9
and 12, the P(3) versus U curves are almost indistinguishable,
and therefore the lattice size L � 9 is sufficiently large to es-
timate the L → ∞ limit of P(3). As expected, P(3) increases
monotonically with U .

As shown in Fig. 2(a), at strong coupling the triple occu-
pancy probability P(3) is observably smaller than the large-U
limit 1

2 , which infers that there may exist another type of
three-body bound state besides the on-site trion in the strong-
coupling regime. To explore the possible trion states, let us
first consider a two-site half filled attractive SU(3) Hub-
bard model. In this two-site model, there are obviously two
possible trion states: on-site trion |�t〉 = |123〉 and off-site
trion |�ot〉 = 1√

3

∑
P εPP|12, 3〉, where the permutation P ∈

{(1), (13), (23)} and εP = (−1)P is the parity. By first-order
perturbation theory, we obtain the ground-state wave function,

|	2-site〉 = |�t〉 −
√

3

2

t

U
|�ot〉, t/U → 0. (4)

This suggests that the ground state is the superposition of
the on-site trion state |�t〉 and the off-site trion state |�ot〉.
We may use this result to estimate the probability of triple
occupancy on the honeycomb lattice:

P(3) = 1

2
− 3z

8

t2

U 2
, t/U → 0, (5)

where the coordination number z = 3. For |U |/t � 3, the val-
ues of P(3) obtained by QMC simulations can be fit into the
equation P(3) = 1

2 − a t2

U 2 . Surprisingly, the fitting coefficient
a = 1.10(3) quantitatively agrees with Eq. (5).

In Fig. 2(b), the correlation function T (i, j) is plotted as
a function of ri j . Here ri j ≡ |ri − r j | is the distance between
sites i and j, and the distance between nearest-neighbor sites
is set as the length unit. For various U , the maximum of each
T (i, j) appears at ri j = 0, due to the attractive interaction
between fermions, while the minimum of each T (i, j) appears
at ri j = 1, optimizing the kinetic-energy gain that results in an
effective nearest-neighbor repulsive interaction between on-
site trions at strong coupling [39,60]. The minimum of T (i, j)
decreases with the increase of |U | and vanishes in the strong-
coupling limit, which is consistent with the off-site trion term
in Eq. (4). Additionally, the interaction-induced CDW phase

)b()a(

U/t = -1.0 U/t = -3.0

FIG. 3. Normalized bond vector histograms P(Nx, Ny ) obtained
by QMC simulations. The three bond orientations êa are denoted by
the long arrows. (a) U/t = −1.0 in the semimetal phase. (b) U/t =
−3.0 in the CDW phase. The lattice size L = 9.

transition can be illustrated in terms of the behavior of T (i, j).
For |U |/t � 1, T (i, j) converges to a constant when ri j is
large, so the correlation function has the equal value for the
color-1 fermion occupying the two sublattices, reflecting the
lattice inversion symmetry of the semimetal phase. In contrast,
for |U |/t � 2, T (i, j) defined on the same sublattice is much
larger than that defined on different sublattices, which corre-
sponds to the lattice inversion symmetry breaking of the CDW
phase.

The off-site trion at site i can be demonstrated via the prob-
ability distribution P(Nx, Ny) of the bond vector (Nx, Ny) =∑3

a=1〈di,êa〉sêa, where di,êa = ∑3
α=1(tc†

iαci+êaα + H.c.) is the
kinetic bond operator; 〈 〉s represents the simulated value
during a QMC run; êa denotes three nearest-neighbor bond
orientations [61–64]. For a reference lattice point, each of the
local bond vectors arising over the QMC simulation is tracked
and collected. The entire collection of simulated bond vectors
is plotted as a histogram which visualizes the probability
distribution of the bond vectors in terms of density of data
points. In the semimetal phase, the probability distribution
P(Nx, Ny) are symmetric around the origin since the bond
vector

∑3
a=1〈di,êa〉sêa is homogenous. In the CDW phase, the

off-site trion causes a nonzero 〈di,êa〉s. Since there is only one
off-site trion on each site,

∑
a〈di,êa〉sêa is polarized along one

êa direction. Figure 3(a) shows the symmetric probability dis-
tribution P(Nx, Ny) at U/t = −1, which indicates the absence
of an off-site trion. As shown in Fig. 3(b), at U/t = −3, the
dominant weight of P(Nx, Ny) is polarized along the three êa

directions, manifesting the bond state of an off-site trion. The
histogram only illustrates the formation of a local off-site trion
bond state, and does not imply the emergence of a long-range
order with off-site trions due to the low density of off-site
trions.

IV. THE CHARGE-DENSITY-WAVE PHASE TRANSITION

The CDW ordering can be characterized by the CDW
structure factor, which is defined at the � point via the density-
density correlation function C(i, j) = ∑

α,β〈niαn jβ〉 [65],

SCDW(L,�) = 1

2L2

∑
i j

C(i, j)εiε j, (6)
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(a) (b)

FIG. 4. (a) Extrapolation of the CDW order parameter to the
L → ∞ limit for various U . The quadratic polynomial fitting is used.
(b) Plot of the extrapolated CDW order parameter as a function of U .
The red dashed curve fits the data to D ∼ |U − Uc|−ζ .

where εi = +1 for sublattice A and εi = −1 for sublat-
tice B. Then the CDW order parameter is given by D =
limL→∞ [ 1

2L2 SCDW(L,�)]1/2.
In the L → ∞ limit, the CDW order parameter for various

U can be obtained by finite-size extrapolation. Figure 4(a)
shows that the extrapolated CDW order parameters are sub-
stantially greater than zero when |U |/t > 1.5, suggesting that
the critical point is at around U/t ≈ −1.5. The CDW or-
der parameters near the critical point obey the power law
D ∼ |U − Uc|−ζ [53,66], which in turn can be used to fit
the extrapolated CDW order parameters and then the criti-
cal exponent ζ = −0.67(3) and the critical coupling Uc/t =
−1.55(1) can be extracted, as shown in Fig. 4(b). Note that the
few nonvanishing extrapolated values below critical point may
originate from the simple finite-size extrapolation method
and should be removed by the curve-fitting approach [53,67].
Compared with the mean-field critical point U MF

c /t ≈ −1.11
(see Appendix C), it is reasonable that |U MF

c | < |Uc|, be-
cause quantum fluctuations are neglected in the mean-field
approach.

To locate the transition point more accurately, we consider
the dimensionless correlation ratio [50]

RCDW = 1 − SCDW(L,� + δk)

SCDW(L,�)
, (7)

where � is the CDW wave vector and � + δk repre-
sents a neighboring wave vector in the reciprocal lat-
tice. In the semimetal phase, RCDW tends to zero as
SCDW(L,�) ≈ SCDW(L,� + δk). When the CDW order de-
velops, SCDW(L,�) � SCDW(L,� + δk), so RCDW approaches
unity. For sufficiently large L, RCDW curves intersect at size-
independent point corresponding to the critical point Uc. For
finite lattice sizes, the crossing point of RCDW curves defines a
finite-size estimate of the critical value Uc(L), which takes the
form of Uc(L) = Uc + aL−b, when taking account of scaling
corrections [51]. The critical point Uc is then extracted in the
L → ∞ limit.

We use the resampling method [68,69] to extract the cross-
ing points Uc(L) between the RCDW(L) and RCDW(L + 3)
curves. In Figs. 5(a) and 5(b), RCDW curves show a size-
dependent crossing point in between −2.0 < U/t < −1.5
due to significant finite-size effects. Nevertheless, as shown
in Fig. 5(c), the crossing points are fitted into the curve

)b()a(

(c)

FIG. 5. (a) The CDW correlation ratio as a function of U
for lattice sizes L = 3, 6, 9, and 12. (b) A zoom-in view of the
curve-crossing region for lattice sizes L = 6, 9, and 12. (c) The
finite-size extrapolation of the crossing points with the error bars
from resampling.

equation Uc(L) = Uc + aL−b where the fitting parameters are
a = −3.7(11) and b = 2.2(3), and the critical point is found
to be Uc/t = −1.52(2).

We shall derive the critical exponents of the semimetal-
CDW transition. In the vicinity of the critical point, the CDW
order parameter obeys the scaling equation [48,49]

D(δu, L) = L
ζ

ν D̃
(
δuL

1
ν

)
, (8)

where δu = (U − Uc)/Uc and the exponent ζ = −ν(η + z)/2
(setting z = 1). Figures 6(a) and 6(b) show the scaling col-
lapses of the CDW order parameters and correlation ratios,
respectively. The exponent η = 0.57(2) is extracted from the

(a)

)d()c(

(b)

FIG. 6. Scaling collapses of (a) the CDW order parameters and
(b) correlation ratios by using the exponents ν = 0.82, ζ = −0.64.
(c) The log-log plot of order parameter versus L in the vicinity of
critical point. (d) Best-fitting analysis of the critical exponents. The
converged values are blued while the initial guess values are grayed.
The red dashed lines represent the standard errors. The critical point
Uc/t = −1.52.
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slope of the log-log plot of D versus L at the critical point
Uc/t = −1.52, as shown in Fig. 6(c). Then in Fig. 6(d), the
exponents η and ν are extracted simultaneously by using the
best-fitting analysis adapted from Refs. [70,71]. Typically,
we randomly choose the value of Uc/t at around −1.52 and
randomly choose the initial guesses of the exponents ν and
ζ , inside a small range. By the best-fitting procedure, the
converged values of the critical exponents are found to be
ν = 0.82(3), ζ = −0.64(3), and η = 0.58(4).

In the framework of the GNY models, the semimetal-
CDW transition of SU(3) Dirac fermions belongs to the N =
3 chiral Ising universality class, of which the perturbative
renormalization-group (RG) calculations suggest the critical
exponents ν � 1 and η � 0.8 [72]. It is evident that the critical
exponents given by GNY models remarkably deviate from our
QMC results by �20%. Surprisingly, our QMC results coin-
cide with the N = 1 chiral Ising universality class, of which
the perturbative RG calculations give the critical exponents
ν = 0.898(27) and η = 0.487(12) [47,72]. The functional RG
calculations [ν = 0.930(4), η = 0.5506] [73] and the QMC
simulations [ν = 0.88(2), η = 0.54(6)] [74] of the N = 1
chiral Ising universality class also suggest similar critical
exponents.

V. CONCLUSIONS AND OUTLOOK

We have performed the sign-problem-free QMC simula-
tions to investigate the trion formation and quantum phase
transition in the half filled attractive SU(3) Hubbard model
on a honeycomb lattice. With increasing attractive Hubbard
interaction, the continuous semimetal-CDW transition occurs
at the critical point Uc/t = −1.52(2) and the corresponding
critical exponents are ν = 0.82(3) and η = 0.58(4). In the
CDW region, the off-site trions emerge due to density fluc-
tuations, and therefore the on-site and off-site trions coexist in
the CDW phase.

Our QMC simulations illustrate the formation of a local
off-site trion bond state in two-dimensional Hubbard model,
which extends the understanding of one-dimensional off-site
trions suggested by previous DMRG study. It has been pro-
posed that the trionic phase can be probed by shaking the
optical lattice [35]. Moreover, the triple occupancy can be
determined experimentally by measuring the loss of atoms
governed by a three-body process [25]. Our work opens a
new avenue for exploring the physical effects of the interplay
between on-site and off-site trions in two-dimensional spatial
models.

What is particularly interesting about our findings is that
the critical exponents determined by QMC simulations re-
markably disagree with those of the N = 3 chiral Ising
universality class predicted by the effective GNY theory
which has been believed to suggest a general description for
the criticality of two-dimensional Dirac fermions and has been
numerically verified in several SU(N) models. Unexpectedly,
our QMC results are in fair agreement with the N = 1 chi-
ral Ising universality class. We argue that the formation of
trions may affect the quantum criticality of attractive SU(3)
Dirac fermions. At the critical point, two species of fermions
(unbound fermions and trions) get involved in the ongoing de-
velopment of CDW order. The on-site trion as a whole can be

recognized as a spinless fermion and dominate the long-range
CDW ordering at strong coupling. Within the framework of
GNY model, the criticality of spinless trions belongs to the
N = 1 chiral Ising universality class. Therefore formation of
trions completely deprive the attractive SU(3) Hubbard model
of the N = 3 chiral Ising universality class. However, the crit-
ical point at which unbound fermions are still in the majority
is far from the strong-coupling regime. The reason that the
QMC results are in a good coincidence with the N = 1 chiral
Ising universality class is still uncertain. Our results evidently
raise doubts about the extent of applicability of GNY model
on attractive SU(3) Dirac fermions, which is definitely worth
to think and need to solve in future study.
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APPENDIX A: ESTIMATION OF THE MOTT GAP

The attractive SU(N) Hubbard Hamiltonian consists of two
parts: H = HU + H0 with HU = U

∑
i,α<β (niα − 1/2)(niβ −

1/2) and H0 = −t
∑

〈i j〉,α (c†
iαc jα + H.c.). At half filling, we

define the Mott-insulating state by the nonzero energy penalty
of adding (removing) a particle into (from) the system [63,75].
In the atomic limit the energy penalty of adding an extra
hole into the Mott-insulating state is �at = ENtot−1 − ENtot =
−U

2 (N − 1) where Ntot is the total number of fermions. When
tuning on the hopping term, the extra hole (particle) can move
in the system, which further modifies the energy penalty.
Below, we derive an effective model for the description of the
extra hole (particle).

Following the steps in Ref. [76], we define the ground state
|n(0)〉 by HU |n(0)〉 = E (0)

D |n(0)〉 with E (0)
D = ENtot−1. Let P0 be

the projection operator onto the subspace D spanned by |n(0)〉.
The projection operator outside the subspace D is then defined
as P1 = 1 − P0. The degenerate Rayleigh-Schrödinger pertur-
bation theory yields the effective Hamiltonian, Heff |n(0)〉 =
En|n(0)〉, up to the second order,

Heff = P0

(
E (0)

D + H0 + H0P1
1

E (0)
D − HU

P1H0

)
P0, (A1)

where the hopping operator H0P0 moves one fermion from the
local singlet bound state to the NN sites, as shown in Fig. 7.
Consider the Pauli exclusion principle, the Hamiltonian can
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FIG. 7. In the attractive SU(N) Hubbard model, (a) the first-order
process inside the subspace D and (b)(c) the second-order processes
with the energy penalty −U (N − 1).

be written as

Heff = E (0)
D + C(1) + C(2)

+ t2

U (N − 1)
P0

∑
〈〈i j〉〉∈A,α

(
c†

iαc jα + H.c.
)
P0

= ENtot−1 + C(1) + C(2)

+ t2

U (N − 1)

∑
〈〈i j〉〉∈A

(
c†

i1c j1 + H.c.
)

= ENtot−1 + C(1) + C(2) +
∑

k

εh(k)c†
k1ck1, (A2)

where 〈〈i j〉〉 represents the next-nearest-neighbor (NNN) sites
and the NNN hopping process is restricted to the fermion
color of the extra hole. C(1) = P0H0P0 is the first-order
perturbation [see Fig. 7(a)], and C(2) is the second-order
perturbation where one fermion hops to the NN sites and
then hops back [see Fig. 7(b)]. The last term represents
the effective tight-binding model originated from the desired
second-order process, as shown in Fig. 7(c). In the ground
state, we assume that the extra hole (particle) occupies the
lowest energy level −yt ′, where t ′ = −t2/[U (N − 1)] and
y > 0 is a constant relying on the lattice structure.

Similarly, the effective Hamiltonian of the half filled
system yields Heff = ENtot + C(2) where the NNN hopping
process is absent up to the second order. Combined with
Eq. (A2), we obtain the energy penalty

�at = −U

2
(N − 1) + yt2

U (N − 1)
+ C(1) + δC(2), (A3)

where δC(2) is the difference between the NN second-order
correction terms. In fact, δC(2) is marginal and we may also
safely discard C(1) because of the CDW ordering. At the Mott
transition point, �at = 0 and then an estimate of the transition
point is

U at
c = −

√
2yt

N − 1
. (A4)

For the attractive SU(N) Hubbard model on the honeycomb
lattice, the NNN hopping processes are on a triangular lattice
as shown in Fig. 1, and thus εh(k) = −2t ′ ∑3

i=1 cos(k · δ̂i )

with the primitive vectors δ̂1 = (
√

3, 0), δ̂2 = (
√

3
2 , 3

2 ), and

δ̂3 = (
√

3
2 ,− 3

2 ). Thus, the lowest energy level is εh(�) = −6t ′.
Substituting y = 6 into Eq. (A4), we obtain

U at
c /t = − 2

√
3t

N − 1
. (A5)

For N = 3, the critical point is estimated as U at
c /t = −√

3.

APPENDIX B: THE AUXILIARY FIELDS COUPLED TO
ON-SITE COLOR FLIPS

In this section, we adopt the theorem from Ref. [43] to
prove that the QMC simulation of attractive SU(3) Hubbard
model is sign-problem-free at half filling. We consider the
finite-temperature formalism and apply the Suzuki-Trotter de-
composition to separate the kinetic and interaction terms in the
partition function,

Z = tr
{
e−βH

} = tr

{[
M∏

k=1

e−�τH0 e−�τHU

]}
, (B1)

where �τ = β/M is the Trotter decomposition step. For the
attractive Hubbard interaction,

e−�τU
∑

α<β (nα− 1
2 )(nβ− 1

2 ) =
∏
α<β

e− �τU
2 (c†

αcβ−H.c.)2− �τU
4 . (B2)

The coupling matrix between colors α and β reads(
c†
α, c†

β

)( 0 1
−1 0

)(
cα

cβ

)
, (B3)

and its eigenvectors correspond to the complex fermion ba-
sis [44],

c̃αβ = 1√
2

(cα − icβ ), cβα = 1√
2

(cα + icβ ). (B4)

It can be verified that c̃αβ and c̃βα obey fermionic anti-
commutation relations: {c̃†

αβ, c̃αβ} = 1, {c̃†
αβ, c̃βα} = 0. After

the diagonalization of coupling matrix Eq. (B3), the Hub-
bard interaction term (c†

αcβ − c†
βcα )2 is refined to −(c̃†

αβ c̃αβ −
c̃†
βα c̃βα )2. In the subspace spanned by the complex fermion

basis, we apply the discrete Hubbard-Stratonovich (HS) trans-
formation to decouple the Hubbard interaction term:

e
�τU

2 (c̃†
αβ c̃αβ−c̃†

βα c̃βα )2

= 1

2

∑
sαβ=±1

eisαβλ(c̃†
αβ c̃αβ−c̃†

βα c̃βα ), (B5)

where λ = arccos e
�τU

2 and U < 0. From Eqs. (B4) and (B5),
we may write Eq. (B2) as

e−�τU (nα− 1
2 )(nβ− 1

2 ) = 1

2
e− �τU

4

∑
sαβ=±1

esαβλ(c†
αcβ−c†

β cα ). (B6)

It is seen that the Hubbard interaction term in the SU(3)
Hamiltonian Eq. (1) can be decoupled in the on-site color-flip
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FIG. 8. Correctness test of the HS transformation: (a) The nu-
merical error as a function of U for �τ = 0.1. (b) The numerical
error as a function of �τ for U/t = −1. The red and black dashed
curves are respectively the Trotter errors of �τ and �τ 2.

channels via three auxiliary fields s12, s13, and s23:

e−�τU
∑

α<β (nα− 1
2 )(nβ− 1

2 )

= 1

8
e− 3�τU

4

∑
s12,s13,s23=±1

e
∑

α<β sαβλ(c†
αcβ−c†

βcα ), (B7)

with a systematic error O(�τ 2). We expand Eq. (B7) in the
on-site Fock space, and plot the numerical error of the diago-
nal element as a function of U , as shown in Fig. 8. According
to this correctness test, the HS transformation used in our
work is accurate in the intermediate-coupling regime (U/t <

10) but debatable at very strong couplings (U/t > 10).
Next, we prove that QMC simulations using the HS trans-

formation of Eq. (B7) can avoid the sign problem. In the
bipartite lattice, we arrange the color-orbital operators in the
order (Aα, Aβ, Aγ , Bα, Bβ, Bγ ), where A and B represent the
two sublattices. Then, the Hamiltonian after the HS transfor-
mation takes the form of

Hs =
(

DA K
K DB

)
,

where K represents the hopping matrix between two sublat-
tices; DA and DB are block diagonal matrices. In particular,
each block in DA and DB is an antisymmetric matrix

� =
⎛⎝ 0 s12λ s12λ

−s12λ 0 s23λ

−s13λ −s23λ 0

⎞⎠, (B8)

and � = −�T . It is easy to verify that the decoupled Hamil-
tonian satisfies

ηHsη = −HT
s , (B9)

where η = diag(1, . . . , 1,−1, . . . ,−1). This condition guar-
antees the sign-problem-free determinant QMC simula-
tions [43]. However, when the system is away from half
filling, DA and DB are not real antisymmetric matrices, which
may cause the sign problem. Furthermore, we can use the
Rodrigues formula to simplify the matrix exponential: e� =
I3 + sin θ

θ
� + (1−cos θ )

θ2 �2 with θ = [(s2
12 + s2

13 + s2
23)λ2]1/2 =

(3λ2)1/2.
The auxiliary fields associated with on-site color-flip chan-

nels can be generalized to the attractive SU(2N + 1) Hubbard
model. This HS transformation, however, enlarges the size of

FIG. 9. Correctness test on a 2 × 2 square lattice for (a) ground-
state energy, (b) pairing order parameter, (c) CDW order parameter,
and (d) triple occupancy probability.

matrix which leads to the time complexity O(β(2L2N ′)3) with
N ′ = 2N + 1. The HS transformation of Eq. (B7) can also
be applied to the projector QMC (PQMC) method in which
the expectation values of observables with the ground state
|	G〉 are calculated. A trial ground-state wave function |	T 〉 is
chosen based on the Hamiltonian Eq. (1) in the noninteracting
limit under the antiperiodic boundary condition [43]. Given
the inner product 〈	G|	T 〉 
= 0, the ground state |	G〉 can be
reached by applying the projection operator e− βH

2 onto |	T 〉
for a sufficiently long projection time β [58,77].

In our simulations, the honeycomb lattice in real space is
subject to the periodic boundary condition for L = 3, 6, 9, 12.
Under this boundary condition, the lattice vectors in the Bril-
louin zone can meet the Dirac points. The projection time β =
8
3 L and the Trotter decomposition step �τ � 0.1 are sufficient
for the accurate description of the ground-state properties of
the attractive SU(3) Hubbard model.

In the half filled attractive SU(3) Hubbard model, the
results of PQMC are compared with those of exact diagonal-
ization (ED) method on a 2 × 2 square lattice. In Fig. 9, the
ED results are shown with the red square, while the PQMC
results for β = 10, 20 are presented respectively by the blue
circle and blue pentagon. For most of U , PQMC results agree
well with ED calculations within the margin of numerical
errors. However, when U/t = −0.05, we obtain inconsistent
results except the ground-state energy. The reason could be
that the trial wave function becomes inappropriate due to
Fermi-surface nesting.

APPENDIX C: MEAN-FIELD ANALYSIS

For the CDW order on a honeycomb lattice, the Hubbard
interaction term can be decoupled in terms of the on-site
parameters 〈c†

iαciα〉 = εi� at the mean-field level, where �

is the CDW order parameter; εi is +1 on sublattice A and is
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FIG. 10. Mean-field solution of the CDW order parameter � as
a function of U for N = 2, 3 at half filling.

−1 on sublattice B. The mean-field CDW order parameter can
be defined as

� = 1

2L2N

∑
i,α

εi〈c†
iαciα〉. (C1)

The mean-field Hamiltonian of the attractive SU(3) Hub-
bard model is then written in the reciprocal space, HMF =∑

k,α c†
k,α

hkck,α , where

hk =
[

(N − 1)U� ε∗(k)
ε(k) (1 − N )U�

]
, (C2)

and the bipartite basis c†
k ≡ (c†

Ak, c†
Bk ) is used. The off-

diagonal term ε(k) = −t
∑

a e−ik·êa comes from the noninter-
acting part of Eq. (1), where

∑
a is the sum over three vectors

ê1 = (0, 1), ê2 = (−
√

3
2 ,− 1

2 ), and ê3 = (
√

3
2 ,− 1

2 ). The dis-
tance between nearest-neighbor (NN) sites is set as the unit of
length. At half filling, the self-consistent equation of � reads

� = 1

2L2N

∑
k,α

(
ε(k)2

|λk|2 + (N − 1)U�|λk| − 1

)
, (C3)

where λk = ±[(N − 1)2U 2�2 + ε(k)2]1/2 are the eigenvalues
of the matrix hk. The nonzero value of � opens the energy gap
2(N − 1)|U |� in the energy spectrum λk. Thus the ground
state is an insulator and Eq. (C1) is often referred to as the
gap function. Furthermore, according to Eq. (C3) the number
of fermion colors actually rescales U by the factor N − 1 [40].

For each Hubbard U , one can solve Eq. (C3) self-
consistently by the root-finding method [78,79]. As shown in
Fig. 10, the CDW phase transitions occur at the critical points
U MF

c /t ≈ −1.11 for N = 3 and U MF
c,N=2/t = 2U MF

c /t ≈ −2.23
for N = 2.

On the other hand, the pairing gap function is defined
as �αβ = − 1

2L2

∑
k〈ckαc−kβ〉. The vector (�23,�31,�12) can

be mapped onto (0, 0,�12) by a global gauge change, leav-
ing only one pair gapped [16]. By solving the standard
BCS problem, the energy spectrum has the gapped branches
±[ε(k)2 + U 2�2

12]1/2 with the energy gap |2U�12|. Note that
Eq. (C3) also holds for �12 when N = 2. Thus, in the half
filled attractive SU(3) Hubbard model, the pairing gap (N =
2) is certainly not larger than the CDW gap (N = 3), and the
ground state is associated with CDW order [15].

Next, we investigate the semimetal-CDW transition by an-
alyzing the Ginzburg-Landau (GL) free-energy density f (�).
Since σx�σx = −� in which σx is the Pauli matrix in the basis
of sublattices, the CDW order breaks the lattice inversion sym-
metry. However, f (�) needs to maintain the lattice inversion
symmetry. Hence, the analytic part of f (�) can be written as

fa = r2�
2 + r4�

4. (C4)

According to the GL theory, fa describes a second-order tran-
sition with the critical exponent ζ = − 1

2 . Due to the coupling
between � and the gapless Dirac fermions, the total free-
energy density f (�) potentially contains a nonanalytic part
as explained below. When taking account of the spin degen-
eracy, there are six Dirac cones in the first Brillouin zone.
In the CDW phase, the mean-field energy spectrum around
each Dirac point is Ek = [v2k2 + (N − 1)2U 2�2]1/2, where
k represents the deviation from the Dirac point. Denote the
nonanalytic part by fnon(�,β ) where β is the inverse tem-
perature. At the mean-field level, we can estimate fnon(�,β )
arising from the low-energy spectra around the Dirac points
as

fnon(�,β ) ≈ − 6

β

∫ �

0

d2k
(2π )2

[
ln

(
1 + eβEk )

+ ln
(
1 + e−βEk

)]
, (C5)

where � is the momentum cutoff. By taking the limit of β →
∞ and then � → 0, we solve the integral,

fnon = r3|�|3, (C6)

where r3 = (N − 1)3U 3/πv2 > 0. Combined with the ana-
lytic part fa, we obtain the total GL free-energy density

f (�) = fa + fnon = r2�
2 + r3|�|3. (C7)

According to the GL theory, f (�) describes a second-order
transition with the critical exponent ζ = −1.

FIG. 11. Finite-size extrapolations of the pairing order parameter
to the L → ∞ limit for various U . Dashed lines are the least-square
fits with the quadratic polynomials in 1/L.
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APPENDIX D: ABSENCE OF THE PAIRING ORDER

The pairing structure factor can be defined as

Spair (L) = 1

2L2

∑
i, j

P(i, j), (D1)

where 2 × L × L is the number of lattice sites and P(i, j) =∑
α<β〈c†

iαc†
iβc jβc jα + ciβciαc†

jαc†
jβ〉 is the equal-time pair-pair

correlation function. By extrapolating the structure factor to
thermodynamic limit, the long-range pairing order parameter
can be obtained: Ps = limL→∞ [ 1

2L2 Spair (L)]1/2.
At half filling, the ground state of the attractive SU(3)

Hubbard model on the honeycomb lattice is a semimetal in
noninteracting limit U/t → 0. As the attractive interaction
increases, the system may enter an ordered phase. At weak

coupling, the pairing gap function on the honeycomb lattice
is vanishingly small because of the zero density of states
at Dirac points [16], and therefore the quantum fluctuations
prevent pairings on the half filled honeycomb lattice. At
strong coupling, the attractive SU(2) Hubbard model enters
the ordered phase where the pairing order and the CDW
order are degenerate, and thus the (spin) SU(2) symmetry is
preserved [65,80–82].

As shown in Fig. 11, the finite-size extrapolation to the
L → ∞ limit shows no sign of pairing order on the honey-
comb lattice in a wide range of coupling strengthes. Hence,
the pairing order is absent and therefore the color superfluid is
not the ground state of our model. In Appendix C, the mean-
field analysis also indicates that the energy of pairing order is
higher than that of CDW order on a honeycomb lattice, which
is consistent with our QMC results.
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