
PHYSICAL REVIEW B 104, 024501 (2021)

Magnetotransport in overdoped La2−xSrxCuO4: Fermi liquid approach
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Recently, several experiments on La2−xSrxCuO4 (LSCO) challenged the Fermi liquid picture for overdoped
cuprates and stimulated intensive debates. In this work, we study the magnetotransport phenomena in such sys-
tems based on the Fermi liquid assumption. The Hall coefficient RH and magnetoresistivity ρxx are investigated
near the Van Hove singularity (VHS) xVHS ≈ 0.2 across which the Fermi surface topology changes from hole-
to electronlike. The main results are (1) RH drops from positive to negative values with increasing B in the
doping regime xVHS < x � 0.3 and (2) ρxx grows as B2 at small B and saturates at large B, while a “nearly linear”
dependence shows up in the transition regime, which is significantly enlarged near the VHS. These results can
be tested by future magnetotransport experiments in overdoped LSCO to check whether the Fermi liquid picture
applies or not.
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I. INTRODUCTION

After more than three decades of efforts, there still exist
many mysteries in cuprate superconductors, partly because
the superconductivity arises from two fundamentally different
states: the parent undoped Mott insulating state and the heav-
ily overdoped metallic state [1]. Close to the Mott insulator
side, only doped holes contribute to charge transport, and the
carrier density equals the doping level x (per Cu). On the other
hand, in the heavily overdoped metallic region, the total car-
rier density is expected to change to 1 + x. Such an anticipated
transition from x to 1 + x was reported to occur at a critical
doping level x∗ by measuring the normal state Hall number nH

in YBa2Cu3Oy (YBCO) [2] and La1.6−xNd0.4SrxCuO4 (Nd-
LSCO) [3] under strong magnetic field. Here, nH is defined
as V

eRH
, with RH being the Hall coefficient and V being the

volume per Cu, such that the sign of nH indicates the carrier
type. In combination with many other experiments [4–6], the
sharp transition of nH from x to 1 + x is possibly driven
by an underlying quantum critical point (QCP) beneath the
superconducting dome [7–14].

However, as for the case of Nd-LSCO, there exists a
puzzle: at x > xVHS ≈ 0.22, where xVHS is the doping when
the Fermi energy reaches the Van Hove singularity (VHS)
[15,16], nH = 1 + x is in conflict with the prediction of the
Lifshitz-Azbel-Kagonov theory [17,18]. It states that in the
strong magnetic field limit, the Hall number nH should be
given by the electron number enclosed by the Fermi surface
(FS), i.e., nH = −(1 − x), where the minus sign indicates
the carriers are electrons rather than holes. On the other
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hand, if the magnetic field value B is not large enough,
the Hall number is not determined by the Luttinger volume
[19] directly but depends on the FS curvature [20]; hence,
nH = 1 + x is not anticipated directly either. Therefore, how
to explain nH = 1 + x at x > xVHS remains an open ques-
tion. One possibility may be the failure of the Fermi liquid
description.

Different from YBCO and Nd-LSCO, the transition from
x to 1 + x has not been observed in La2−xSrxCuO4 (LSCO).
Like for Nd-LSCO, there also exists a VHS at xVHS ≈
0.18–0.20, as observed by the angle-resolved photoemission
spectroscopy (ARPES) experiment [21]. One consequence
of the VHS is that the normal state Hall coefficient RH de-
creases smoothly with doping and finally drops to negative
values at x ≈ 0.3 in the weak magnetic field limit [22–24].
In fact, the smooth behavior of RH upon doping is consistent
with the measurements of the upper critical field [25], super-
fluid density [26], and resistivity [27] in LSCO. Certainly,
some experiments reported possible QCP signatures such as
the insulator-to-metal transition around the optimal doping
xc ≈ 0.16 [28] and the vanishing of the stripe/nematic order
[29–31], accompanied by a peak [32] or upturn in nH [33]
upon doping at low temperatures under strong magnetic fields.
Further evidence of the QCP comes from the observation of
the linear magnetoresistivity at 0.16 < x < 0.19 which was
attributed phenomenologically to the linear scattering rate
τ−1 ∝ B [34], which is similar to the Planckian dissipation
[35]. However, such an explanation is based on the assump-
tion that the B dependence comes from only τ−1, which still
needs more careful exploration. Nevertheless, these experi-
ments, together with the observation of nematicity [30] and
the very low superfluid density [26], have stimulated debate
on whether the metallic states in overdoped cuprates are Fermi
liquids or not [36].
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Motivated by this experimental progress, we performed
the present study in order to check whether the overdoped
LSCO is within the Fermi liquid picture or not. We employ
Chambers’s semiclassical theory [37,38] to study the Hall
coefficient and magnetoresistivity for the general values of
the magnetic field B. This study is based on the semiclassi-
cal cyclotron orbits of quasiparticles on the Fermi surface.
It should be pointed out that the frequently used result of
RH = 1

qn is incorrect except for parabolic dispersions (with
a circular FS) or in the strong-field limit [17,18]; otherwise, it
should be determined by the FS curvature in the weak-field
regime, as pointed out by Ong [20]. Based on Chambers’s
formula, our calculations show the Hall coefficient changes
sign with increasing field strengths in the range of doping
xVHS < x � 0.3. Furthermore, there exists a “nearly linear”
magnetoresistivity at intermediate field strengths, especially
when doping is close to the VHS, thus providing an alternative
explanation for the B-linear resistivity other than assuming
τ−1 ∝ B. These results are consistent with the known exper-
iments, indicating that the magnetotransport properties of the
overdoped LSCO may still be described by the Fermi liquid
theory.

II. MODEL AND METHOD

To capture the band structure of the overdoped LSCO, we
adopt the single-band model on the square lattice,

H = −
∑
〈i j〉σ

(ti jc
†
iσ c jσ + H.c.) − μ

∑
iσ

c†
iσ ciσ , (1)

where ti j is the hopping between sites i and j and
μ is the chemical potential. To be specific, we de-
note t , t ′ = −0.12t and t ′′ = 0.06t as the first-, second-
, and third-nearest-neighbor hoppings obtained by fitting
the ARPES experiments [39]. With these parameters, the
band dispersion is given by εk = −2t cos(kx ) − 2t cos(ky) −
4t ′ cos(kx ) cos(ky) − 2t ′′ cos(2kx ) − 2t ′′ cos(2ky) − μ. When
μ matches the VHS, μVHS = 4t ′ − 4t ′′, corresponding to the
doping xVHS ≈ 0.197. Three typical Fermi surfaces near the
VHS are plotted in Fig. 1. At x < xVHS, the FS is holelike
surrounding (π, π ), i.e., the corner of the Brillouin zone (BZ).
At x > xVHS, the FS changes to surround the center of the
BZ, which is globally electronlike. Nevertheless, the local
curvatures of the FS segments change signs from electronlike
in the antinodal region [close to (π, 0) and (0, π )] to hole-
like in the nodal region [close to (±π

2 ,±π
2 )], leading to a

multicomponent feature [20]. Which picture (global or local)
is more relevant for the Hall experiments is an interesting
question.

The key lies in the ratio of the scattering lifetime τ relative
to the cyclotron period T . The cyclotron frequency ωc = 2π

T
is determined by the cyclotron mass mc = 1

2π
∂S
∂ε

(S is the area
surrounded by the cyclotron orbit with energy ε) through the
relation ωc = eB

|mc| . If τ is much larger than T , i.e., ωcτ � 1,
the cyclotron motion completes the entire orbit, leading to
the global picture of the electronlike FS. Consequently, the
Hall number nH is anticipated to be the electron number
surrounded by the FS [17] according to the Luttinger theo-
rem [19], i.e., nH = 1 + x for x < xVHS and nH = −(1 − x)
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FIG. 1. Cyclotron mass mc (in units of h̄2

a2t
) vs x. The VHS is

shown by the vertical dashed line. The three insets show the FS
below (x = 0.16), almost at (x = 0.20), and above (x = 0.24) the
VHS filling. Two arrows indicate hole- and electronlike FS segments
in the case of x = 0.24.

for x > xVHS. Meanwhile, the resistivity should be roughly
proportional to the cyclotron mass |mc|. In contrast, if ωcτ 	
1, the quasiparticles have no chance to “see” the whole FS
without scattering, and thus, the local picture is preferred. As
a result, we cannot identify nH as the carrier density directly,
and the resistivity should be determined by the band mass
m−1

αβ = ∂2ε
∂kα∂kβ

rather than the cyclotron mass |mc|.
In order to obtain a unified description connecting the

above two limits, we adopt the semiclassical Chambers’s for-
mula [18,37,38],

σαβ = e3B

(2π )2

∫
dε

(
−∂ f0

∂ε

)

×
∫ T

0
dtvα (t )

∫ t

−∞
dt ′vβ (t ′)e−(t−t ′ )/τ , (2)

where vα = ∂εk
∂kα

depends on t through the relation k(t ). Eq. 2 is
derived based on the Boltzmann’s transport equation by con-
sidering the cyclotron motion perpendicular to B. In cuprates,
such a semiclassical picture can be justified by the observa-
tions of quantum oscillations [40] and cyclotron resonances
[41], which mean quasiparticles remain coherent in magneto-
transports. We focus on the situation with B perpendicular to
the ab-plane as in many experiment setups.

At low temperatures, only one cyclotron orbit, i.e., the FS,
is needed to be considered. The electron motion is determined
by the Lorentz force h̄k̇ = −evk × B. After the velocity v(t )
is obtained (in this work by numerics), which satisfies the
periodic condition v(t ) = v(t + T ), it can be derived that [9]

σαβ = e3B

(2π )2

1

1 − e−T /τ

×
∫ T

0
dtvα (t )

∫ t

t−T
dt ′vβ (t ′)e−(t−t ′ )/τ . (3)
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FIG. 2. Phase diagrams of (a) RH and (b) ρxxτ as functions of x
and ωcτ . The color encodes the values of RH (in units of a2c

e ) and

ρxxτ (in units of h̄2c
e2t

). In (a), the contour of RH = 0 is shown as the
solid line which merges to the VHS (dashed line) at large ωcτ .

Then the Hall coefficient RH and magnetoresistivity ρxx

follow directly,

RH = σxy(
σ 2

xx + σ 2
xy

)
B

, ρxx = σxx(
σ 2

xx + σ 2
xy

) . (4)

Based on Eq. (5), σαβ

τ
are functions of ωcτ , yielding Kohler’s

relations [38,42]: RH = F (ωcτ ) and ρxxτ = G(ωcτ ), where F
and G are functions of ωcτ .

Both the weak- and strong-field limits have been exten-
sively studied in the literature. When ωcτ 	 1, due to the
exponential factor e−(t−t ′ )/τ , the t ′ integral mainly comes from
t ′ ≈ t . Therefore, we can expand vβ (t ′) = vβ (t ) + ∂vβ

∂t (t ′ − t )
and substitute it into Eq. (2), giving

Jα = e2τ

∫
k

(
− ∂ f0

∂εk

)
vα (k)vβ (k)Eβ

+ e3τ 2
∫

k

(
− ∂ f0

∂εk

)
vα (k)

∂vβ (k)

∂kγ

Eβ (vk × B)γ , (5)

which is the same as the result obtained with Kubo’s formula
[43] and widely used in previous works [7,8,10,11]. On the
other hand, in the strong-field limit, ωcτ � 1, the exponen-
tial factor e−(t−t ′ )/τ can be approximated by unity, leading to
σxy = qn

B , where q = e (−e) when mc > 0 (<0) and n counts
the electron number surrounded by the FS [17,18]. Then,
RH = 1

qn follows immediately due to the scaling behavior of

σxx ∝ (ωcτ )−2. Unfortunately, no simple results exist for ρxx

in the strong-field limit in general [42].

III. RESULTS

Our main results are shown in Fig. 2. At first glance, both
RH and ρxxτ show significant dependence on ωcτ , exhibiting
different behaviors from free electrons in the Drude theory.
In the strong-field limit ωcτ → ∞, RH changes exactly at
x = xVHS, reflecting the topological change in the FS, and
ρxxτ diverges similar to the behavior of an open orbit. On
the other hand, in the weak-field limit, ωcτ → 0, both RH

and ρxxτ evolve smoothly with x. The mismatch between the
above two limits leads to many interesting phenomena. In the
following, let us undertake detailed discussions of RH and ρxx.
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FIG. 3. (a) RH and (b) 1
RH

are plotted vs the doping x. Each curve

corresponds to a different value of λ = eBτ

m∗ . The experimental data
for RH at 300 K [24] in the weak-field limit are shown as squares. The
strong-field limits RH = ± 1

1±x are also plotted by the dashed lines for
comparison. We plot RH vs (c) ωcτ and (d) λ at fixed doping levels
of x.

Before moving forward, let us combine the scattering life-
time τ and the magnetic field B into a dimensionless quantity
λ = eBτ

m∗ , where m∗ = h̄2

ta2 is the band mass at the band bottom,
with a being the lattice constant. λ is insensitive to doping, and
it equals ωcτ at the band bottom. (In comparison, ωcτ strongly
depends on x as the cyclotron mass mc varies significantly
with x near the VHS.) But close to the VHS, since |mc| is
greatly enhanced, λ � ωcτ . The values of λ are estimated
below. We choose t ≈ 0.25 eV as obtained from ARPES [21]
and lattice constants a ≈ 3.8 Å, c ≈ 6.6 Å. The scattering
rate τ−1, however, is somewhat more difficult to determine.
Upon doping, the interaction-induced scattering may become
weaker, but the extrinsic disorder effect may become stronger.
τ−1 ∼ 5 meV is roughly estimated from the optical conduc-
tivity measurements in overdoped LSCO [44], in agreement
with the very recent measurement in optimally doped LSCO
[41]. With these parameters, λ ≈ 0.01B (teslas). Therefore,
the magnetic field used in the experiments B � 80 T [27,34]
corresponds to λ � 0.8.

Typical behaviors of RH are explicitly shown in Fig. 3.
The most obvious feature is that its field dependence is very
different from that of free electrons with parabolic disper-
sions. Figures 3(a) and 3(b) show that only in the strong-field
limit, λ � 1 is RH given by counting the carrier numbers, i.e.,
eRH = 1

1+x and − 1
1−x when x < xVHS and x > xVHS, respec-

tively, although the discontinuity of RH is smoothed by the
finite lifetime. However, this relation breaks down for weaker
fields. The experimental data for RH in LSCO [22–24] are also
plotted: RH exhibits a significant deviation from the scaling
of − 1

1−x and changes sign at x ≈ 0.3. As shown in Fig. 3(c),
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FIG. 4. (a) Field and (b) doping dependence of ρxxτ . In (b),
we also plot a rough estimation of ρxxτ ≈ |mc |

1±x , which qualitatively
describes the behavior in the strong-field limit.

RH changes significantly with varying ωcτ . The interesting
regime lies in xVHS < x � 0.3, where RH drops from positive
to negative values with increasing the field strength, and fi-
nally, it saturates to the strong-field limit − 1

1−x . Near the VHS,
although RH changes sign at a finite value of ωcτ , it requires
a large field strength due to the divergence of mc, which may
be beyond the experimental availability. The field dependence
of RH is replotted in Fig. 3(d) in terms of λ.

Next, we present the behavior of magnetoresistivity. The
relation of ρxx vs λ is shown in Fig. 4(a). Away from the
VHS, its behavior is standard as in usual metals [38]: ρxxτ

increases with λ2 at λ 	 1, saturates at λ � 1 with λ−2, and
grows approximately linearly in between. The B2 behavior,
i.e., the λ2 dependence, in the weak field has been observed
in LSCO [27,34]. Deviation from the B2 behavior was found
at B � 30 T, corresponding to λ � 0.3 in experiments [34].
However, when the system is close to the VHS, due to the
divergence of mc, the regime of linear growth is significantly
enlarged, and the magnetoresistivity is greatly enhanced. The
closeness to the VHS may provide an alternative explanation
for the linear magnetoresistivity observed in the experiments
at 0.16 < x < 0.19 [34], rather than the more exotic picture
of “Planckian dissipation,” i.e., τ−1 ∝ B [35]. Within our
scenario, we would expect the tendency of saturation of ρxx

around B ∼ 100 T (corresponding to λ ≈ 1), which could be
tested in the future. Figure 4(b) shows the doping dependence
of ρxxτ at different values of λ. At λ 	 1, ρxxτ smoothly
depends on x since the average of the band mass plays the
dominant role here. As λ increases, the cyclotron motion
becomes more coherent. The enhancement of |mc| drives the
divergence of ρxxτ as x approaches the VHS, which roughly
follows |mc|

1±x for x < xVHS and x > xVHS.
Since the cyclotron resonance has been observed in opti-

mally doped LSCO [41], we argue that the role of cyclotron
motion cannot be neglected in the study of the magneto-
transport behavior. Certainly, in the strange metal region near
optimal doping, our explanation based on the Fermi liquid
picture may not directly apply. Nevertheless, our results could
be further tested in the more heavily overdoped region and in
higher fields.

IV. SUMMARY AND DISCUSSIONS

In summary, we have performed a semiclassical study of
the Hall coefficient and magnetoresistivity near the VHS in
overdoped LSCO based on the Fermi liquid assumption. Both
RH and ρxxτ strongly depend on the magnetic field: as B
increases, RH changes sign from positive to negative values
at xVHS < x � 0.3, and ρxxτ increases nearly linearly in the
intermediate regime, especially near the VHS. Parts of the
results are in good agreement with the known experiments
and can be further checked to determine whether overdoped
LSCO can be described by the Fermi liquid picture or not.

Before closing this paper, we provide some other remarks.
First, the band structure of LSCO is actually three-

dimensional-like as we take into account the out-of-plane
hopping tz, whose value is on the same order as t ′′, as shown
by the ARPES measurement [39]. Although the effect of tz
smears out the VHS, the field dependence and sign change of
RH are not expected to change qualitatively.

Second, the VHS is not unique to LSCO but also
appears in other hole-doped cuprates such as Nd-LSCO
[15], Bi2Sr2CaCu2O8+δ (Bi2212) [45], Bi2(Sr, La)2CuO8+δ

(Bi2201) [46,47], and YBCO [48,49]. Our study here in-
dicates that the VHS needs more careful treatment when
explaining their magnetotransport phenomena. Interestingly,
Nd-LSCO and Bi2201 have a FS similar to (although with dif-
ferent t ′ and t ′′) LSCO, and thus, similar B and x dependences
of RH should be observed experimentally.

Third, although RH obtained in the Fermi liquid picture is
in good agreement with the experiments at high temperatures,
its low-temperature upturn is difficult to understand even in
the highly overdoped region [22–24]. Moreover, taking the
overdoped sample x = 0.23 at 50 K as an example, the opti-
cal conductivity gives τ−1 ∼ 5 meV [44], giving rise to the
theoretical value of ρxx ∼ 5μ� cm at B = 0, much smaller
than the experimental value ∼50μ� cm [27]. In fact, this
situation is similar to what happens in the superfluid density
at zero temperature [26]. The Fermi liquid picture severally
underestimates ρxx and RH at low temperatures and overes-
timates the superfluid density. This dilemma may be resolved
by additionally taking the vertex corrections (not just the band
renormalization) into account, which is left for a future study.

Fourth, we have assumed an isotropic scattering rate in the
present work to study the effect of the VHS, in particular to
solve the mismatch between weak- and strong-field limits. At
temperature as high as 300 K, the isotropic scattering rate is
anticipated to dominate, and our predicted result for RH vs x in
the weak-field limit is consistent with the known experiments
[22–24], as shown in Fig. 3(a). As temperature decreases, the
isotropic scattering rate drops, and the anisotropic scattering
becomes more and more relevant [50], which is expected
to lead to enhancement of RH since the nodal quasiparticles
(holelike) contribute more and more.

Finally, we emphasize again that our description is based
on the Fermi liquid picture and cannot be applied to the pseu-
dogap and strange metal phases, which need a new theoretical
framework beyond the standard Fermi liquid framework.

Note added. Recently, we became aware of an interesting
experiment on Nd-LSCO [50] which measured both uniform
and angle-dependent scattering rates and also explained the
linear magnetoresistivity by electron cyclotron motions.
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