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We employ the sign-problem-free projector determinant quantum Monte Carlo method to study a microscopic
model of SU(N) fermions with singlet-bond and triplet-current interactions on the square lattice. We find the
gapped singlet px and gapless triplet dx2−y2 density wave states in the half-filled N = 4 model. Specifically, the
triplet dx2−y2 density wave order is observed in the weak triplet-current interaction regime. As the triplet-current
interaction strength is further increased, our simulations demonstrate a transition to the singlet px density wave
state, accompanied by a gapped mixed-ordered area where the two orders coexist. With increasing the singlet-
bond interaction strength, the triplet dx2−y2 -wave order persists up to a critical point after which the singlet px

density wave state is stabilized, while the ground state is disordered in between the two ordered phases. The
analytical continuation is then performed to derive the single-particle spectrum. In the spectra of triplet dx2−y2

and singlet px density waves, the anisotropic Dirac cone and the parabolic shape around the Dirac point are
observed, respectively. As for the mixed-ordered area, a single-particle gap opens and the velocities remain
anisotropic at the Dirac point.
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I. INTRODUCTION

The nonzero angular momentum density wave state is clas-
sified as the condensation of particle-hole pairs with nonzero
angular momentum [1], in analogy with the higher angu-
lar momentum superconducting state [2], which generalizes
the conventional charge density wave. For example, on the
square lattice the singlet px density wave is known as the spin
dimerized state or bond-centered charge density wave in the
literatures [3,4]. For the commensurate ordering at wavevector
(π, 0), the singlet px density wave state breaks the transla-
tional and rotational symmetries, but the time-reversal and
spin rotational symmetries are preserved. Another example
is the singlet dx2−y2 density wave that has a checkerboard
pattern of currents around elementary plaquettes, also known
as the staggered flux state [3–5]. Such state breaks the trans-
lational, rotational, and time-reversal symmetries. Aside from
the singlet analogs, the triplet version of the dx2−y2 density
wave state has been proposed [1], which is expected as the
origin of the pseudogap regime in the cuprate superconductors
[6–8]. Although the spin-rotational invariance is broken, the
triplet dx2−y2 density wave state does not have magnetic order;
meanwhile, since the spin currents are time-reversal even, it
preserves the time-reversal symmetry. On the other hand, the
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spin current circulates around each plaquette in an alternating
pattern, so the translational and rotational symmetries are still
broken. In addition, the triplet d-wave order on the hexagonal
lattices can be defined in similar ways [9–11].

In recent years, the unbiased and nonperturbative quantum
Monte Carlo (QMC) methods have been applied to system-
atically explore the p and d density waves in the context of
strongly correlated fermion systems. Considering the large-
N theories, the SU(N) generalization of the SU(2) lattice
fermion model is of particular importance because the p- and
d-wave phases are usually stabilized at large values of N
[3,4]. For example, a determinant QMC study found that the
singlet px and dx2−y2 density waves are the possible ground
states of the SU(N) Hubbard-Heisenberg model on the square
lattice when N � 6 [12]. As for the honeycomb lattice, various
spin dimerized states are stabilized when N � 4 [13]. Also,
the SU(N) generalization can actually be implemented in the
state-of-art cold-atom experiments with large-spin alkaline-
earth fermions [14–20].

At the mean-field level, the singlet px and triplet dx2−y2 den-
sity waves are favored by the singlet-bond and triplet-current
interactions, respectively. A recent Majorana QMC study of
the half-filled SU(N) fermions with singlet-bond interactions
on the honeycomb lattice demonstrated a quantum phase tran-
sition from the Dirac semimetal to the spin dimerized insulator
as the interaction is increased [21]. For comparison, a SU(N)
fermion model with triplet-current interactions was studied
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singlet px density wave
triplet d  density wave

FIG. 1. Phase diagram of the half-filled N = 4 model Hamil-
tonian with singlet-bond and triplet-current interactions. The blue
squares are the phase boundary of the triplet dx2−y2 density wave
order. The red circles denote the phase boundary of the singlet
px density wave order. The black-hatched region represents the
mixed-ordered area where two orders coexist. The singlet-bond and
triplet-current interaction strengths are denoted by g1 and g2, respec-
tively. The left and right insets show respectively the triplet dx2−y2

and singlet px density wave orders on the square lattice.

by using the projector determinant QMC (PQMC) method,
where the doping and values of N can strongly affect the
triplet dx2−y2 density wave order of the ground state [22].
However, the model with both the singlet-bond and triplet-
current interactions receives much less attention. A systematic
nonperturbative study of its ground-state properties is still
missing. In particular, it is not clear how the two interac-
tion terms compete and induce the quantum phase transition
between the singlet px and triplet dx2−y2 density waves. In
this paper, we propose to study the SU(N) generalization of
a spin- 1

2 model [23] that includes both the singlet-bond and
triplet-current interactions. We shall conduct a sign-problem-
free PQMC study of the half-filled N = 4 model on the square
lattice. The zero-temperature phase diagram, Fig. 1, is ob-
tained as a function of the singlet-bond and triplet-current
interaction strengths. In the weak triplet-current interaction
regime, the triplet dx2−y2 density wave order is observed. It is
shown that the increase of the triplet-current interaction even-
tually drives the system into an insulating singlet px density
wave state. This transition is accompanied by an intermediate
state where the two orders coexist. Furthermore, the single-
particle gap and spectrum are investigated by the unequal-time
Green’s function and analytical continuation methods.

The rest of this paper is organized as follows. In Sec. II,
we introduce the SU(N)-symmetric Hamiltonian with singlet-
bond and triplet-current interactions, and briefly review the
scheme of PQMC simulations. The phase diagram of the half-
filled N = 4 model is discussed in Sec. III. Subsequently in
Sec. IV, the single-particle gap and spectrum are studied. The
conclusions are drawn in Sec. V.

II. MODEL AND METHOD

Spin- 1
2 fermions on the lattice bond can construct either the

singlets or the triplets. Thus, the spin- 1
2 model Hamiltonian of

the singlet-bond and triplet-current interactions is defined as
[23]

HI =
∑
〈i j〉

−g1

2
(c†

i σ0c j + H.c.)2 − g2

2

(
ic†

i
�σ
2

c j + H.c.

)2

,

(1)
where 〈i j〉 represents the nearest-neighbor sites and c†

i =
(c†

i↑, c†
i↓) is the fermion creation operator at site i on the

square lattice. σ0 represents a 2 × 2 identity matrix, and �σ =
(σx, σy, σz ) where σx, σy, and σz are the Pauli matrices. One
might argue that the g1 term favors the singlet p-wave density
wave order, while the g2 term favors the triplet d-wave density
wave order in the mean-field theory. However, previous QMC
studies [21,22] have shown that the ground state can be the
antiferromagnetic (AFM) order or the superconducting (SC)
order in the half-filled spin- 1

2 model with only g1 or g2 terms.
In fact, the interaction Hamiltonian (1) can be rewritten as
the sum of the pair hopping, density-density, and Heisenberg
exchange interactions,

HI =
∑
〈i j〉

−
(

g1 + 3

4
g2

)
(c†

i↑c†
i↓c j↓c j↑ + H.c.)

+
(

1

2
g1 + 3

8
g2

)
(ni − 1)(n j − 1)

+
(

2g1 − 1

2
g2

)
�S(i) · �S( j), (2)

where ni = c†
i↑ci↑ + c†

i↓ci↓ and �S(i) = c†
i

�σ
2 ci are the fermion

number operator and spin operator at site i, respectively. In
particular, the three terms on the right hand side of Eq. (2)
favor the superconducting state, charge density wave and spin
density wave, respectively.

Consider the SU(N) generalization with spinors of
2N components c†

i,α = (c†
i↑,α, c†

i↓,α ), α = 1, 2 . . . N , replacing

c†
i = (c†

i↑, c†
i↓) in the spin- 1

2 model. We obtain the generalized
SU(N)-symmetric singlet bond operator

Mi j = 1√
N

N∑
α=1

(c†
i,ασ0c j,α + H.c.), (3)

and triplet current operator

�Ni j = i√
N

N∑
α=1

(
c†

i,α
�σ
2

c j,α − H.c.

)
. (4)

So, the SU(N)-symmetric Hamiltonian with singlet-bond and
triplet-current interactions is defined as

H = −t
∑
〈i j〉,α

(c†
i,αc j,α + H.c.) +

∑
〈i j〉

[
− g1

2
M2

i j − g2

2
�N2

i j

]
.

(5)
At large-N limit, the Hubbard-Stratonovich fields, χi j and
�Ji j , defined on every lattice bond can factorize the terms M2

i j

and �N2
i j , corresponding to the mean-field order parameters
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χ and �J (see Appendix B). For the triplet dx2−y2 density
wave order we can derive the mean-field dispersion relation

Ek ( �J ) = ±
√

ε2
k + ( ��/2)2 with �� = −(cos kx − cos ky) �J/4;

hence, there exist 4N low-energy anisotropic Dirac cones
located at (π/2,±π/2) when taking into account the spin
degeneracy. In particular, the dispersion relation is a linear
function of �κ around the Dirac point �K = (π/2, π/2) where �κ
is the deviation from �K . Conversely, the mean-field dispersion
relation of the singlet px density wave opens an energy gap
at all wavevectors. Using the mean-field ansatz of the singlet
px- and triplet dx2−y2 -wave orderings, we can solve the saddle-
point equations self-consistently. Certainly, the singlet px and
triplet dx2−y2 density wave states emerge when g1 > 0, g2 = 0
and g1 = 0, g2 > 0, respectively. Nevertheless, by increasing
g1 at g2 > 0, the singlet px-wave order is formed at a nonzero
g1. As g1 is further increased, the dx2−y2 density wave order is
gradually suppressed and the two density wave orders coexist.
The problem of coexistence associated with the coupling of
order parameters can be proved by using a phenomenological
Ginzburg-Landau (GL) description, as shown in Appendix B.

Below, let us briefly describe the PQMC method in the de-
terminant formalism [24–26]. The model Hamiltonian (5) can
be simulated without a sign problem by using the Kramer’s
time-reversal invariant decomposition [23],

e�τgM2
i j =

∑
l,s=±1

γl

4
esηl

√
�τgMi j + O(�τ 4),

e�τg �N2
i j =

∏
a=x,y,z

∑
la,sa=±1

γla

4
esaηla

√
�τgNi j,a + O(�τ 4),

(6)

where γl = 1 +
√

6
3 l and ηl =

√
2(3 − √

6l ) [23,26]. In this

case, the discrete auxiliary fields have 44 = 256 possible
choices on every bond. Moreover, Eq. (6) allows us to de-
couple the fermion operators ci,α and ci,β �=α , corresponding
to different subspaces of the Hilbert space. Therefore, the
propagation operator is rewritten as

〈T |eM�τH |T 〉 =
∑
{l,s}

γ ({l})

[
det P†

M∏
p=1

BpP

]N

, (7)

where γ ({l}) = ∏M
p=1

γlp

4 and Bp = e−�τH0,α e−�τHI,α is de-
fined in the subspace of flavor α. The rectangular matrix P
characterizes the Slater determinant of the trial wave function
|T 〉. More implementation details of the algorithm can be
found in Refs. [26,27] and in the source codes [28]. Our
PQMC simulations are performed on 24 CPU cores with
500 Monte Carlo steps for warming up and 500 steps for
measurements on each core (see details in Appendix C). The
square lattice is subject to the periodic boundary condition.
The Trotter decomposition step �τ = 0.1 and projection time
M�τ = 24 are used. The measurements of physical observ-
ables are performed close to M�τ/2 after projecting onto the
ground state.

III. PHASE DIAGRAM

Generally, the spin current operators are denoted by �Ji,êa ≡
�Ni,i+êa where a = x, y and êx, êy represent the primitive lattice

(b)(a) g1/t=1

FIG. 2. Order parameters as a function of g2 at g1/t = 1.
(a) Triplet dx2−y2 and (b) singlet px density wave order parame-
ters. Black curves represent the extrapolated order parameters in the
1/L → 0 limit.

vectors of the square lattice. The structure factor of the triplet
dx2−y2 density wave state is then defined as

χF =
∑

a,b=x,y

χF,ab =
∑

a,b=x,y

εab

L4

∑
i j

〈Ji,êa J j,êb〉ei �Q·�r, (8)

where �Q = (π, π ), �r = �ri − �r j, εxx = εyy = 1 and εxy =
εyx = −1. As for the singlet px density wave order, the kinetic
bond operators are expressed as di,êa ≡ Mi,i+êa . Consider the
spin dimerization along the êx and êy directions. We define the
structure factor of the singlet px density wave state as

χD =
∑

a=x,y

χD,a =
∑

a=x,y

1

L4

∑
i j

〈di,êa d j,êa〉ei �Qa·�r, (9)

where �Qx = (π, 0) and �Qy = (0, π ).
Considering the SC and AFM instabilities described by

Eq. (2), we also measure the structure factors of the SC order,

χC = 1

L4

∑
i j

∑
αβ

〈c†
i↑,αc†

i↓,αc j↓,βc j↑,β〉, (10)

and the AFM order,

χS = 1

L4

∑
i j

〈�S(i) · �S( j)〉ei �Q·�r, (11)

where �S(i) = ∑
α c†

i,α
�σ
2 ci,α .

For the purpose of simplicity, we plot the order parameters
as a function of g2 while fixing g1/t = 1. As shown in Fig. 2
(a), following the successive increase of g2, the triplet dx2−y2

density wave order parameter,
√

χF , increases at first and then
decreases for lattice sizes L � 6. Extrapolation to the limit
of 1/L → 0 shows that the triplet dx2−y2 density wave order
starts to appear at around g2/t ≈ 1.5. As further increasing
g2, the order parameter in the 1/L → 0 limit becomes non-
monotonic: it keeps increasing until it reaches the maximum
around g2/t ≈ 3. After that, it declines steadily to zero when
g2/t � 4. Meanwhile, the analysis for the singlet px density
wave order parameter can be carried out in parallel. As shown
in Fig. 2(b), the singlet px density wave order develops when
g2/t � 3, which is beyond the mean-field theory. Note that
near g2 = 0 the extrapolated values of

√
χD are very small. It

is difficult to judge whether the px-wave order vanishes. Nev-
ertheless, later in Sec. IV, the single-particle gap data show
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nonzero values, and thus are consistent with weak px-wave
orderings.

In the large-g2 regime, the vanishing triplet dx2−y2 and
nonzero singlet px density wave order parameters are some-
what counterintuitive, because the g2 term in the Hamiltonian
(5) favors the triplet dx2−y2 density wave order at the mean-
field level. To explain why increasing g2 favors the px density
wave order and suppresses the dx2−y2 density wave order, let
us discuss an intuitive picture as follows. Denote the single
occupancy, double occupancy and empty states by |·〉, |··〉
and |〉, respectively. The current state of a two-site system is
essentially the superposition |··〉|〉 + eiφ|·〉|·〉 + e2iφ |〉|··〉 with
a phase difference φ, while the bond state is the superposi-
tion |··〉|〉 + |·〉|·〉 + |〉|··〉 without the phase difference. The
key argument is that at large g2 the virtual hopping process
brought by the kinetic term H0,α does not cause any phase
difference and thus favors the bond state. However, each H0,α

only acts on the subspace of flavor α, which is factor-N times
smaller than the interaction terms in the SU(N)-symmetric
Hamiltonian (5). Thus the kinetic energy gain for the bond
state is neglectable for 1/N → 0. Hence, from the energy
perspective, the singlet bond state is the ground state when
both conditions of large g2 and small N are met. Also, it is
worthwhile to be reminded that N cannot be arbitrarily small
like N = 1.

Moreover, according to Fig. 2, the singlet px and triplet
dx2−y2 density wave order parameters in the 1/L → 0 limit
are both nonzero for 3.0 � g2/t � 4.0. In other words, the
quantum phase transition between the singlet px and triplet
dx2−y2 density wave states has an intermediate region of co-
existence as tuning g2. The coexistence region of two orders
is usually termed as the mixed-ordered area or coexisting
phase in the literatures [29,30]. As discussed in Appendix B,
coexistence of the singlet px and triplet dx2−y2 density wave
order parameters is allowed in the GL theory.

Details of the finite-size extrapolation are shown in Fig. 3,
where the polynomial curve fitting of 1/L is employed. In
the presence of long-range correlations defined on the lattice
bond, the order parameters of L = 4n and L = 4n + 2 have
vastly different values due to strong finite-size effects. In this
case, we fit our data to the linear function of 1/L to average the
finite-size effects, as shown in Figs. 3(a) and 3(b). In contrast,√

χC and
√

χS are well described by the polynomials of 1/L,
and their extrapolated results prove the absence of SC and
AFM orders, as Figs. 3(c) and 3(d) show.

Next, we consider the correlation ratio, which concerns the
ratio between structure factors at an ordering wavevector and
its nearest wavevector. For example, the correlation ratio of
the triplet dx2−y2 density wave is defined as

RF (L) = 1 − 1

4

∑
a=x,y

(
χF ( �Q − d �qa)

χF ( �Q)
+ χF ( �Q + d �qa)

χF ( �Q)

)
,

(12)
where d �qx = (2π/L, 0) and d �qy = (0, 2π/L). Similarly, the
correlation ratio of the singlet px density wave is defined as

RD(L) = 1 − 1

4

∑
a,b=x,y

χD( �Qa + d �qb)

χD( �Qa)
. (13)

FIG. 3. The finite-size extrapolation of order parameters as g2

varies and g1/t = 1. (a) Triplet dx2−y2 and (b) singlet px density wave
order parameters. (c) SC and (d) AFM order parameters.

In the ordered phase, the correlation ratio goes to one in the
1/L → 0 limit; whereas in the disordered phase, it goes to
zero.

Figure 4 shows RF as a function of g1 for some fixed values
of g2. Here, we fit the data to polynomial functions of g1, and
estimate the crossing point between the fitted curves of RF (L)
and RF (L + 4) by using the bootstrap method. Since the cor-
relation ratio is a renormalization-group-invariant quantity,

(b)(a)

(d)(c)

g2 g1=t/ 2/t=2

g2 g3=t/ 2/t=4

FIG. 4. The correlation ratio of the triplet dx2−y2 density wave
as a function of g1 when g2 is fixed. (a) g2/t = 1, (b) g2/t = 2,
(c) g2/t = 3, and (d) g2/t = 4.
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we view the average crossing points as the phase transition
points regardless of scaling corrections [31]. Overall, Fig. 4
indicates that the critical points of the triplet dx2−y2 density
wave order are g1/t = 0.71(2), 1.14(2), 1.31(4), 1.06(15) for
the fixed g2/t = 1, 2, 3, 4 respectively. Similar analyses are
carried out in other parameter regimes, and the results are
plotted in blue squares, as shown in Fig. 1. In our simulations,
however, the RD data exhibit large error bars; as a conse-
quence, we could not obtain the crossing points of the RD

curves. Alternatively, we can extract the critical point gc by
fitting the extrapolated data to

√
χD ∼ (g − gc)β , as shown in

Appendix A. Critical points of the singlet px-wave order are
denoted by the red circles in Fig. 1. In the phase diagram, as
tuning g1, the discrepancy in between the blue squares and red
circles indicates a disordered ground state with vanishingly
small order parameters, which is attributed to a tie between
the singlet-bond and triplet-current interactions without either
side winning in this parameter regime.

IV. GAP OPENING MECHANISM

So far we have analyzed the equal-time observables, which
gave us the phase diagram including two kinds of nonzero
angular momentum density wave phases and a mixed-ordered
area. In this section, we investigate the single-particle gap �sg

and spectrum A(�k, ω) so as to further clarify the density wave
phases.

Physics of the singlet px and triplet dx2−y2 density wave
states is very different according to the mean-field analysis in
Appendix B: The triplet dx2−y2 density wave state possesses
Dirac fermion spectrum, which is gapless at the wavevector
�K ; whereas the singlet px density wave state opens a gap at all
wavevectors.

We consider the unequal-time Green’s function as

G(�k; τ ) = 1

L2

∑
i j

〈ci(τ )c†
j (0)〉ei�k·�r, (14)

and extract �sg of momentum �k using G(�k; τ ) ∼ e−�sgτ . Since
the minimal single-particle gap is located at the Dirac point �K ,
we fit ln G( �K ; τ ) of the 4n × 4n square lattice to a linear func-
tion of τ within the range where the data of ln G versus τ show
asymptotic linear behavior. Then the finite-size extrapolation
of �sg is performed using the quadratic polynomial functions
of 1/L.

In Figs. 5(a) and 5(b), extrapolations of �sg along the g1

axis and g2 axis are plotted, respectively. For the g1 axis,
QMC results always give nonzero extrapolated values of �sg,
which indicates the singlet px density wave orderings at small
g1. In contrast, for the g2 axis the extrapolated �sg is equal
to zero when g2/t � 3, which is consistent with the triplet
dx2−y2 density wave order. After that, the system enters the
mixed-ordered area and �sg > 0 for g2/t > 3. Theoretically,
the singlet px-wave ordering breaks the nodal point’s energy
degeneracy of the dx2−y2 -wave order; and thus the mixed-
ordered area is gapped at �K .

Figures 5(c) and 5(d) show the extrapolation of �sg for
nonzero g1 and g2. When g2/t = 2.5 and g1 increases, there is
a transition from the triplet dx2−y2 density wave to the singlet
px density wave in the phase diagram. In this case, we find

(b)(a)

(d)(c)

FIG. 5. The finite-size extrapolation of the single-particle gap
�sg for various parameters (g1/t, g2/t ): (a) varying g1/t and fixing
g2/t = 0; (b) fixing g1/t = 0 and varying g2/t ; (c) varying g1/t
and fixing g2/t = 2.5; (d) fixing g1/t = 1 and varying g2/t . The
quadratic polynomial fitting is used.

�sg = 0 for g1/t � 1 and �sg > 0 for g1/t � 1.5, as shown
in Fig. 5(c). For comparison, in Fig. 5(d), when g1/t = 1 and
g2 increases, �sg is nonzero for small g2, but �sg drops to zero
at g2/t = 2.5, corresponding to the transition from the singlet
px density wave to the triplet dx2−y2 density wave. Further
increasing g2 reopens the energy gap at g2/t = 3.5, meaning
that the system enters the mixed-ordered area and eventually
reenters the pure singlet px density wave phase. These results
are consistent with the phase boundary of the triplet dx2−y2

density wave order.
Previous studies have presented the single-particle spec-

trum A(�k, ω) to confirm the semimetal character of the
dx2−y2 -wave order [12,22]. However, A(�k, ω) in the mixed-
ordered area has not been investigated. In our simulations,
we perform the analytical continuation that utilises sparse
modeling approach [32] to derive A(�k, ω) from the equation

G(�k, τ ) =
∫ +∞

−∞
dω θ (ω)e−τωA(�k, ω), (15)

where θ (ω) is the step function.
Before presenting numerical results, let us show the

anisotropic Dirac cone in the spectrum of the triplet dx2−y2

density wave order. Expanding the mean-field Hamilto-
nian (see Appendix B) at �K as a function of �κ , we
obtain H = 2

√
2tσ0κ⊥τz +

√
2

8 ( �J · �σ )κ‖τy. Here κ̂⊥ = (κ̂x +
κ̂y)/

√
2, κ̂‖ = (κ̂x − κ̂y)/

√
2, �J is the mean-field order param-

eter, and τz, τy are the Pauli matrices defined in the (ck, ck+Q)
basis. Thus, we arrive at two different velocities v⊥ = 2

√
2t

and v‖ =
√

2
8 J , which characterize the anisotropy of Dirac
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FIG. 6. The single-particle spectral function A(�k, ω) on a
16 × 16 square lattice along a path in the reciprocal lattice.
(a) (g1/t, g2/t ) = (0.5, 2.5) is in the pure triplet dx2−y2 density wave
phase. (b) (g1/t, g2/t ) = (0, 3.5) is in the mixed-ordered area. The
red-product sign represents the position of the maximum value,
arg maxω A(ω). (c) (g1/t, g2/t ) = (0, 5) is in the pure singlet px

density wave phase. (d) (g1/t, g2/t ) = (1, 0.5) is of a weak px-wave
ordering. We have normalized A(�k, ω) of each �k to unity.

cone. In addition, the ratio v‖/v⊥ gives the mean-field order
parameter [22].

As shown in Fig. 6(a), A(�k, ω) near the Dirac point,
�K = (π/2, π/2), clearly shows the anisotropic Dirac cone
and gapless single-particle excitations. Fitting the position
of the maximum value, arg maxω A(ω), to a linear function
of �κ , we obtain the ratio v‖/v⊥ ≈ 0.27. For comparison,
Fig. 6(b) shows A(�k, ω) in the mixed-ordered area, which
has several features. For instance, an energy gap opens at �K ,
which is consistent with the extrapolation of �sg. Remarkably,
the velocities around �K remain anisotropic and the ratio is
v‖/v⊥ ≈ 0.32. In contrast, inside the pure singlet px density
wave phase, the energy gap at all wavevectors is evident,
and arg maxω A(ω) is a quadratic function of �κ around �K ,
as Fig. 6(c) shows. Furthermore, the data in Fig. 6(d) are
significantly different from the data in Fig. 6(c). In particular,
arg maxω A(ω) along the κ̂‖ direction around �K is very flat
and the energy gap at �K is very small, which shows the
tendency towards the Fermi surface of noninteracting limit
and reflects the weak px-wave ordering. Therefore, Fig. 6(d)
shows A(�k, ω) of a weak singlet px density wave order.

V. CONCLUSIONS

In summary, we have performed the PQMC simulations
of a SU(N)-symmetric Hamiltonian with singlet-bond and
triplet-current interactions on the square lattice. We find the
gapped singlet px and gapless triplet dx2−y2 density wave
states in the half-filled N = 4 model. Without the singlet-bond
interaction, the mean-field ground state is the triplet dx2−y2

density wave order for any nonzero triplet-current interaction
strengths. In contrast, our QMC simulations show a transi-
tion to the singlet px density wave when the triplet-current

interaction strength is increased, which is beyond the mean-
field theory. This transition is accompanied by a gapped
mixed-ordered area where two orders coexist, and the co-
existence of two competing orders is explained in the GL
description. After turning on the singlet-bond interaction,
there is a transition from the triplet dx2−y2 to the singlet px

density wave phases. In this case, however, the ground state is
disordered in between the two ordered phases. Furthermore,
we investigate the single-particle spectrum by employing the
recently developed sparse modeling approach. For the triplet
dx2−y2 density wave, the anisotropic Dirac cone is observed in
the spectrum. On the other hand, the spectrum of the singlet
px density wave shows a parabolic shape around the Dirac
point and has the energy gap at all wavevectors. As for the
mixed-ordered area, an energy gap is opened and the veloci-
ties remain anisotropic at the Dirac point.
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APPENDIX A: SUPPLEMENTARY DATA

Without the singlet-bond interaction, i.e., at g1 = 0,
√

χF

and
√

χD as a function of g2 are plotted in Figs. 7(a) and
7(e), respectively. Here

√
χF and

√
χD represent the order

parameters of the triplet dx2−y2 and singlet px density waves,
respectively. In Fig. 7(a), the extrapolated value of

√
χF in-

creases until it reaches the maximum at around g2/t ≈ 2.5.
After that, it drops to zero when g2/t � 4.5. By contrast, the
extrapolated

√
χD becomes greater than zero when g2 � 3.5,

as Fig. 7(e) shows. By fitting the data to
√

χD ∼ (g2 − g2,c)β ,
we obtain the critical point g2,c = 2.7 ± 0.16 of the singlet px

density wave phase.
For the rest of the data in Fig. 7, we plot the order pa-

rameters as a function of g1 while fixing g2. Additionally, we
denote by dashed vertical lines the phase transition points of
the triplet dx2−y2 -wave order. At g2/t = 1, the data of

√
χF

and
√

χD are plotted in Figs. 7(b) and 7(f), respectively. In this
case,

√
χF goes to zero when g1/t � 0.75, whereas nonzero

values of
√

χD only appear after g1/t � 1.25. Therefore,
both order parameters are vanishingly small and the ground
state is disordered in the parameter regime around g1/t ≈ 1.
Moreover, in this regime the single-particle gap �sg > 0, as
discussed in Sec. IV of the main text. Similarly, Figs. 7(c)
and 7(g) and Figs. 7(d) and 7(h) show the data at g2/t = 2
and g2/t = 3, respectively. The disordered ground state is also
seen at around g1/t ≈ 1.25, g2/t ≈ 2.

APPENDIX B: DETAILS OF THE MEAN-
FIELD CALCULATION

We formulate the partition function in a path integral [33],

Z =
∫

D[c̄, c] exp[−
∫ β

0
dτL], (B1)
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(d)(c)(b)(a)

(h)(g)(f)(e)

g1 g0=t/ 2 g1=t/ 2 g2=t/ 2/t=3

g1 g0=t/ 2 g1=t/ 2 g2=t/ 2/t=3

FIG. 7. Order parameters as a function of g1 (g2) when g2 (g1) is fixed. [(a)–(d)] Triplet dx2−y2 and [(e)–(h)] singlet px density wave order
parameters. Dashed-vertical lines represent the phase transition points extracted from the correlation ratio RF .

where the Lagrangian L = ∑
i,α c̄i,α∂τ ci,α + H with ∂τ ci,α =

∂ci,α/∂τ and H given by Eq. (5). Consider the Hubbard-
Stratonovich (HS) transformation that factorizes the fermion
interaction terms on every bond. We rewrite the Lagrangian
quadratically [4],

L → L+
∑
〈i j〉

[
2

g1

(√
Nχi j

2
− g1

2
Mi j

)2

+ 2

g2

(√
N �Ji j

2
− g2

2
�Ni j

)2]
. (B2)

So, we obtain the transformed partition function Z =∫
D[c̄, c, χ, �J]e−S[c̄,c,χ, �J] where

S[c̄, c, χ, �J] =
∫ β

0
dτ

∑
k,α

c̄k,α (∂τ + εk )ck,α +
∑
〈i j〉

(
Nχ2

i j

2g1

+ N �J 2
i j

2g2
−

√
Nχi jMi j −

√
N �Ji j · �Ni j

)
. (B3)

At this point, we can integrate out the fermion fields, yield-
ing Z = ∫

D[χ, �J]e−SE [χ, �J]. Here, SE is the effective action
defined as

e−SE [χ, �J] =
∫

D[c̄, c]e−S[c̄,c,χ, �J] = det[∂τ + hE ]

exp

[
−

∑
〈i j〉

∫ β

0
dτ

(
Nχ2

i j

2g1
+ N �J 2

i j

2g2

)]
, (B4)

where we introduce the effective Hamiltonian

hE = − t
∑
〈i j〉,α

(c†
i,αc j,α + H.c.)

−
∑
〈i j〉

(
√

Nχi jMi j +
√

N �Ji j · �Ni j ).
(B5)

Fourier transform the fields by c j,α = 1√
Ns

∑
k ck,αeikRj . For

the singlet-bond interaction term, we obtain∑
〈i j〉

√
Nχi jMi j =

∑
〈i j〉,α

(χi jc
†
i,ασ0c j,α + H.c.)

=
∑
kk′,α

χk′−kc†
k′,ασ0ck,α,

(B6)

where χk′−k = 1
2Ns

∑
jδ χ j, j+δe−i(k′−k)Rj eikδ . Similar deriva-

tion can be applied to the triplet-current interaction term, and
we have∑

〈i j〉

√
NJi jNi j =

∑
〈i j〉,α

(
iJi jc

†
i,α

�σ
2

c j,α + H.c.

)

=
∑
kk′,α

Jk′−kc†
k′,α

�σ
2

ck,α, (B7)

where Jk′−k = i
2Ns

∑
jδ Jj, j+δe−i(k′−k)Rj eikδ . Substituting the

Eqs. (B6)(B7) into the effective Hamiltonian (B5) and taking
the logarithm of Eq. (B4), we write the effective action in the
Matsubara frequencies as

SE [χ, �J] = N
∫

x

[ |χ |2
2g1

+ | �J|2
2g2

]
− NTr ln

[
(−iωn + εk )δk,k′

−
(

χk′−kσ0 + �Jk′−k · �σ
2

)]
(B8)
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where
∫

x = ∑
〈i j〉

∫ β

0 dτ , and εk = −2t (cos kx + cos ky) is the
dispersion relation on the square lattice.

At large-N limit, the saddle-point approximation of the
partition function is accurate. Since fermion operators of dif-
ferent flavors are decoupled in SE , the mean-field equations,
δSE [χ, �J]

δχ
= δSE [χ, �J]

δ �J = 0, can be simplified in the subspace of
flavor α as

χi j

g1
− 〈c†

i c j + H.c.〉hE = 0,

�Ji j

g2
− i〈c†

i
�σ
2

c j − H.c.〉hE = 0.

(B9)

For the singlet px density wave order, as in the right in-
set of Fig. 1, we obtain χ j, j+δ = χeiQxRj (δ j+δ, j+x̂ − δ j+δ, j−x̂ ).
Hence, the Fourier modes χk′−k are

χk′−k = 1

2Ns

∑
j

(∑
δ

χ j, j+δeikδ

)
e−i(k′−k)Rj

= iχ sin(kx )δk′,k+ �Qx
.

(B10)

Substituting this into Eq. (B5), we obtain the mean-field
Hamiltonian matrix,

hE (χ ) =
∑

k

(
εkσ0 −iχ sin(kx )σ0

iχ sin(kx )σ0 εk+ �Qx
σ0

)
, (B11)

where the basis is (ck↑, ck↓, ck+ �Qx↑, ck+ �Qx↓). The dispersion
relation of the singlet px density wave state is Ek (χ ) =
−2t cos ky ±

√
χ2 sin2 kx + 4t2 cos2 kx. At kx = ±π/2, the

energy gap between the upper and lower bands has a min-
imum value 2χ when χ is small. Similarly, consider the
triplet dx2−y2 density wave order as in the left inset of Fig. 1.
We have �Jj, j+δ = − 1

4
�JeiQRj (δ j+δ, j+x̂ + δ j+δ, j−x̂ − δ j+δ, j+ŷ −

δ j+δ, j−ŷ ). The Fourier modes �Jk′−k are

�Jk′−k = i

2Ns

∑
j

(∑
δ

�Jj, j+δeikδ

)
e−i(k′−k)Rj

= − i

4
�J (cos kx − cos ky)δk′,k+ �Q,

(B12)

so the mean-field Hamiltonian matrix reduces to

hE ( �J ) =
∑

k

(
εkσ0 −i �� · �σ

2
i �� · �σ

2 εk+ �Qσ0

)
, (B13)

with the basis (ck↑, ck↓, ck+ �Q↑, ck+ �Q↓) and �� =
−(cos kx − cos ky) �J/4. Then the dispersion relation is

Ek ( �J ) = ±
√

ε2
k + ( ��/2)2, which is a linear function around

the Dirac points: (±π/2,±π/2) and (∓π/2,±π/2).
In the following, we calculate the Ginzburg-Landau (GL)

free energy. We define the noninteracting Green’s function
G0(k) and mean-field operator Vk,k′ as G0(k) = (iωn − εk )−1

and Vk,k′ = −(χk′−kσ0 + �Jk′−k · �σ
2 ), respectively. Therefore,

the effective action can be written as

SE [χ, �J] = 2NNsβ

[
χ2

2g1
+ ( �J/4)2

2g2

]

− NTr ln[(−iωn + εk )(1 − G0Vk,k′ )]. (B14)

FIG. 8. Coefficients in the Ginzburg-Landau free energy as a
function of temperature. The cutoff of Matsubara frequency ωn with
n � 20 and lattice size L = 80 are used.

For a noninteracting system, the free energy is given by

F0/N = S0

Nsβ
= − 1

Nsβ
Tr ln [(−iωn + εk )]. (B15)

By expanding the remaining terms to the fourth order, we
obtain the GL free energy,

F/N = ap

2
χ2 + up

4
χ4 + ad

2
�J2 + ud

4
�J4 + γ

2
χ2 �J2, (B16)

where ap = 2
g1

+ a′
p and ad = 1

8g2
+ a′

d . The coefficients a′, u,
and γ correspond to the Feynman diagrams that can be solved
numerically as a function of the temperature. As shown in
Fig. 8, the quadratic coefficients, a′

p and a′
d , are negative, and

they diverge while T approaching the zero temperature limit.
In contrast, the quartic coefficients up and ud are positive.
Consequently, at zero temperature, there is a phase transition
to the singlet px (triplet dx2−y2 ) density wave state at an in-
finitely small g1 (g2). Furthermore, γ is positive, albeit small,
and γ <

√
upud in the low temperature regime. A similar GL

free energy was used to investigate the coexistence of SC and
AFM orders [34,35]. Following the same line of Ref. [34],
when the leading term for the description of competing orders
satisfies 0 < γ <

√
upud , the two order parameters can be

simultaneously nonzero.

APPENDIX C: ERROR ANALYSIS

First, we employ the PQMC and exact diagonalization
(ED) methods to find the ground-state energy E of the N = 1
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(b)(a)

FIG. 9. (a) Comparison between the PQMC and ED methods for
finding the ground-state energy of the N = 1 model on the 2 × 2
square lattice. (b) Ground-state energy as a function of the QMC
steps.

model on the 2 × 2 square lattice. Figure 9(a) shows rep-
resentative data of E versus g1 (g2) along the g1 (g2) axis

for �τ = 0.1, 0.05. Though the deviations between the QMC
and ED data for �τ = 0.1 get bigger with increasing g1 or
g2, the PQMC method is still accurate within the error bars
for the N = 1 model at g1,2/t < 5. Nevertheless, the SU(N)-
symmetric Hamiltonian actually reduces �τ by a factor of N ,
as shown in the HS decomposition (6). Therefore, �τ = 0.1
should be sufficient for the parameter regimes used in our
simulations.

Second, we determine the appropriate number of QMC
steps for warming up and measurements. Different lattice
sizes are considered because the number of auxiliary field
rises when the number of lattice sites increases. In Fig. 9(b),
representative plots of E versus QMC steps are presented for
lattice sizes L = 4, 6, 8, 10. From these data, we notice that
the values of E converge within the error bars after approxi-
mately 500 QMC steps. Therefore, we run 500 QMC steps for
warming up, followed by 500 steps for measurements in each
QMC bin.
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