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Two-orbital model for possible superconductivity pairing mechanism in nickelates
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The newly synthesized strontium doped RNiO, (R=Nd, Pr, and La) superconductors have stimulated extensive
interests in understanding their pairing mechanism and pairing nature. Here we study the pairing mechanism in
this family from a two-orbital model comprising the Ni- 3d,>_» and 3d,, orbitals, equipped with extended
Hubbard interactions and induced low-energy effective superexchange interactions. We then study the pairing
symmetry in this system by using large scale variational Monte Carlo approach. Our results yield the intraorbital
d,2_,»-wave singlet pairing as the leading pairing symmetry in the nickelates, which is analogous to the cuprates.
However, there exist two important differences between the physical properties of the two families due to the
fact that at the low Sr-doping regime, while the Ni-3d,2_» orbitals remain half-filled and singlyins occupied to
form a Mott-insulating background, the Ni-3d,, orbitals accommodate nearly all the extra doped holes, which
move freely on this background. The first difference lies in the single-particle aspect: while the 3d,._,» degree
of freedom remains Mott insulating with spectra weight pinned down at zero at low dopings, the 3d,, one
behaves as Fermi liquid with spectra weight near 1. The second difference lies in the pairing aspect: while the
huge intra-3d,2_»-orbital pairing gap is actually a pseudogap which has nothing to do with the SC, the small
intra-3d,,-orbital pairing gap serves as the true superconducting pairing gap, which is related to the T, via the

BCS relation. Both differences can be verified by the angle-resolved photoemission spectrum.

DOI: 10.1103/PhysRevB.105.054516

I. INTRODUCTION

The search for superconductivity (SC) with high critical
temperature 7, has been the dream of the condensed-matter
community for decades, which remains one of the most out-
standing problems [1-5]. A recent progress is the discovery of
a new potentially high 7, SC family in the nickelates [6]. The
nickelate-based superconductors, including Nd;_,Sr,NiO;
[6,7] exhibiting a highest T, up to 15 K, La;_,Sr,NiO, [8]
with highest 7; of 9 K and Pr;_,Sr,NiO, [9] with highest
T. above 30 K under pressure [10] provide a new perspec-
tive for understanding strongly correlated unconventional SC.
Especially, the same electronic configuration of Nit 3d%)
as that of Cu®* and the same quasi-two-dimensional square
lattice heralds the inextricable connection between the nick-
elate and cuprate superconductors [11,12]. Recently, a lot
of experimental [9,10,13-27] and theoretical [28—-49] works
on nickelate SC have appeared, and many useful discussions
and explorations have been made on its inherent possible
pairing mechanism and its connection and difference with
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cuprate SC. Although in both the nickelate and the cuprate
superconductors families, the low energy degrees of freedom
are characterized by the 3d orbitals, there are two obvious
differences between their electronic structures.

The first difference lies in the extra small electron pocket
contributed by the R-5d (R=Nd, Pr, La) degree of freedom
in the parent compound of the nickelates [28,31-34,39,42—
46]. Such an R-5d pocket not only makes the parent com-
pound to be metallic through the self-doping effect, but also
suppresses the antiferromagnetic long-range order [7,50,51]
through possible Kondo coupling with the Ni-3d local mo-
ments [7,33,34,36,43,44]. This R-5d pocket might, however,
be unimportant particularly in the hole-doped case, because
the electron pocket volume from R-5d electrons is estimated
smaller than 4% of the Brillouin zone [42], which would fur-
ther be suppressed upon the Sr-doping. Further more, the more
recently synthesized NdgNisOg superconductor [52], which is
believed to share similar low-energy properties as the RNiO,,
only possesses the Ni-3d degree of freedom near the Fermi
level, implying the irrelevance of the R-5d degree of freedom
in the pairing mechanism of the nickelates. Therefore, in our
study, we ignore the R-5d degree of freedom.

The other important difference between the electronic
structures of the cuprates and the nickelates lies in the dif-
ferent O-2p to Cu(Ni)-3d energy differences in comparison
with the on-site Coulomb interactions for the 3d electrons
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[41]. In the cuprates, the O-2p to Cu-3d energy difference is
much lower than the Hubbard U between the Cu-3d electrons,
driving the parent compound to be typical charge-transfer
Mott insulator. However, in the nickelates, the situation is just
opposite, the O-2p to Ni-3d energy difference is much higher
than the Hubbard U between the Ni-3d electrons. Conse-
quently, when extra holes are doped into the parent compound
of the nickelates, they would prefer to enter the Ni-3d orbitals
directly, rather than to stay in the O-2p orbitals to form the
Zhang-Rice singlet [53] with the Ni-3d orbitals. Therefore the
contribution of the O-2p orbitals to the low-energy physics in
the nickelates is much lower than that in the cuprates. In our
study, we ignore the O-2p degree of freedom for simplicity.
Due to the above reasons, we focus on the Ni-3d orbitals
in the following. There are three possible Ni-3d orbitals, i.e.,
the 3d,2_,2, the 3d,,, and the 3d 2, near the Fermi level. There
were studies which took the 3d>_y» and the 3d orbitals
as the two low-energy degrees of freedom in the nickelates
[44,54]. However, here we instead take the viewpoint that
the two relevant low-energy degrees of freedom should be
3dxz,yz and 3d,,, due to the following reasons. From first-
principles calculations [31], the on-site energy of the 3d,:
orbital is the lowest, which in the hole picture represents for
the high-energy degree of freedom. Furthermore, considering
the fact that the Ni-3d. orbital is far away from the Fermi
level for the newly synthesized La;_,Sr,NiO, [8], we only
consider the 3d,._,» and the 3d,, orbitals in our study. Such a
3d_y2-3d,, orbitals based start point is also consistent with
the recent resonant inelastic x-ray experiment [55,56]. As the
energy level of Ni-3d,, orbital is about 1eV lower than that of
the Ni-3d,>_,» orbital, in the parent compound, all the Ni-3d
holes lie in the 3d,>_,» orbitals, with each orbital singlyins
occupied due to the strong on-site Coulomb interaction. When
extra holes are introduced into the system via Sr-doping, they
can lie in both orbitals because the intraorbital Hubbard repul-
sion is considerably larger than the interorbital repulsion, and
their difference can compensate the energy-level difference
between the two orbitals. Then we are left with a two-orbital
system with extended Hubbard interactions. Here we consider
the strong-coupling case, under which low-energy effective
superexchange type of interactions have been introduced [29].
In this paper, we study the pairing mechanism and pairing
symmetry of the nickelate superconductors represented by
a dy>_y2-d,y two-orbital model. In the strong-coupling case,
both the extended Hubbard interactions and the induced low-
energy effective interactions are included. We treat the system
with the variational Monte Carlo (VMC) approach, with the
trial wave functions obtained by Gutzwiller projecting the
Bardeen-Cooper-Schrieffer (BCS) mean-field (MF) states into
the low-energy effective Hilbert space. The pairing order
parameters are classified according to the irreducible repre-
sentations (IRRPs) of the point group. The time-dependent
many-variable VMC (t-VMC) method [57-62] is adopted in
the VMC calculations to carry out the energy minimization
for each pairing-symmetry channel. Our VMC results yield
that the intraorbital d,»_,> pairing symmetry is the leading
pairing symmetry, analogous to the cuprates. However, as our
results reveal that the extra doped holes mainly lie in the 3d,,
orbitals, there exist two important differences between the
physical properties of the nickelates and the cuprates. Firstly,

while the 3d,._,> degree of freedom remains Mott insulating
with single-particle spectra weight Z pinned down to zero at
low dopings, the 3d,, one behaves as Fermi liquid with Zy
near 1. Secondly, while the huge intra-3d,._,.-orbital pairing
gap is actually a pseudogap which has nothing to do with the
SC, the small intra-3d,,-orbital pairing gap serves as the true
superconducting pairing gap related to the 7, via the BCS re-
lation. Both differences can be verified by the angle-resolved
photoemission spectrum (ARPES).

The remaining part of the paper is organized as follow. In
Sec. II, we introduce our two-orbital model, equipped with
both the extended Hubbard interactions and the induced ef-
fective superexchange interactions in the low-energy Hilbert
space. In Sec. III, we provide the trial wave function and the
VMC approach. In Sec. IV, the results of our VMC calcu-
lations are provided. In Sec. V, a comparison between our
model system and the single-band ¢-J model for the cuprates
is performed. Section VI concludes our work with some dis-
cussions.

II. THE MODEL

We start from the following two-orbital tight-binding (TB)
model,

H==>" 3" tat) ,)eac(i) +He, (1)

i) a=1.20=1.4

where i/j label sites, @ = 1, 2 represent the Ni-3d,»_,» and
3d,, orbitals and the t;, are the effective nearest-neighbor
(NN) intraorbital hopping integrals. Such effective hopping
integrals include the effects from both the direct overlap be-
tween the Wannier wave functions on NN Ni sites and the
assisted hopping via the oxygen 2p orbitals. Note that the
on-site interorbital hybridization and NN interorbital hop-
pings are forbidden due to the mirror-reflection symmetry.
For simplicity, we setf; = t, = t, and from the first-principles
calculations [42], we set t = 0.5 eV. Note that here we take
the hole picture, i.e., the operator &' actually creates a hole.
The on-site part of the Hamiltonian includes the on-site
energy difference between the two orbitals and the extended
Hubbard- interactions, which takes the following form:

Iiint = Z Hint(i)»
i

Hin (i) = Aenp (i) + U Z Ay (Dt (1) + Uy (Dt (i)
a=1,2

A A 1
- J(Sl(i) S (i) — Zﬁl(i)ﬁZ(i))- @

Here Ae = 1.38 eV is the on-site energy difference between
d,»_y» and d,, orbitals. From analysis on the valence bonding
based on the crystal-field splitting, it is obtained that the
on-site energy of the d,._,» orbital is higher than that of
the d,, orbital [29]. Therefore, in the hole picture, we have
Ae > 0. The U = 3.8 eV is the intraorbital on-site repulsive
interaction strength, U’ = 1.9 eV is the on-site interorbital in-
teraction and J = 0.7 eV is the Hund’s rule coupling strength
[29]. We have neglected the pair-hopping interaction here as
the large Ae dictates that such an interaction process is a
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FIG. 1. The seven configurations on each site with single holes
and doublons in the strong coupling limit.

high-energy process, which contributes little to the follow-
ing low-energy physics [63]. The 7, (i) and Sa(i) are the
hole-number and hole-spin operators in orbital & on site i,
respectively.

As the interaction parameters on the above are com-
parable with the total band width, this system belongs to
the intermediatelyins correlated systems. Here we adopt the
strong-coupling-limit approach for simplicity. In the parent
compound without Sr-doping, due to the large Ae, all the
holes lie in the d,>_,» orbitals. Further more, as the strong re-
pulsive Hubbard- U suppresses double occupance, each hole
occupies one d,2_,» orbital. When Sr-doping introduces more
holes, the extra holes can either occupy the dy_y» orbitals
or the dy, ones to form doublons. Neglecting higher-energy
configurations in which three or four holes occupy one Ni
site, we obtain the seven configurations shown in Fig. 1, which
form the low-energy Hilbert space for each site.

Note that the different doublon configurations |®)-|®)
listed in Fig. 1 have different on-site energies. The singlet
dy>_y>-d,>_ > doublon |®) possesses an energy of U, the triplet
dy>_y-dy, doublons |®) and |@) possess equal energy of
U’ + Ae, and the doublon configurations |®) and |®) can
be mixed to form triplet d\>_2-d,, doublon (|®) + [®))/ V2
with energy U’ + Aeg or singlet d,»_,2-d,, doublon (|®) —
|®))/+/2 with energy U’ + Ae + J. In principle, we should
find the doublon configuration which minimizes the on-site
energy. However, as the on-site energy U of the d,>_,2-d,2_p
doublon is comparable with those of the d,>_>-d., doublons,
ie,U + AegorU’' + Ae + J, we keep both types of doublons
as the accurate values of these interaction parameters are diffi-
cult to obtain from first-principles calculations. Further more,
although the triplet d,>_,2-d,, doublon is energetically more
favored than the singlet d,>_,»-d,, doublon, we keep both in
the low-energy subspace so that we can use the Ising basis
to expand this subspace. Otherwise, the local configurations
will include entangled ones mixing |®) and |®), which brings
difficulties in the VMC treatment as the BCS wave function
expressed in the entangled basis will comprise an exponen-
tially large number of terms.

Projecting the original extended-Hubbard Hamiltonian into
the low-energy subspace including the seven local configura-
tions listed in Fig. 1, we obtain our effective Hamiltonian as
follow:

H=H + ZHim(i) + ZHef-f(ij),
i

(ij)
. n ~ 1 N ~ 1
Hegr (i]) = Jar (S(i) -S3U)— Zﬁiﬁj> +Jin (T(i) -S(j)— Zﬁiﬁj>

P S PO . ..
+Ju <T(l) -TQ) - Z”i”j) + Hy () + H" (),
3

where H.¢ represents the effective interaction induced by the
projection. Here S and T are the spin-% operator of the single
hole and spin-1 operator of the triplet d,>_,>-d,, doublon,
respectively [64]. Jap = 4at?/U represents the reduced AFM
superexchange interaction between the single holes, with o« =
0.3 reflecting the reduction caused by orbital fluctuation [29].
Jih = %(ﬁ + m) represents the superexchange in-

teraction between a hole and a triplet doublon. J;, = %;/2

represents the superexchange interaction between the triplet
doublons. Note that here, we have only kept the interaction
terms involving the low-energy triplet d,2_,2-d,, doublons and
have neglected those terms involving the high-energy singlet
d,>_\»-d,, doublons.

Furthermore, H;; is the exchange interaction between the
triplet d,>_,»-d,, and the singlet d,>_,»>-d,>_,» doublons, which
is described by

HE) = Y [=J(d]) ,, (Ddi0.0/Ddy o, Dd1.m (G)+Hoc.)

m=0,%£1
+ Jts (dA(T] ) (i)dA(l,m) (i)dA:()’o)(j)dA(O,O) (j)
+ dy 0, Dd(0.0) D)y ) G GN)], )

where 5?31,m) (m=0,%1) and 67:0’0) represent the creation
operator for the triplet d,>_,2-d,, and the singlet d,>_>-d,>_,2
doublons, respectively; and the exchange integral J;; = U‘,‘;j%.
H™ is the switching term between a triplet doublon and a
single hole which can be described by

1 ..
1m§o><”z

x &Il,m)ﬁ)ei,ci>élg/<i>c?<1,m/>(j>+H.c.}, (5)

HM @) =~ ) {<jjz

mo;m'c’

/1 />
1m' —o
2

where (...|...) are the Clebsch-Gordan coefficients between
spin-1 and spin-% sectors, and ¢’ is at the same order of ¢, we
set t’ = ¢ in this study.

III. TRIAL WAVE FUNCTION AND THE VMC APPROACH

The VMC approach is adopted to study the problem. In this
approach, we construct trial wave function accommodated in
the low-energy projected Hilbert space. Our wave function
takes the form of the Gutzwiller-projected BCS mean-field
(MF) states, with the Gutzwiller factors and the MF order
parameters setting as variational parameters determined by
energy minimization. The MF pairing order parameters can be
classified according to the symmetry representation based on
the group theory, which has been performed in Ref. [29]. Then
the multivariable Monte Carlo approach [57-62] based on the
stochastic reconfiguration (SR) method [60,61] is adopted to
optimize the variational parameters by energy minimization,
from which we can obtain the leading pairing symmetry.
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The following Gutzwiller-projected BCS-MF wave func-
tion is taken as the trial wave function of the system,

7
G) = [ | &k PIBCS-MF),

a=1
g = Zﬁia- (6)
i

Here Pg is the Gutzwiller-projection operator which projects
any state into the low-energy Hilbert space expanded by the
seven configurations shown in Fig. 1 for each site, 7, is the
total number operator of the ath configuration and g, is the
corresponding Gutzwiller penalty factor. The |BCS-MF) de-
notes the BCS-MF wave function.

As there’s no evidence of magnetic ordering in the exper-
iment, we can require the trial wave function (6) to satisfy
the spin- SU(2) symmetry. This symmetry requires g; =
82,84 = &5 = &6 = g7, and therefore the Gutzwiller-penalty
factor term in Eq. (6) reduces to g|' " g5 g "+ Further
more, since

7
E ﬂa =N,
a=1

we have

7
it +2) Ae=NA+8)., ()

a=3

7
iy +iy=N(1=8), Y i,=Ns. )
a=3

Here N and § represent for the lattice-site number and
the doping level, respectively. Under this condition, the
Gutzwiller-penalty factor term further reduces to (g3/g4)™ =
g% up to a global constant number. Our trial wave function
reduces to

|G) = ¢ P5|BCS-MF). )

Note that we have ignored the addition of the Jastraw factor,
which can be considered in future work.

The BCS-MF wave function |BCS-MF) is generated by
the BCS-MF Hamiltonian Hyg = Hy + Hsc, which consists
of two parts: the nonsuperconducting-normal-state term Hy
and the superconducting pairing term Hsc. The term Hy reads
as

Hny = H, + Z Maé:aaéiac + Z Mdé;rzﬂéihf

ivo io

+ ) (&), 0 + He). (10)

Here p,, 14, and v are all variational parameters. The u, is
the chemical potential used to tune the particle number. In the
nonsuperconducting normal state, i, is definitely determined
by the doping level. However, in the presence of Cooper
pairing, this quantity is just a variational parameter deter-
mined by energy minimization. The p, is the renormalized
energy difference between the two orbitals and v denotes the
induced interorbital hybridization strength. Note that in the
absence of interaction, py is just Ag, and v is zero. When the
on-site extended Hubbard interaction terms turn on, the two
parameters can be renormalized. For example, the interorbital
hybridization v term can be understood as originating from

the MF decomposition of the interorbital-interaction U’ term.
The renormalized values of i, and v should be determined by
energy minimization.

The possible formula of the pairing term Hgsc can be classi-
fied according to the irreducible representation (IRRP) of the
Dy, point group, which has been done in Ref. [29]. Briefly,
there are two spin channels, i.e., the spin singlet and spin
triplet. For each spin channel, we consider the intraorbital
pairing and interorbital pairing cases. In each case, the con-
crete form of the pairing gap function belonging to each IRRP
is provided, up to the second-neighbor pairing. While the
singlet-pairing term takes the form of

Hic =AY > YK, 6 0 Mun(i0y)00, (1)

kuvooy

the triplet one takes the form of

Hic =AY > &l el MuldK) - oioylos,.  (12)

kuvooy

Here A®/D denote the pairing amplitudes, the form factor
¥ (k) and the orbital-pairing matrix M for different pairing
symmetries in different spin-orbital channels are provided in
Ref. [29]. The d(k) is the d vector for the triplet pairings. In
the absence of spin-orbit-coupling (SOC) in our system, the
rotation of the d vector will not change the energy.

The BCS-MF Hamiltonian Hyr is solved to obtain the
ground state |BCS-MF), whose wave function represented
in the Ising basis is provided in Appendix A. This wave
function generally takes the form of a pfaffian. Then from
Eq. (9), our trial wave function finally takes the form of a
pfaffian multiplied by a Gutzwiller-penalty factor. Such type
of wave functions can be conveniently treated in the VMC
framework. Then we use the Monte Carlo (MC) calculations
to obtain the expectation value E of the effective Hamiltonian
H provided in Eq. (3), and minimize E as function of all
the variational parameters including g, (4, g, v and {A}.
Since the number of the variational parameters considered
here is considerably large, we adopt the t-VMC approach,
which uses the stochastic reconfiguration technique [60,61] to
speed up the parameter optimization. Some technique details
of this approach is also provided in Appendix A. We have
also provided an Appendix B, which introduces the VMC
approach used in the single-band #-J model for the cuprates,
for the purpose of comparison.

IV. THE NUMERICAL RESULTS

The optimized ground-state energies for the various
pairing-symmetry channels obtained via our t-VMC calcu-
lations are listed in Tables I-IV. The lattice size adopted in
our VMC calculations is 10 x 10, and the doping level is
6 = 0.2 for the Sr doping. The periodic-periodic or periodic-
antiperiodic boundary conditions are imposed for different
symmetry channels to avoid singularity in the wave functions.
The error bars brought about by adopting different boundary
conditions turn out to be much smaller than the energy dif-
ferences among the various pairing symmetries and thus can
be ignored. In our MC calculations for each fixed group of
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TABLE I. The optimized variational parameters and the minimized energies for different pairing-symmetry channels classified according
to the IRRPs of the point group for the singlet intraorbital pairing channel.

Dy, g v W Ha Ay JAV) E

Aig 0.01 9.03 x 1073 1.314 6.36 x 1072 2.66 x 1072 4.28 x 1072 0.217+£3 x 107*
By, 0.01 1x1073 1.24 —2.7x 1072 0.2725 5.6 x 1072 0.184 +£3 x 10~
By, 0.01 23 x 1072 1.35 5.59 x 1072 3.5x%x 1072 5.3 x 1072 0.225+3 x 1074

variational parameters, we first perform a thermalization pro-
cess with one hundred thousand MC steps, then we perform
Nuc = 2 x 10° MC measurements, with adjacent measure-
ments separated by an L, = 3N = 300 steps of thermalization
to eliminate auto-correlation. In the energy minimization pro-
cess via the t-VMC approach [60,61], a discrete time step
length At = 0.01 x ¢/U is adopted, and the optimizing-step
dependences of the energies of the different pairing-symmetry
channels are shown in Figs. 2(a)-2(c).

The optimization processes of the three intraorbital singlet-
pairing channels are shown in Fig. 2(a), with the finally
converged variational parameters listed in Table 1. For the
intraorbital pairing cases, the variational state has two pairing
order parameters, i.e., A; and A;, corresponding to the two
orbitals respectively. The form factors ¥ (k) of the pairing
symmetries A1z(s wave), Biy(dy2_,2 wave), Bag(d,, wave) are
cos k; + cos ky, cosk, — cosk, and sin k, sin k,, respectively.
Figure 2(a) shows that the energy of each pairing symmetry
first promptly decreases with the optimizing-step number,
which is finally saturated to a minimized energy listed in
Table 1. The minimized energy for the nonsuperconducting
normal state is also shown in Fig. 2(a) by dotted lines for
comparison, which suggests that all the three pairing sym-
metries can lead to energy gain. The combined Fig. 2(a)
and Table I clearly suggest that the Bj, pairing state hosts
the lowest ground-state energy and the largest pairing order
parameter among all the pairing symmetries in the intraorbital
singlet pairing channel. What’s more, the Gutzwiller-penalty
factor g of configuration |®) tends to zero, which means the
additional holes tend to go to the d,, orbital instead of the
d,>_,» orbital. When g is less than 0.01, its influence on energy
can be ignored, then we take 0.01 as the truncation. At the
same time, the extremely small v means that there is almost
no hybridization between the two orbitals in the intraorbital-
pairing channel.

The optimization processes of the three interorbital singlet-
pairing channels are shown in Fig. 2(b), with the finally
converged variational parameters listed in Table II. For the
interorbital pairing cases, the variational state has only one
pairing order parameter A between the two orbitals. The form
factors of the three symmetry channels Ay,, B, and B,, are

sin k, sin ky(cos k, + cos k), sink, sink, and cos k; — cos ky,
respectively. From comparing the minimized energies for the
three pairing symmetries with that of the normal state in
Fig. 2(b) and the optimized values of the pairing order pa-
rameters listed in Table II, only the B, channel can obviously
lead to energy gain. The v = 0.122 means that there is consid-
erable hybridization between the two orbitals in this pairing
channel. But the minimized energy is still higher than that of
the intraorbital singlet By, case.

The optimization processes of the intraorbital and interor-
bital triplet-pairing channels are shown in Fig. 2(c), with the
finally converged variational parameters listed in Tables III
and IV. In the absence of spin-orbit-coupling here, the d
vector of the triplet pairings can be arbitrarily rotated with-
out varying the energies. In this sense, on the square lattice,
there is only one triplet pairing channel which belongs to
the E 4 iE IRRP. The corresponding pairing form factor is
sink, & isink,, leading to the p + ip topological SC. The
combined Fig. 2(c) and Tables III and IV suggest that both
the intraorbital and interorbital triplet p + ip-wave pairings
can gain energy, with the former hosting lower ground-state
energy. However, the minimized energy of the triplet pairing
is higher than that of the singlet one.

The optimization processes of the leading pairing symme-
tries of all the above four spin-orbital channels are put together
in Fig. 2(c) for comparison. Note that the noisy oscillation
for the By, curve in Figs. 2(b) and 2(c) is due to combined
statistics error and finite-size effect, which is common in
the t-VMC calculations [57]. Despite such slight fluctuations,
the energy differences among the four channels are clear.
Figure 2(c) shows that the leading pairing symmetry is the
intraorbital singlet Bj,, and the interorbital singlet By, is a
close competitor. The distribution of the pairing gap function
on the FSs for the leading intraorbital B, pairing symmetry
is shown in Fig. 3. This gap function is symmetric about
the x and y axes and antisymmetric about the x = £y axes.
Further more, it changes sign with every 90° rotation. This
gap function possesses nodes along the x = £y directions.
Obviously, this gap function satisfies the d,>_,» symmetry.
Furthermore, the main orbital component of the outer Fermi
pocket is 3d,>_,», whose gap function is much larger than that

TABLE II. The optimized variational parameters and the minimized energies for different pairing-symmetry channels for the singlet

interorbital pairing channel.

D4g g v MHa Ma A E

Ajg 0.01 1.75 x 1072 1.243 9.46 x 1072 1.2 x 1073 0.246 £4 x 107*
By, 0.01 1 x 1073 1.06 2.39 x 1073 0.5x 107* 0.246 £2 x 107*
B, 0.01 0.122 1.50 0.2873 0.230 0.192 £3 x 107*
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TABLE III. The optimized variational parameters and the minimized energy for the only one triplet intraorbital pairing channel.

Dy, g v Ha Ma

Ay A, E

E +iE 0.01 1x1073 1.31

6.84 x 1072

4.1 x 1072 1.1 x 1072 0.206 +2 x 1074

of the inner Fermi pocket whose main orbital component is
3d,y.

V. COMPARING WITH THE CUPRATE
SUPERCONDUCTORS

In this section, we compare our two-orbital model repre-
senting for the nickelate superconductors and the single-band
t-J model representing the cuprate superconductors. We shall
find the differences between the two families in the aspects of
low-energy effective Hamiltonian, the trial wave functions for
the VMC approach, and the physical properties.

In the aspect of low-energy effective Hamiltonian, our ef-
fective Hamiltonian (3) comprises both the on-site extended
Hubbard interactions and the induced low-energy effective
interactions, while that for the cuprates does not comprise
the Hubbard interaction. This difference originates from the
two-orbital character of the nickelates. In the cuprates, the
extra doped holes lie in the O-2p orbitals, which form singlet
doublons with the holes on the surrounding Cu-3d orbitals,
i.e., the Zhang-Rice singlet [53]. If we focus on the Cu-3d
orbitals as the working degree of freedom, the Zhang-Rice
singlet can be equally viewed as the configurations |®) in
Fig. 1. Then in the cuprate systems, only the configurations
|D)-|®) listed in Fig. 1 are present. What’s more, for a fixed
doping level §, the number of the sites occupied by the con-
figuration |®) would be the constant N§. Consequently, the
total Hubbard-interaction energy in the cuprates is a con-
stant, and therefore the Hubbard term can be removed from
the Hamiltonian and we are only left with the low-energy
induced superexchange interaction J terms. Conventionally,
people like to perform an extra particle-hole transformation
on the system, so that the three configurations are changed to
a down-spin electron, an up-spin electron and a spinless hole,
respectively. After that, one obtains the so-called 7-J model
for the cuprates. However, in our two-orbital system, as the
different doublons possess different on-site energies, whose
numbers fluctuate from configuration to configuration, the
total Hubbard-interaction energy depends on the configuration
and the extended Hubbard terms will show dynamic effects.

In the aspect of trial wave functions for the VMC approach,
there exists an extra Gutzwiller-penalty term g™ in Eq. (9)
which is absent in the usually adopted trial wave functions
for the t-J model for the cuprates, see Appendix B and the
Refs. [65-68]. This difference originates from the same rea-
son clarified on the above. In the single-band #-J model, for a
fixed doping level §, the number of the sites occupied by the

configuration |®) would be the constant N§. Therefore the
Gutzwiller-penalty term reduces to a constant number which
can be removed from the trial wave function. However, in our
two-orbital system, this number in principle can fluctuate from
configuration to configuration, and this factor will change the
wave function. From the results of our VMC calculations, the
obtained g is very small (less than 0.01). This results suggest
that the doped holes nearly all reside on the 3d,, orbitals. This
results suggest that the nickelate superconductors are intrin-
sically two-orbital systems, which are distinguished from the
cuprates in the following aspects on the physical properties.

In the aspect of single-particle property, the spectra weight
Zx of our system shows different doping-dependent behavior
from that of the cuprates. In the half-filled case of the single-
band ¢-J model for the cuprates, the system is a Mott-insulator
with vanishing spectra weight Zx = 0. When the system is
hole-doped, the spectrum weight Zx scales with the doping
level 6 [67-T71], i.e., Zx &~ &, because only the electrons ad-
jacent to the doped hole can carry charge and behaves like a
quasiparticle in the Fermi liquid (FL) description. However,
in our two-orbital model, the situation is quite different. At
half filling, the d,»_,» orbitals are half-filled and singlyins
occupied, forming a Mott-insulating state. When the system
is hole doped, the 3d,»_,» orbitals maintain half-filled and
the extra doped holes nearly all reside on the d,, orbitals.
Therefore the doping level for the orbital @ = 1 (3d,2_y2) is
pinned down at 8 = 0, yielding Z." = 0; while for o = 2
(3dyy), as the filling fraction is § and consequently the doping
levelis §® = 1 — &8, we have Z\” &~ 1 — § ~ 1. This behavior
is drastically different from the Zi =~ § for the cuprates. Here
we witness the “orbital-selective Mottness”: while one orbital
is Mott-like with spectra weight pinned down to zero, the
other orbital behaves like standard FL with spectra weight
near 1. In the VMC approach, the spectra weight Zl((“) fork on
the a-FS is defined as Z\"" = (Gyilcf,, |Gy) or Z¥7) =
(Gn—1l|ckao |Gy), Which are equal in thermal-dynamic limit
[70]. Here |Gy) represents the un-paired normal state with
N particles. Experimentally, the Z]((“ can be measured by the
APRES as the area enclosed under the quasiparticle peak.
Such a remarkable doping dependence of the spectra weight
here can be tested by the APRES: while the outer Fermi
pocket characterized by the Ni-3d,>_,» orbital component will
not exhibit well defined quasiparticle peak, the inner Fermi
pocket characterized by the Ni-3dy, orbital component will
show sharp quasiparticle peak.

In the aspect of Cooper pairing, the pseudogap phe-
nomenon also exists in the nickelates, which however behaves

TABLE IV. The optimized variational parameters and the minimized energy for the only one triplet interorbital pairing channel.

Dy, g v M

Ha A E

E +iE 0.01 1x1073 1.26

4.8 x 1072 1.18 x 1072 0.2294+3 x 1074
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FIG. 2. The optimizing-step dependencies of the energies for the different pairing symmetries in (a) the intraorbital singlet-pairing channel
and (b) the interorbital singlet-pairing channel. (c) The results for the leading pairing symmetries in all the four spin-orbital channels put
together for comparison. In all the three figures, the horizontal dotted lines denote the minimized energy of the nonsuperconducting normal

state.

quite different from that in the cuprates. In the half-filled
single-band #-J model for the cuprates, both the slave-boson
mean-field theory [72] and the VMC study [65,66] yield a
large MF pairing gap. However, since the system hosts a
Mott-insulating state without coherent quasi particles at half
filling, this MF pairing gap is actually the “pseudogap” with-
out pairing-phase coherence, and thus is unrelated to SC.
When the system is slightly hole-doped, on the one hand the
MF pairing gap would slightly decrease at low doping level
3, and on the other hand following the establishment of the
phase coherence, the true SC emerges with the 7, scaling with
8. Therefore in the cuprates there exist two pairing gaps: one
is the MF pseudogap AP*U% with “preformed pairs” showing
such phenomena as the decreasing of resistivity, and the other

0.5450

0.2725

0.000

ky
o

-0.2725

2

-0.5450

-3

-3 -2 -1 0 1 2 3
kx

FIG. 3. Distribution of the leading pairing gap function on the
FSs for the intraorbital B, pairing symmetry obtained for the doping
level § = 0.2. The color represents the value of the pairing gap
function in unit of eV. Obviously, this gap function possesses the
d,2_,» symmetry. The dominant orbital component of the outer Fermi
pocket is 3d,2_,», whose gap function is much larger than that of the
inner Fermi pocket whose main orbital component is 3d,,. However,
the gap on the outer Fermi pocket is actually a pseudogap, which is
not related to the real SC, as clarified in Sec. V

is the true superconducting gap ASC, with both taking place in
the same band but differing by a § factor, i.e., ASC &~ § Apseudo
[67,68]. However, the situation is quite different in our two-
orbital model here.

As shown in Fig. 3, the pairing gap amplitude on the
outer Fermi pocket mainly with 3d,._,» orbital component is
about A; = 0.27 eV, which seems to be huge and inconsistent
with experiments. However, one should be careful that this
quantity is not the true superconducting gap, but the MF
variational parameter before the Gutzwiller projection, i.e.,
A" The true superconducting gap ASC on this Fermi

pocket should be ASC = §(MW AP — (), suggesting that the
MF pseudogap on the 3d,>_,»-orbital-dominated Fermi pocket
has nothing to do with the SC in the system. In the mean
time, the MF pairing gap amplitude on the inner Fermi pocket
mainly with 3d,, orbital component is about A, = 0.056 eV.
Taking this quantity as A%*"%, we have ASC a2 5@ AP*% —
(1 =8)A, =~ A,, suggesting that the MF pairing gap on the
3d,-orbital-dominated Fermi pocket is near the true super-
conducting gap, which is related to the superconducting 7
via the BCS relation. Note that A still seems to be too large
to compare with experiments, which might be caused by that
strong-coupling-limit treatment adopted here, which could
exaggerate the superexchange interactions. Therefore, in our
two-orbital system, there exist two unrelated pairing gaps,
with one being the huge pseudogap on the 3d,_,>-dominated
pockets, and the other being the small superconducting gap
on the 3d,,-dominated pocket. In the ARPES experiment
for the nickelates, both gaps would be detected: A large
nearly doping-independent pseudogap would be detected on
the outer Fermi pocket which has nothing to do with the SC,
and a small pairing gap would be detected on the inner Fermi
pocket which is proportional to the superconducting 7, when
the doping varies. This behavior would be drastically different
from the cuprates.

VI. DISCUSSION AND CONCLUSION

In conclusion, we have studied the pairing nature of the
nickelates superconductors via the VMC approach. Starting
from a two-orbital model comprising the Ni 3d,>_,» and 3d,,
orbitals, the extended Hubbard interactions are considered,
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which in the strong-coupling case can further induce low-
energy effective superexchange interactions. Adopting the
Gutzwiller-projected BCS-MF wave functions, we use the
t-VMC approach to study the system. Based on a classification
of the pairing symmetries according to the IRRPs of the point
group, we optimize the variational parameters to minimize the
ground-state energy for each pairing-symmetry channel. Our
results suggest that the extra holes introduced via Sr doping
mainly lie in the Ni-3d,, orbitals. The intraorbital singlet
d»_p-wave pairing is the leading pairing symmetry in this
system, similar with the cuprate superconductors.

However, there exist important differences between our
two-orbital system representing the nickelate superconductors
and the single-band ¢-J model representing for the cuprates.
Besides the differences in the aspect of low-energy effective
Hamiltonians and the trial wave functions for the VMC ap-
proach, the two families are different in the following two
aspects of physical properties. Firstly, in the aspect of single-
particle property, the spectra weight Zi of our system shows
different doping-dependent behavior from that of the cuprates.
While the Zy here for the outer 3d,>_,» Fermi pocket is pinned
down to zero in the low doping regime, that for the inner 3d,y,
pocket is nearly 1. Secondly, in the aspect of pairing gap, the
pseudogap phenomenon also exists in our system, which how-
ever behaves quite different from that in the cuprates. While
the outer 3d,>_,» Fermi pocket would show a large pseudogap
unrelated with SC, the inner 3d,, pocket would exhibit a small
superconducting gap which is proportional to the 7, via the
BCS relation when the doping varies. Both properties can be
verified by the ARPES observations.

Note that these differences between our system and the
cuprates mainly depends on the fact that the doped holes
all reside on the 3d,, orbitals, which is determined by the
parameter setting with U > U’ + Ae. If the parameters are
chosen as U < U’ + Aeg, the doped holes will reside on
the 3d,»_> orbitals and form singlet doublons there, under
which our system would be reduced to the single-band ¢-J
model like the cuprates. In such case, the above introduced
difference between our two-orbital system and the cuprates
would mostly vanish. In the parameter regime U ~ U’ 4 Ae,
as the singlet 3d,>_,>-3d,»_,>» doublons and triplet 3d,>_,.-
3d,y doublons are energetically nearly degenerate, they would
probably stay together and form triplet SC. In the realistic
material of the nickelate superconductors, due to the ambi-
guity in determining the interaction parameters [42], one can
hardly know which case the material belongs to. However, the
physics clarified here might be suitable for other two-orbital
systems whose interaction parameters just lie within the re-
quired regime for the physics discussed here. We leave such
studies for the future.
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APPENDIX A: DETAILS OF THE VMC APPROACH FOR
OUR MODEL

1. Solution of the BCS-MF ground state

The BCS-MF Hamiltonians for the various different pair-
ing states considered in this work take the following general
form:

Hycswie =2 ) 8¢y + ) (@feja; +He),  (AD
ij ij

here i/j labels any fermionnic state i = (i, 4, 0); A;; labels

the pairing order parameter. This Hamiltonian is rewritten in

the Nambu’s representation as follow:

A

€1

(A2)

LT
—

- . h A
Hpcsmr = (6, -+ & "’)(AT e

Here we can always let AV = h, h® = —h*, and A = —AT.
Then the BCS-MF Hamiltonian can be rewritten as

R N h A
Hpesvr = (6] -+ & "')<—A* —h*)

(A3)

The eigenvectors of Eq. (A3) come in pair with opposite
eigenvalues. The eigenvectors corresponding to two opposite
eigenvalues satisfy:

(e )0

(36w
Then, the Hamiltonian (A3) is diagonalized as
(v o) (& 50 )
vV U* —A*  —h*)J\V U*
= diag(Ey, ..., Ey, —E1, ..., —Ey), (AS)

N *
where E; > 0. What’s more, from ((‘f x*) (l‘f Z*)z

((I) (I)), we have

Utu +v7'v =1,

UV +VTU =0 (46)

and
vut+vvTl =,

UVT + VU = 0. (AT)

Futher more, for « = 1,..., N the quasiparticle operators
take the form of
)7; = Uiaél'T + Vie&i,

Py = Vel + UL = Ta. (A8)

ia™i
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The Hamiltonian satisfies

(Eq 2 0).
It’s proved below that the BCS-MF ground state take the
form of

Hpcsmr =23 0 Eo Pl 7a

Aij 4 A
IBCS-MF) = exp (Z T]CZTC]-) 0)
1
Aij i At (Zij %df A;)z
= 1+270icj+ o +...1]10),
ij

Up to 1— particle Hilbert space, we have

Y ovieel+ ) Unawe) = 0.

i lI‘L

vEel

lDtl

(Al1)

from which we have

=—UH v, (A12)

We can easily prove that a is an antisymmetric matrix, i.e.,
a’ = —a. As shown in Eq. (A6), UV +VTU = 0. Then we
have UTV* +VTU* =0, i.e., —U'V* = VIU*. Multiplying
the equation by (U")™! to the left and (U*)~' to the right we
et —V*(U*)~! = U")~'VT. Combining Eq. (A12), we can
prove that a’ = —a.
Secondly, it can be proved that Eq. (A12) can let the

Eq. (A10) be satisfied in the 2M + 1-particle subspace, i.e.,

with ajj = —daj. Gy AT AT M
Firstly, to satisfy 7, |BCS-MF) = 0, we have Z Vet (X, B Eie) 10)
: ia™i M'
. M+1
I (2, %¢6)
At 2, atat Ure~=mn 2 mn 0) = 0. Al3
9, |BCS-MF) |:ZVW ¢l Z %‘Zamncmcﬁ...}m +Z v U (A13)
=0. (A10) Actually, we have
|
M+1 1 1 M
Cl <nXm: =~ Qmn A,'n A;) |0> = él (; Eamnéjné:l> (; EamnéLéz> |0)
1 1 "
= [; Eamn(azm é,;éz)cl] (; Eamnéjnéj,> |O>
1 1 1 1 Y
= (; Eaméz) < — Eamn ) |:Z 2amnc ((Sm ¢ Cz):| (%: Eamnd‘néz> |0)
M M
=Y et > Lt |0) — Lot > L mitet |0)
n 2 o mnzmnmn m 2 e mn2 e
1 1 Y
+ (; Eamnéjnaj;>@,-<m Eamn@jn@j;) 0)
1 " 1 1 "
= ( . ainéZ) < c Eamné;rné;) |O> + (mn Eamnéjnéi)él( - Eamnéjnéi) |O>
1 " 1 1 M
= ( n am@;)<mn Eaméj,,e;> |0) + (m Eamné;a;)< ] a,-,,é;> (; E"’”"éi Af) 10)
| 2 | M—1
+ (Z Eamém) c( Eamné;‘,;é;i> 10)
1 M 1 M+1
= [(M + 1)(? améz) (; zamné,t,éz) - (mZ zam,l(?;é,i) c} 10),
1 M
M+1 in] —ami el ] 10). Al4
=M+ )<zn:a c,)<%2 cc) ) (A14)

054516-

9



LU, HU, WANG, YANG, AND WU

PHYSICAL REVIEW B 105, 054516 (2022)

Then we have

M
. |
=M + 1)(% U;ga,-,,c1> (Z Ea,,,,,cL c,‘,> 0). (A15)
As we have leta = —(U")"'V7, then ), U a;né) = —V* i,
then Eq. (A13) is proved.
To conclude, the BCS-MF ground state is

IBCS-MF) = exp (Z —aéfe AT> 0y, (A16)

1

with a = —(U")~'VT, with U and V defined in Eq. (AS).

2. Trial wave function in the Ising basis

The trial wave function adopted in our work is given in
Eq. (9) in the main text. Here we provide its explicit form in
the Ising basis. Consider a real-space configuration with 2N,
electrons defined as

o) = ¢l ...l 0).

1 12N,

(A17)

Then let’s evaluate the wave function ¥, = («|G), where the
trial state |G) has been given in Eq. (9).
Consequently, we have

Vo = (@|G) = (a|Psla)g™™ (¢|BCS-MF).

Here the term (o|Pg|a) dictates that in the configuration |«),
on any lattice site only the seven configurations shown in
Fig. 1 is allowed. The integer n3 counts the number of the
sites occupied by configuration |®) shown in Fig. 1. The inner
product («|BCS-MF) takes the form of

(A18)

(@BCS-MF) = "y, -y, i, (D"
Lh<ly...<bpti...
aj i, Qi i, Qi iy,
o
Airy iy Qigy,ip Qiry, oy,
= Pf(a(a)), (A19)

where the a-dependent antisymmetric matrix (a(w)) has its
matrix elements defined from Eq. (A12), and Pf(a(w)) de-
notes its pfaffian. Finally, we obtain that for the configuration
lat),

Ve = &2 YPf(a(a)), (A20)

if o belongs to the low-energy subspace described in Fig. 1,
otherwise ¥, = 0. This is the explicit form of our trial wave
function in the Ising basis.

3. The stochastic reconfiguration method

The stochastic reconfiguration method [60,61] is equiva-
lent to choose a short imaginary time At, then operate e~ 277
on the trial wave function | ({g;})) with the variational pa-
rameters {g;}, and to find a new wave function | ({g; + 5g:}))

with varied {8g;} which is closest to e =27 |yr). As aresult, we
have

Sgi=—AtY S;' T, (A21)
J
where
S;; = Re(0r0;) — Re(0;)Re(0;) (A22)
and
T; = Re(HO;) — (H)Re(0)), (A23)

where O* means the complex conjugate of O. The operator O
is defined as

g‘()

_ 38
=y gl(a) @) (al,

o

(A24)

where |a) is a real-space configuration of electrons. All the
expected values in the above formulas can be obtained by the
standard Markov chain MC method, see Appendix B. For long
enough time, we get the optimized {g;}.

APPENDIX B: VMC APPROACH FOR THE SINGLE-BAND
t-J] MODEL

In this Appendix, we introduce the VMC approach for the
single-band ¢-J model representing the cuprate superconduc-
tors, which provides a comparison with the two-band case
studied in our work.

In the cuprates, the extra doped holes lie in the O-2p
orbitals, which form singlet doublons with the holes on the
surrounding Cu-3d orbitals, i.e., the Zhang-Rice singlet [53].
If we focus on the Cu-3d orbitals as the working degree of
freedom, the Zhang-Rice singlet can be equally viewed as the
configurations |®) in Fig. 1. Then in the cuprate systems,
only the configurations |®)-|®) listed in Fig. 1 are present.
What is more, for a fixed doping level §, the number of the
sites occupied by the configuration |®) would be the constant
N§. Consequently, the total Hubbard-interaction energy in the
cuprates is a constant, and therefore the Hubbard term can
be removed from the Hamiltonian and we are only left with
the low-energy induced superexchange interaction J-terms.
Conventionally, people like to perform an extra particle-hole
transformation on the system, so that the three configurations
are changed to a down-spin electron, an up-spin electron and a
spinless hole, respectively. After that, one obtains the follow-
ing so-called effective #-J model for the cuprates,

HtJ——thmCJa+JZ<S -§ - n,nj> (B1)

In this model, each site can at most host one electron, so
the no-double-occupance constraint is imposed on the Hilbert
space of the system.

1. The Gutzwiller-projected BCS-MF wave function

People usually take the following projected BCS-MF wave
function as the trial wave function to study the pairing state in
the #-J model,

|G) = P;|BCS-MF). (B2)
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Here P; is the Gutzwiller-projection operator which projects
any state into the non-double-occupance subspace, wherein
each site can only host three possible configurations: the up
spin, the down spin and the spinless hole. In comparison with
our trial wave function (9), there are two differences. Firstly,
there are seven possible configurations for each site in our
trial state, while there are only three for the single-band case.
Secondly, while there exists an extra g Gutzwiller-penalty
factor in Eq. (9), this term vanishes in the single-band case,
because in the latter case, for a fixed doping level, this term
reduces to a constant number in the low-energy projective
Hilbert space, which can be removed from the wave function.
The specific form of the |BCS-MF) function is as follow:

IBCS-MF) = [ ] + el &5, )I0)

k
~ exp <Z Yk gt ot >|0)
e KOkl
Kk k
= exp <Z aije;@}i) |0). (B3)
ij
Here we have
Uk Ak
—= (B4)
e (et e+ A)
with
ex = —2t(cos(k,) + cos(ky)) — . (BS)

Here w is the chemical potential; Ayx is the pairing gap
function. The Ak can take different symmetries in different
situations according to the IRRPs of the point group. For
example, for the d,>_,>- symmetry, one has Ay o< (cos(k,) —
cos(ky)) up to the NN- pairing. The real-space Cooper-pair
wave function g is the following Fourier transformation of

vk /.,
1

N (B6)

aij =

Uk . . e
> = explik - G —j)l.
Ui
k
To obtain the concrete form of the wave function in the
Ising basis, let’s consider the following configuration |&) in
the projective Hilbert space defined as

|a>:E;IT.-.6;NgT...6II~L-..6:NK~L|O>. (B7)
Here no R; and r; are the same. Then we have
(2|G) = det(a(a)), (B8)
with
aa)ij = agr,- (B9)

Equation (B8) serves as the concrete form of our trial wave
function in the Ising basis.

2. Monte Carlo sampling

The |a) defined in Eq. (B9) is a special configuration. By
using all the {|«)}, the calculation of the expected value of any

operator O can be expressed as the following form:
A (@018)(BIG) | 1(@IG)I*
O =
o Z(; (@[G) ) (GIG)
=) fl@p(@).

(B10)

Here f() is the local value of O at the configuration |a); p(or)
is the sampling weight in the Markov-chain Monte Carlo. By
generating a series of configurations {|¢;)} (i=1,..., Nvc)
according to the sampling weight p(«), we can evaluate (O)
as

(B11)

where Nyic is the number of Monte Carlo samplings.
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