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Quantum anomalous Hall states in the p-orbital honeycomb optical lattices
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We study the quantum anomalous Hall states in the p-orbital bands of the honeycomb optical lattices loaded
with single-component fermions. Such an effect has not yet been realized in both condensed-matter and cold-atom
systems. By applying the available experimental techniques to rotate each lattice site around its own center, the
band structures become topologically nontrivial. At a certain rotation angular velocity �, a flat band structure
appears with localized eigenstates carrying chiral current moments. By imposing the soft confining potential, the
density profile exhibits a wedding-cake-shaped distribution with insulating plateaus at commensurate fillings.
Moreover, the inhomogeneous confining potential induces dissipationless circulation currents, the magnitudes
and chiralities of which vary with the distance from the trap center. In the insulating regions, the Hall conductances
are quantized, and in the metallic regions, the directions and magnitudes of chiral currents can not be described
by the usual local-density approximation. The quantum anomalous Hall effects are robust at temperature scales
that are small compared to band gaps, which increase the feasibility of experimental realizations.
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I. INTRODUCTION

The anomalous Hall effect appears in ferromagnets in the
absence of external magnetic fields, which was discovered
soon after the Hall effect. The mechanism of the anomalous
Hall effect has been debated for a long time, including
theories of the anomalous velocity from the interband matrix
elements [1], the screw scattering [2], and the side jump
[3]. Recently, a new perspective has been developed from
topological band properties, i.e., the Berry curvature of the
Bloch wave eigenstates [4–9], which has been very successful.
The Berry curvatures serve as an effective magnetic field in the
crystal momentum space, leading to an anomalous transversal
velocity of electrons when electric fields are applied [7]. The
anomalous transversal velocity of electrons gives the intrinsic
contribution to the observed anomalous Hall conductivity in
ferromagnetic semiconductors.

The integer quantum Hall effect (QHE) is the quantized
version of the Hall effect, in which Hall conductances are
precisely quantized at integer values. This effect arises in
the two-dimensional (2D) electron gases in magnetic fields
with integer fillings of Landau levels. The quantization of
the Hall conductance is protected by the nontrivial band-
structure topology characterized by the Thouless-Kohmoto-
Nightingale-den Nijs (TKNN) number, or the Chern number
[10,11].

In order to achieve a nonzero Chern-number pattern,
time-reversal symmetry needs to be broken, but Landau levels
are not necessary. Integer QHEs can appear as a result of
the parity anomaly of the 2D Dirac fermions [12–14]. Haldane
constructed a tight-binding model in the honeycomb lattice
with Bloch wave band structures, and showed that it exhibits
quantum Hall states with ν = ±1 [14]. This effect is termed
“quantum anomalous Hall effect” (QAHE) because the net
magnetic flux is zero in each unit cell and there are no Landau
levels. The Haldane model has been taken as a prototype model
for QAHEs.

The Hall effect has been generalized into electron systems
with spin degrees of freedom as the “spin Hall effect,” in
which transverse spin currents instead of charge currents are
induced by electric fields [15–20]. Different from the Hall
effect, the spin Hall effect maintains time-reversal symmetry.
Topological insulators are the quantum version of the spin
Hall systems, which exist in both 2D and three-dimensional
(3D) systems. Their band structures are characterized by
the Z2-topological index [21–29]. These states have robust
gapless helical edge modes with an odd number of edge
channels in 2D systems [23,30,31] and an odd number of
surface Dirac cones in 3D systems [27–29]. Topological
insulators have been experimentally observed in 2D quantum
wells through transport measurements [32], and also in 3D
systems of BixSb1−x , Bi2Te3, Bi2Se3, and Sb2Te3 through
the angle-resolved photoemission spectroscopy [33–36] and
the absence of backscattering from scanning tunneling mi-
croscopy spectroscopy [37–39].

Among all these Hall effects mentioned above, only the
QAHE has not been experimentally observed yet. Several
proposals have been suggested to realize this Hall effect in
semiconductor systems with topological band structures by
breaking time-reversal symmetry, such as ferromagnetic order-
ing [40–43]. Because no external magnetic fields are involved,
QAHE states are expected to realize the dissipationless charge
transport with much less stringent conditions than those of
the quantum Hall effect. This is essential for future device
applications.

On the other hand, the development of cold-atom physics
has provided a new opportunity for the study of QHEs and
QAHEs. Several methods to realize these effects have been
proposed, including globally rotating traps and optical lattices,
or introducing effective gauge potentials generated by laser
beams [44–51]. In particular, the Haldane-type models were
proposed in Refs. [49–51]. Furthermore, the realization of
the quantum spin Hall systems has also been proposed [52].
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All of these proposals involve experimental techniques to be
developed.

In a previous paper [53], one of the authors has proposed to
realize the QAHE in the p-orbital bands in the honeycomb op-
tical lattices through orbital angular-momentum polarizations.
This can be achieved by rotating each optical site around its
own center, but there is no overall lattice rotation. The net
effect of this type of rotation is the “orbital Zeeman effect,”
which breaks the degeneracy of the on-site px ± ipy orbitals.
This gives rise to nontrivial topological band structures, and
provides a natural way to realize the Haldane model. Increasing
the rotation angular velocity induces the topological phase
transition by changing the band-structure Chern numbers.
In the regime of large rotation angular velocities, the band
structures reduce into two copies of Haldane’s model for each
of the px ± ipy orbitals, respectively.

The main advantage of this proposal is that all the exper-
imental techniques involved are available. The honeycomb
optical lattice was constructed a long time ago [54]. Recently,
the superfluid–to–Mott-insulator phase transitions of bosons
have been observed in the honeycomb lattice by Sengstock’s
group [55]. The rotation technique has been developed by
Gemelke, Sarajlic, and Chu [56]. They have applied it to rotate
the triangular lattice filled with bosons to study the fractional
quantum Hall physics [57,58]. For the purpose of studying
QAHE, we only need to apply this technique to the honeycomb
lattice and load it with fermions.

This proposal brings a natural connection between the
QAHE and orbital physics in optical lattices. Orbital is a
degree of freedom independent of charge and spin, which
was originally investigated in solid-state systems. It plays an
important role in superconductivity, magnetism, and transport
properties in transition-metal oxides. The key features of
orbital physics are orbital degeneracy and spatial anisotropy.
Optical lattices bring new features to orbital physics that
are not easily accessible in solid-state orbital systems. First,
optical lattices are rigid and free from Jahn-Teller distortions,
thus, orbital degeneracy is robust. Second, the metastable
bosons pumped into high orbital bands exhibit superfluidity
beyond Feynman’s “no-node” theory [30,59–63], which does
not appear in 4He and the previous study of cold bosons. Excit-
ingly, this unconventional type of Bose-Einstein condensates
(BECs) have been experimentally observed recently [64,65].
Third, p orbitals have a stronger spatial anisotropy than that
of d and f orbitals, while correlation effects in p-orbital
solid-state systems (e.g., semiconductors) are not that strong.
In contrast, interaction strength in optical lattices is tunable.
We can integrate strong correlation effects with strong spatial
anisotropy more closely than ever in p-orbital optical lattice
systems [66–69]. Recently, we also extend the research of
orbital physics with cold atoms into unconventional Cooper
pairings, which include the f -wave Cooper pairing [70] in the
honeycomb lattice, and the “frustrated Cooper pairing” in the
triangular lattice [71].

This paper is as an expanded version of the previous
publication of Ref. [53] on QAHE in the p-orbital band
in optical lattices. We will also present interesting results
including the chiral flat band structures, which occur at
an intermediate rotating angular velocity. The effects of
the confining potential are investigated in detail, including

the distributions of densities and anomalous Hall currents.
The quantized anomalous conductances appear in the band-
insulating regime at commensurate fillings. The magnitudes
and chiralities of anomalous Hall currents in the metallic
regions can not be described by the usual local-density
approximations.

The rest of the paper is organized as follows. In Sec. II, we
give an introduction to the experimental setup and the orbital
Zeeman coupling. In Sec. III, a heuristic picture is given to
arrive at the Haldane model at large rotation angular velocities.
In Sec. IV, the band structures (including Berry curvatures
and flat bands) are studied. In Sec. V, the spatial distributions
of the particle density and anomalous Hall currents in the
inhomogeneous harmonic trap are studied. Finite-temperature
effects are also studied. In Sec. VI, a brief discussion on
the detection of the anomalous Hall current is presented.
Conclusions are made in Sec. VII.

II. THE TIGHT-BINDING HAMILTONIAN
WITH THE ON-SITE ROTATION

In this section, we describe the experimental setup by
Gemelke et al. to realize the on-site rotation of optical lattices
[56–58], and then construct the effective tight-binding model
for such a system.

A. The experiment setup by Gemelke et al.

The honeycomb optical lattice was experimentally realized
quite some time ago [54,55,72,73]. It is constructed by three
phase coherent coplanar laser beams with polarization along
the z axis, intersecting each other with 120◦ in the xy plane.
The schematic diagram of the experiment setup is shown in
Fig. 1. The potential minima of the interference pattern form
the honeycomb lattice if the laser frequency is blue detuned
from the atom resonance frequency. The advantage of this
technique is that the phase shift in the laser beams only leads
to shift entire lattices without destroying the lattice geometry.

The on-site rotation technique by Gemelke et al. was
originally applied to the triangular lattice [56,58]. It would be
straightforward to apply the same method to the honeycomb
lattice. Two electro-optic modulators are placed in two of the
laser beams, and the phase modulated potential is [57]

V (�r) = V0[cos(�k1 · �r + φ+) + cos(�k2 · �r + φ−)

+ cos(�k3 · �r − φ+ − φ−)], (1)

where �ki = 1
2εijk(�qj − �qk) and �qi(i = 1,2,3) are the wave

vectors of the three coplanar laser beams satisfying |q1| =
|q2| = |q3| = q. In the following, we use the definition of
recoil energy Er = h̄2q2/(2M), where M is the atom mass.
Please note that this definition of Er is three times smaller
than that used in Ref. [68], which is defined as h̄2k2/(2M). In
Eq. (1), φ± = η sin(�t ± 2π

3 ) sin(ωRFt), where � is the slow
precession frequency, η is a phase modulating constant that
determines the amplitude of the oscillation, and ωRF is the fast
rotation frequency at radio frequency. Atoms do not follow the
fast oscillation and only feel a time average of the potential as

V (�r,t) = V0

3∑
i=1

[Ai(t) cos(�ki · �r)], (2)
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FIG. 1. (Color online) (a) The sketch of the honeycomb optical
lattice. The three laser beams cross each other at 120◦ in the xy plane.
Phase modulators are placed in the paths of the two beams. (b) The
illustration of the on-site rotation by Gemelke et al. [56–58]. The
entire lattice takes the motions of a fast oscillation with the frequency
ωRF and a slow precession with the frequency �, as schematically
plotted with the red solid lines in one lattice site. After taking the time
average of the fast oscillation, atoms feel that each site is rotating
around its own center with the precession frequency �, which is
plotted with the red dot-dashed line around each site.

where Ai(t) = J0[η sin(�t + i 2π
3 )], J0 is the zeroth-order

Bessel function, and η is a small parameter [57].
Equation (2) still maintains the same lattice translational

symmetry. Around each potential minimum �r0 in the original
lattice without rotation, the potential can be expanded to the
second order, yielding a slightly anisotropic harmonic potential

V (�r − �r0,t) ≈ V0

4

{
8π2

3

(
1 − η2

8

)
|�r − �r0|2 + η2π2

6

× |�r − �r0|2 cos

[
π

3
+ 2(�t + ϕ�r−�r0 )

]}
, (3)

which rotates with a slow frequency of �. Here ϕ�r−�r0 is the
polar angle of �r − �r0. The slight deformation of the optical
potential processes around each site center, which can be
regarded as an on-site rotation.

B. The tight-binding Hamiltonian

Now we construct the effective tight-binding model to
describe the above system. First of all, each lattice site is
rotating around its own center, and there is no overall rotation
of the entire lattice. In other words, the system still has the
lattice translational symmetry. There should be no vector po-
tential for intersite hopping associated with the Coriolis force.
Within each site, the rotation angular velocity couples to the
on-site orbital angular momentum through the orbital Zeeman
coupling. Such a coupling also exists in solid-state systems in

the presence of external magnetic fields. However, the typical
energy scales of the Zeeman couplings, including both spin and
orbital channels, are at most at the order of 1 meV, which are
tiny compared to band widths. They usually do not change the
band topology. The advantage of the experiments by Gemelke
et al. [56–58] is that the orbital Zeeman energy scale can easily
reach the order of kHz, which is comparable to band widths.

The orbital Zeeman term from the on-site rotation is
important in all the orbital bands except for the s-orbital one.
For the px,y-orbital bands, one of the authors [53] introduced
the coupling as

HL = −�
∑

�r
Lz(�r) = ih̄�

∑
�r

{p†
x,�rpy,�r − p

†
y,�rpx,�r}. (4)

It breaks the degeneracy between px ± ipy states, and induces
topologically nontrivial band structures as presented in later
sections.

The remaining part of the tight-binding Hamiltonian is
as usual. In Refs. [66,68], one of the authors studied the
px,y-orbital bands in the honeycomb optical lattice filled
with spinless fermions, which is the counterpart of graphene
described by the pz orbital but exhibits fundamentally different
properties. The tight-binding Hamiltonian reads as

H0 = t‖
∑
�r∈A

3∑
i=1

{p†
i,�rpi,�r+êi

+ H.c.} − µ
∑

�r∈A⊕B

n(�r), (5)

where ê1,2 = ±
√

3
2 x̂ + 1

2 ŷ and ê3 = −ŷ, A and B are indices
of two different sublattices, t‖ is the σ bonding describing the
longitudinal banding of p orbitals along the bond direction,
µ is the chemical potential, and n(�r) = p

†
x,�rpx,�r + p

†
y,�rpy,�r is

the filling number at site �r . The operators p̂i,�r are defined
as the projection of the p orbital along the vector êi as
�p�r = px,�r x̂ + py,�r ŷ. Rigorously speaking, t‖ should be time
dependent, which depends on the oscillation amplitude η. Here
we neglect this time dependence by assuming η is small. t‖ is
positive as a result of the odd parity of the p orbitals. The π

bonding t⊥ is much weaker than the σ bonding. For example,
t⊥/t‖ can be easily suppressed around 1% [53] within realistic
experimental parameters of V0/Er = 15, thus, the t⊥ is not
considered in most of this paper except for Sec. IV C. The
band Hamiltonian to be investigated below is the combination
between Eqs. (4) and (5) as

H = H0 + HL. (6)

III. THE APPEARANCE OF THE HALDANE MODEL
AT LARGE ROTATION ANGULAR VELOCITIES

Haldane proposed a tight-bonding model for the QAHE
effect, the Bloch wave band structure of which is topologically
nontrivial [14]. The Hamiltonian of the Haldane model is
defined in the honeycomb lattice, which reads as

H = −t
∑
〈ij〉

{a†
i aj + H.c.} +

∑
〈〈ij〉〉

{t ′ij a†
i aj + H.c.}, (7)

where 〈ij 〉 represents the nearest-neighbor (NN) hopping and
〈〈ij 〉〉 represents the next-nearest-neighbor (NNN) hopping.
The NNN hopping t ′ = |t ′|e±iφ is complex valued and its
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argument takes ±φ if the hopping from i to j is anticlockwise
(clockwise) with respect to the plaquette center. Equation (7)
breaks time-reversal symmetry. The band spectra exhibit two
gapped Dirac cones in the Brillouin zone (BZ), the mass values
of which have opposite signs. The band structure has the
nonvanishing Chern numbers ±1, which lead to the QAHE
with ν = ±1. In the system with the open boundary condition,
unidirectional edge currents appear surrounding the system,
i.e., the edge currents are chiral.

Before the detailed study on the band structures of our
p-orbital Hamiltonian equation (6), we present an intuitive
picture that the on-site rotation induces complex-valued NNN
hopping terms in the limit of �/t‖ � 1 as in the Haldane
model. As a result, the Gemelke-type rotation provides a
possibility to realize the QAHE state in the cold-atom exper-
iments. In the presence of rotation, the on-site eigenorbitals
become px ± ipy with an energy splitting of 2�. When
� � t‖, each level of px ± ipy broadens into a band without
overlapping each other. We consider the case wherein � > 0,
such that the low-energy sector of the Hilbert space consists
of the px + ipy orbital state. The leading-order term of the
effective Hamiltonian in this sector is just the NN hopping
with the hopping integral of 1

2 t‖. Moreover, the second-
order perturbation process generates the NNN hopping with
complex-valued integral as explained below.

Let us consider the two-step virtual hopping process
illustrated in Fig. 2. In the first step, the atom starting from
the low-energy sector of the px + ipy orbital in the A site
hops into the high-energy sector of the px − ipy orbital in the
nearest-neighbor B site. The phases along the AB bond are
30◦ from the A site and 150◦ from the B site, thus, there is a
phase mismatch of 120◦. The corresponding hopping integral
is complex valued with 1

2 t‖ei 2
3 π . Similarly, during the second

step, the atom hops back into the px + ipy orbital in the NNN
A site with the complex hopping integral 1

2 t‖ei 2
3 π . The hopping

process is (A+) → (B−) → (A′+), where ± represents the
chirality of px ± ipy orbitals. The corresponding amplitude is
calculated as follows:

tNNN = 〈A′ + |H0|B−〉〈B − |H0|A+〉
−2�

= − t2
‖

8�
ei4π/3. (8)

i

−i
1−1

A’A

B

i
1−1

−i

i
1−1

−i

FIG. 2. (Color online) The pattern of the induced complex-valued
NNN hopping at � � t‖, which is generated by the virtual hopping
between orbitals with opposite chiralities (from Wu [53]).

All the NNN hoppings have the same phase value following
the arrows, which is exactly the same as in the Haldane model.
The above analysis applies to the high-energy sector as well.
Thus, we have two copies of the Haldane model, each for the
px ± ipy bands, respectively.

IV. BAND STRUCTURES IN THE
HOMOGENEOUS SYSTEM

In this section, we present the band spectra in the ho-
mogeneous system with the periodical boundary conditions
(PBC). The general structure is studied in Sec. IV A, and the
interesting flat band structure is presented in Sec. IV B.

A. The general band structures

We define the four-component spinor representation for the
two-orbital wave functions in the two sublattices as

|ψ�k〉 = [pAx(�k),pAy(�k),pBx(�k),pBy(�k)]T . (9)

After performing the Fourier transform, the Hamiltonian
equation (6) becomes

H =
∑

�k
ψ†

a (�k)[Hab(�k) − δabµ]ψb(�k), (10)

where Hab(�k) is written as⎛
⎜⎜⎜⎜⎝

0 i� 3
4 (ei�k·ê1 + ei�k·ê2 )

√
3

4 (ei�k·ê1 − ei�k·ê2 )

−i� 0
√

3
4 (ei�k·ê1 − ei�k·ê2 ) 1

4 (ei�k·ê1 + ei�k·ê2 ) + ei�k·ê3

H.c. 0 i�

−i� 0,

⎞
⎟⎟⎟⎟⎠.

(11)

The band structure in the absence of rotation, i.e., � =
0, has been studied in Refs. [66,68], and includes both flat
bands (the bottom and top bands) and two dispersive bands
with Dirac cones as depicted in Fig. 3(a). The flat bands and
dispersive bands touch at the center of the first BZ, and two
dispersive bands touch at Dirac cones. The location of the Dirac
cones are at �k = (± 4π

3
√

3a
,0) [66,68]. The band flatness means

that the corresponding band eigenstates can be constructed
as localized states in real space. Each hexagonal plaquette
supports one localized eigenstate, the orbital configuration on
each site of which is along the tangent direction as presented
in Fig. 2(a) in Ref. [66]. When the filling is inside the flat
bands, interaction effects are nonperturbative. This results in
the exact solutions of the Wigner crystallization for spinless
fermions [66] and the flat-band ferromagnetism for spinful
fermions [69]. For the dispersive bands, although their spectra
are the same as in graphene, their eigen-wave-functions are
fundamentally different, exhibiting rich orbital structures as
presented in Ref. [68].

When the on-site rotation is turned on, i.e., � > 0, band
gaps open. The previous touching points between the first
and second bands at � = 0 split. The lowest band is no
longer flat, and the center of the second band is pushed up
as depicted in Fig. 3(b). The Dirac cones between the middle
two dispersive bands also become gapped. In this case, the
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FIG. 3. (Color online) The band structures of the Hamiltonian
equation (11). With increasing rotation velocity from (a) �/t‖ = 0
to (f) �/t‖ = 1.7. The flat bands appear at �/t‖ = 3

4 . Energies are in
units of hopping strength t‖ and wave vectors are in the units of 1/a,
which is the reciprocal of the lattice constant. The energies of these
two flat bands are E/t‖ = ± 3

4 .

topology of each band n(n = 1 ∼ 4) is characterized by the
Chern number defined as

Cn = 1

2π

∫
d2kFn,xy(�k), (12)

where the Berry curvature Fn,xy is defined as

Fn,xy(�k) = ∂kx
An,y(�k) − ∂ky

An,x(�k), (13)

and An,µ(µ = x,y) is the Berry gauge potential in momentum
space defined as

An,µ = i〈ψn(�k)|∂kµ
|ψn(�k)〉. (14)

The Chern-number patterns at � > 0 have been calculated
in Ref. [53], and the distribution of the Berry curvatures Fn,xy in
the BZ is depicted in Fig. 2 of Ref. [53]. Below a critical value

of the rotation angular velocity �c/t‖ = 3
2 , the Chern-number

pattern reads as

C1 = −C4 = 1, C2 = −C3 = 0. (15)

At �c/t‖ = 3
2 , a single Dirac cone connecting the second and

third bands shows up at �k = (0,0), which triggers a topological
phase transition. Beyond �c, this Dirac point becomes gapped,
and the Chern-number pattern becomes

C1 = −C2 = 1, C3 = −C4 = −1. (16)

In this case, the band structure is qualitatively the same as the
two copies of the Haldane model as discussed in Sec. III.

B. Flat bands at �/ t‖ = 3
4

It is evident in Fig. 3(c) that the second and third bands
become flat at �/t‖ = 3

4 . In this section, we discuss various
properties of the flat bands, including the localized eigenstates,
the distribution of the Berry curvature, and the interaction
effects.

1. Localized eigenstates

The band flatness usually means that the eigenstates can
be reconstructed as localized states in real space. We assume
that each localized eigenstate exists within a single hexagon
plaquette constructed as follows:

|ψ �R〉 =
6∑

j=1

(−)j−1ei(j−1)φ{cos θj |pj,x〉 − sin θj |pj,y〉}, (17)

where �R is the coordinate of the plaquette center, j is the
site index within the same plaquette and θj = (j − 1)π

3 , eiφ

is the phase factor to be determined satisfying the periodical
boundary condition ei6φ = 1, and the factor of (−)j−1 is a
sign convention because of the odd parity of the p orbitals.
The p-orbital configuration on each site j is along the tangent
direction. Substituting Eq. (17) into the band Hamiltonian, we
arrive at the condition for Eq. (17) to be the eigenstate as

� = −
√

3

2
sin φ, E = −3

2
cos φ, (18)

where φ = 0, ± π
3 , ± 2π

3 ,π . For the cases of φ = 0 and π ,
they are the situations studied before in Ref. [66] without
the on-site rotation. The other four cases are with the on-site
rotation. Without loss of any generality, we take φ = −π

3

and φ = − 2π
3 such that �/t‖ = 3

4 > 0 and E/t‖ = ± 3
4 . The

schematic diagram of these two typical localized states is
shown in Figs. 4(a) and 4(b), respectively.

The main difference between these two groups of localized
states at � = 0 and �/t‖ = 3

4 is that there exists a current
around each plaquette for the latter case. The current operator
along each bond is defined as

Ĵ�r,�r+ êi
= i

t‖
h̄

{(p̂†
�r · êi)(p̂�r+êi

· êi) − H.c.}. (19)

For the localized plaquette eigenstates of both bands with E =
± 3

4 t‖, the currents have the same value and chirality as

J = −
√

3�. (20)
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(a) (b)

FIG. 4. (Color online) Configurations of the localized eigenstates
of the two flat bands at �/t‖ = 3

4 for (a) E/t‖ = − 3
4 and (b) E/t‖ = 3

4 ,
respectively. ω = ei π

3 is the relative phase factor between neighboring
sites. The plaquette currents directions are clockwise for both (a) and
(b) in the opposite direction of the �.

Equation (20) indicates that the current direction is opposite to
the rotation and the magnitude is proportional to the angular
velocity �.

At �/t‖ = 3
4 , we solve the eigenvectors for the two flat

bands in momentum space as

|ψ�k,∓〉 = 1√
N∓(�k)

×

⎛
⎜⎜⎜⎜⎜⎝

1
2e−i�k·ê1∓iχ1 + 1

2e−i�k·ê2∓iχ2 − e−i�k·ê3∓iχ3

√
3

2 e−i�k·ê1∓iχ1 −
√

3
2 e−i�k·ê2∓iχ2

±(
1
2ei�k·ê1∓iχ1 + 1

2ei�k·ê2∓iχ2 − ei�k·ê3∓iχ3
)

∓(√
3

2 ei�k·ê1∓iχ1 −
√

3
2 ei�k·ê2∓iχ2

)

⎞
⎟⎟⎟⎟⎟⎠ ,

(21)

where ψ∓(�k) represent eigenvectors for the bands with E/t‖ =
∓ 3

4 , respectively, and χ1 = π
6 ,χ2 = 5π

6 , and χ3 = 3π
2 . The

normalization factors N∓(�k) read as

N∓(�k) = 2

[
3 −

∑
i

cos

(
�k · �bi ∓ 2

3
π

) ]
. (22)

These flat-band Bloch wave states can be represented as the
linear superpositions of the localized eigenstates in Eq. (17) as

|ψ�k,∓〉 = 1√
N∓(�k)

∑
�R

ei�k· �R|ψR〉, (23)

where |ψR〉 is defined in Eq. (17).

2. Brief discussions on interaction effects

The band flatness means that interaction effects are always
important compared to the vanishing kinetic energy scale.
In our previous studies [66,68,69], we have examined the
nonperturbative effects in the flat bands (the lowest and highest
bands) in the same system at � = 0. In Refs. [66,68], we
have shown that the flat bands result in the exact solution
of Wigner crystal configuration for spinless fermions in the
lowest band. At 〈n〉 = 1

6 , which corresponds to that 1
3 of

the flat–band plaquette states are occupied, the occupied
plaquettes form a triangular lattice structure without touching

each other. As filling increases, exact solutions are no longer
available. Self-consistent mean-field-theory calculation shows
a serial of insulating states with different orbital orderings at
commensurate fillings [68]. Similarly, in Ref. [69], we found
the exact flat-band ferromagnetism for spinful fermions in the
flat bands.

For the flat bands occurring at �/t‖ = 3
4 , the physics will

be similar to the previous studies at � = 0. However, the flat
bands here are in the middle. When µ lies in the flat bands,
there are always background particles or holes filling in the
dispersive bands. The solutions of the Wigner crystal and flat-
band ferromagnetism are only valid if the interaction energy
scale is smaller than the band gaps between the flat bands and
the dispersive bands. For example, when the filling is inside
the second band, the effect from the background filling can not
be neglected if the interaction energy scale is stronger than the
band gap.

3. Berry curvatures versus local eigenstates

The current carried by the localized eigenstates of the flat
bands depicted in Fig. 4 is chiral. It looks very similar to the
classic picture of cyclotron orbit of electrons in the external
magnetic fields. We would expect that, in a system with the
open boundary condition, the fully filled flat band would result
in edge currents and contributes to the quantized anomalous
Hall conductance. However, we need to be very careful with
this, which turns out to be incorrect. We have performed
a preliminary diagonalization for a finite-size system with
the open boundary condition. The number of degeneracy for
the flat bands equals to the number of plaquettes plus 1.
We conjecture that this extra state should not belong to a
particular plaquette but rather distribute along the edge, which
carries a current in the opposite direction and cancels the
contribution from other plaquette states. Further examinations
on this problem will be deferred to a later publication.

We calculate the Berry curvature distributions at �/t‖ =
3
4 for the first and second bands as presented in
Figs. 5(a) and 5(b), respectively. Those of the third (fourth)
band are just with an opposite sign compared to the second
(first) band due to the particle-hole symmetry of the band
Hamiltonian. The first and fourth bands are topologically
nontrivial with the Chern number ±1. However, the second
and third bands, which are flat, are topologically trivial with
the zero Chern number. In fact, these two bands should not
contribute to quantum anomalous Hall conductance when they
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FIG. 5. (Color online) The Berry curvature Fxy (in units of a2)
distribution at �/t‖ = 3

4 for the (a) first and (b) second bands. The
Chern numbers for the first and second bands are 1 and 0, respectively.
The unit of the wave vector is 1/a.
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are fully filled. This is confirmed from the anomalous Hall
current calculation in the inhomogeneous trap as presented in
Sec. V.

C. Effects of the π bonding to band structures

So far, we have neglected π bonding t⊥, which can be
easily suppressed around 1% of t‖ at intermediate optical
potential strength [68]. Here we explicitly present its effects
to band structures for the case of a relatively weak lattice
potentials by taking t⊥/t‖ = 0.05. The projections of px,y

orbitals perpendicular to the ê1,2,3 directions are defined as

p′
1,2 = − 1

2px ±
√

3
2 py,p

′
3 = px , respectively. The π -bonding

Hamiltonian can be written as

Hπ = −t⊥
∑

�r∈A,i=1∼3

{p′†
�r,ip

′
�r+aêi ,i

+ H.c.}, (24)

where the hopping integral of the π bonding has the opposite
sign to that of the σ bonding. In momentum space, Eq. (24)
transforms into

Hπ = −t⊥
∑

k

ψ†
α(�k)Hπ,αβ(�k)ψβ(�k), (25)

with the matrix kernel Hπ (�k) as⎛
⎜⎜⎜⎜⎝

0 0 1
4 (ei�k·ê1 + ei�k·ê2 ) + ei�k·ê3 3

4 (−ei�k·ê1 + ei�k·ê2 )

0 0 3
4 (−ei�k·ê1 + ei�k·ê2 )

√
3

4 (ei�k·ê1 + ei�k·ê2 )

H.c. 0 0

0 0

⎞
⎟⎟⎟⎟⎠ .

(26)

The effects of π bonding t⊥ are presented in Fig. 6. The
spectra remain symmetric with respect to zero energy and,
thus, only the lower two bands are presented. As presented in
Ref. [68], at � = 0, the bottom bands are no longer rigorously
flat but develop a finite width at the order of t⊥. The lower two
bands remain touching at �k = (0,0) with parabolic spectra,
and the bottom band has a negative curvature. With increasing
�, as in the case of t⊥ = 0, the band gap at the order of �

opens. Furthermore, � lowers the energies of the bottom band
near the center of the BZ, which suppresses its dispersion. As

FIG. 6. (Color online) The band structures with both π bonding
(t⊥/t‖ = 0.05) and on-site rotation �. Only the lower two bands
are presented, and the spectra of the other two bands are symmetric
with respect to zero energy. (a) At �/t‖ = 0, the two bands remain
touching at the center of the BZ. The lowest band develops dispersion
at the order of t‖. (b) At �/t‖ = 0.2, the gap opens between the lower
two bands. The lowest band is topologically nontrivial and nearly flat.

a result, we arrive at a nearly flat band with nonzero Chern
number. The ratio between the width of the bottom band and
the gap between the lower two bands can reach the order of
5 as shown in Fig. 6(a). Recently, we notice that the nearly
flat bands with nontrivial Chern number have been attracting
attention for its possible realization of fractional quantum Hall
states in the lattice [74–76].

V. ANOMALOUS HALL CURRENTS IN
HARMONIC TRAP POTENTIALS

In Sec. IV, the homogeneous p-orbital system with the
PBC has been studied in which the wave vector k is a good
quantum number. However, in reality, the honeycomb lattice
is inhomogeneous with a soft harmonic confining trap. In this
section, we shall consider the anomalous Hall currents in such
a realistic system.

The trapping potential adds a new term in the band
Hamiltonian H0 + HL of Eqs. (5) and (4) as

HT =
∑

�r
VT (r)n(�r). (27)

The trapping potential VT (r) reads as

VT (r) = 1

2
Mω2

T r2 = βt‖
2

(
r

a

)2

, (28)

where a is the lattice constant, β = h̄ωT

t‖
( a
l0

)2, and l0 =
√

h̄
MωT

is the trapping length scale. The typical value of the trapping
frequency ωT is in the order of 10 Hz, and that of the recoil
energy Er is roughly several kHz [77]. In Ref. [68], we have
calculated that t‖/Er = 0.24 for V0/Er = 15, thus, h̄ω/t‖ is
at the order of 0.1. The typical trapping length scale is several
lattice constants. Taking into account all these factors, we
choose a convenient value of β = 0.01 for later calculations.

In the inhomogeneous system with trapping potential, the
on-site rotation induces the circulating currents along the
azimuthal direction. We will study the spatial distributions
of the these anomalous Hall currents and particle density.
Because the band topology has a transition at �c/t‖ = 3

2 , the
results are presented at different sets of parameters below,
at, and above �c. Our results are calculated by using the
eigen-wave-functions from the numerical diagonalization of
the free Hamiltonian in an open lattice with the trapping
potential. We also use a modified local-density approximation
(LDA) to understand the exact results. The size of the lattice
is within the circle of the radius r/a = 40.

A. Low rotation angular velocity

In this section, the angular velocities are taken as �/t‖ = 1
2

and 3
4 below �c. The chemical potential is chosen as µ/t‖ =

2.3 to guarantee that all bands are filled at the center of the
trap. The spatial distribution of the particle density exhibits a
four-layered wedding-cake-like structure. The density plateaus
correspond to the band-insulating regions, where the local
chemical potential, defined as µloc(r) = µ − VT (r), lies inside
band gaps. Furthermore, the anomalous Hall currents flow
along the tangent direction, the conductances of which are
quantized in the insulating regions.
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FIG. 7. (Color online) The DOS of the px,y-orbital model
[Eqs. (5) and (4)] in the homogeneous system. The red solid lines
are the DOS at �/t‖ = 1

2 , whereas the blue dashed lines are the DOS
at �/t‖ = 3

4 .

1. The insulating plateaus of 〈n(r)〉
We first present the density of states (DOS) for the p-orbital

bands in the homogeneous system at �/t‖ = 1
2 and 3

4 in Fig. 7.
The DOS is defined as

g(E) =
∫

d2k

(2π )2
δ(E(�k) − E). (29)

At �/t‖ = 3
4 , the strong divergence of the DOS is indicated

at the second and third bands due to the appearance of the flat
bands. At the small value of �/t‖ = 1

2 , the DOS of the first and
fourth bands is larger than the second and third bands, which
is reminiscent of the band flatness at � = 0. Moreover, it is
obvious that the band gaps open at �c > 0. For the chemical
potential µ lying in the band gaps, the system is in the band-
insulating states with the commensurate values of the particle
number per site 〈n〉 = 1

2 ,1, 3
2 , and 2, respectively.

In the inhomogeneous trap, the real-space distributions
of the filling number 〈n(�r)〉 are calculated by using the
eigenstate wave function obtained through diagonalizing the
Hamiltonian, which are depicted in Fig. 8 for �/t‖ = 1

2 and 3
4 .

In both cases, plateaus appear at 〈n〉 = 1
2 ,1, 3

2 . These plateaus
can be understood within the LDA picture. Recall the band
structure in Fig. 3 and the DOS in Fig. 7. When µloc(r) lies in
the band gaps, the filling number stops increasing until µloc(r)
reaches the next band edge. The local DOS at site �r at the
energy µloc(r) is also plotted, which is roughly proportional
to ∂rn(r). It is clear that the locations of the plateaus of 〈n(r)〉
and the band gaps are consistent.

Because the honeycomb lattice breaks the SO(2) rotational
symmetry down to the sixfold one, lattice sites with the
same magnitude of r may have different values of 〈n(r)〉.
They are slightly scattered in the metallic regions between
different plateaus as depicted in Figs. 8(a) and 8(b). In the
case of �/t‖ = 3

4 , the distribution of 〈n(r)〉 exhibits devil’s-
stair-like features as filling the flat bands [78,79]. The potential
gradient slightly lifts the degeneracy of the flat bands in the
homogeneous systems and results in the clifflike features. With
interactions, the flat-band regime may further exhibit plateaus
of Mott-insulating states with orbital orderings, which will be
deferred to a later research.
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FIG. 8. (Color online) The particle-density distributions 〈n(�r)〉
vs the radius r at (a) �/t‖ = 1

2 and (b) 3
4 , which exhibit a four-layer

wedding-cake shape (the blue dots). The radius is in the units of the
lattice constant a. The DOS at the local chemical potential µloc(r)
in the LDA approximation is plotted with the black dashed lines.
µloc(r)/t‖ = 2.3 at the center of the trap and ωT /t‖ = 0.1.

2. QAHE currents in the insulating density plateaus

Due to the nontrivial topology of the band structure, anoma-
lous Hall currents circulate along the azimuthal direction due to
the radial potential gradient. The plateaus of the filling number
〈n(r)〉 correspond to the insulating quantum anomalous Hall
regions with quantized Hall conductance. Compared with
the usual quantum Hall systems, the on-site rotation breaks
time-reversal symmetry and brings nontrivial topology to the
band structures without Landau levels.

The anomalous Hall current along each bond is calculated
by using the eigen-wave-functions obtained from the diago-
nalization of the real-space p-orbital Hamiltonian as

J�r,�r+ êi
= i

t‖
h̄

∑
n

〈|(p̂†
�r · êi)

(
p̂�r+êi

· êi

) − H.c.|〉, (30)

where 〈| . . . |〉 represents the ground state at T = 0 or thermal
average at finite temperatures. Let us focus on those bonds
orienting along the azimuthal direction, and define the effective
local Hall conductance as

σ eff
ρθ (r) = − jθ

∂rVT

, (31)

where r is the radius of the middle point of the bond, jθ is
the current density, and VT is the trapping potential. In our
honeycomb lattice system, the current density is defined as the
current on each bond J�r,�r+ êi

divided by the distance between
neighboring parallel bonds.

023615-8



QUANTUM ANOMALOUS HALL STATES IN THE p- . . . PHYSICAL REVIEW A 83, 023615 (2011)

0 5 10 15 20 25 30 35
-5

-4

-3

-2

-1

0

1

Radius to the trap center

σ ρθ
h

(a)

0 5 10 15 20 25 30 35
-5

-4

-3

-2

-1

0

1

Radius to the trap center

σ ρθ
h

(b)

FIG. 9. (Color online) The effective local Hall conductance σρθ (r)
vs r defined in Eq. (31) at (a) �/t‖ = 1

2 and (b) 3
4 . The radius is in

the unit of the lattice constant a. The results from diagonalizing the
free Hamiltonian with the trapping potential is marked with asterisks,
and those from the modified LDA are plotted with dashed lines. σρθ

is quantized in the insulating plateaus with commensurate fillings of
〈n(r)〉.

In the homogeneous systems, the Hall conductance is
represented as

σρθ = 1

h

1

2π

∑
i

∫
d2kFi,xy(�k)nf (i,k), (32)

where nf is the Fermi distribution function and i is the band
index. When the chemical potential is inside band gaps, σρθ

is quantized as the sum of the Chern numbers of the occupied
bands [7,10,11]

σρθ = 1

h

∑
i

Ci . (33)

For the cases of �/t‖ = 1
2 , 3

4 , the Chern-number pattern is
the same as C1 = −C4 = 1 and C2 = −C3 = 0 [53]. The
quantized Hall conductances reads 0, 1, 1, and 1 as µ lies
from above the band top down to the consecutive three band
gaps.

The results of σ eff
ρθ (r) [defined in Eq. (31)] versus r are

marked as asterisks in Figs. 9(a) and 9(b) for �/t‖ = 1
2 and

3
4 , respectively, which are obtained by diagonalizing the free
but inhomogeneous Hamiltonian. The real-space circulating
current pattern at �/t‖ = 3

4 is depicted in Fig. 10. The
quantized Hall conductances in the insulating plateau regions
can be understood within the LDA picture. At the center,
the local chemical potential µloc(r) lies above the band top,
and the conductance is therefore zero. As moving into the
insulating density plateaus of 〈n(r)〉 = 3

2 ,1, and 1
2 , σ eff

ρθ is
quantized at 1/h. Counterclockwise currents are plotted as
blue dashed lines under the harmonic trap potential. When the

FIG. 10. (Color online) The pattern of the anomalous Hall current
in the honeycomb lattice with the confining trap at the rotation
of �/t‖ = 0.75. The blue dotted (red solid) lines represent the
counterclockwise (clockwise) anomalous Hall currents, respectively.
The color depth indicates the magnitude of the current. The reversed
direction of the anomalous Hall currents (red solid lines) in the
metallic regions between two neighboring plateaus can be explained
as the anomalous contribution from the gradient of 〈n(r)〉.

radius r > 30, the Fermi level is lower than the band bottom,
thus, the current vanishes again.

3. Anomalous Hall currents in the metallic regions

Between two adjacent insulating plateaus, the system is
metallic with incommensurate fillings of 〈n(r)〉; therefore,
the anomalous Hall conductances are nonquantized. The Hall
current response to the radial potential gradient is nonlocal
in these inhomogeneous metallic regions. The effective Hall
conductance σρθ defined in Eq. (31) can not be obtained from
Eq. (32) of the homogeneous system by using LDA with a
local chemical potential µloc(r). For example, the currents
can reverse the direction to be clockwise in the metallic
regions in Figs. 9(a) and 9(b). However, because of the Chern-
number pattern of C2 = C3 = 0 and C1 = −C4 = 1, the Hall
conductance σρθ defined in Eq. (32) is always positive within
the LDA at 1

2 < 〈n〉 < 1, which corresponds to the fact that
µloc(r) lies in the gap between the first and second bands, The
naive LDA results would only give rise to counterclockwise
Hall currents in these two metallic regions.

Now we propose a modified LDA method to fit the above
exact results from diagonalization. We define the effective
driving force as the derivative of the spatial-dependent part of
the ground-state energy density as

F (r) = 1

n(r)

∂

∂r

{[µloc(r) − EB(�)]n(r)}
= Fdrift + Fdiff, (34)

where EB(�) is the band bottom energy, and Fdrift and Fdiff

are defined as

Fdrift = −∂rVT (r),

Fdiff = µloc(r) − EB(�)

n(r)
∂rn(r). (35)

Fdrift comes from the gradient of the trapping potential,
while Fdiff is the chemical pressure from the particle-density
gradient.
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Correspondingly, the anomalous Hall currents can be inter-
preted by two contributions from the “drift” and “diffusive”
Hall currents as

Jθ (r) = Jdrift,θ (r) + Jdiff,θ (r)

= σρθ (r){Fdrift(r) + Fdiff(r)}, (36)

where σρθ (r) is obtained from Eq. (32) in the LDA by using
the local chemical potential µloc(r). Thus, σ eff

ρθ (r) defined in
Eq. (31) is related to σρθ (r) through

σ eff
ρθ (r) = σρθ (r)

{
1 + F diff(r)

Fdrift(r)

}
. (37)

The results of the effective Hall conductance σ eff
ρθ (r) using this

modified LDA is presented in Fig. 9 with dashed lines, which
nicely agrees with the exact results.

In the insulating plateaus, Fdiff = 0, thus, the modified LDA
reduces back to the naive LDA. However, in the metallic
regions, ∂rn(r) has the opposite direction to ∂rVT . As a result,
the direction of Jdiff,θ is also opposite to that of J drift,θ . The
reversed direction of the Hall currents in the metallic regions
can be understood as the contribution of “diffusive” Hall
current dominates over that of the “drift” Hall currents.

B. Large rotation angular velocities (�/ t‖ = 3
2 ,2)

In this section, we consider the large rotation angular
velocities at �/t‖ = 3

2 and 2, which are at and above �c/t‖ =
3
2 , respectively. The band-structure topology above �c changes
to a different Chern-number pattern of C1 = −C2 = C3 =
−C4 = 1. The chemical potential µ/t‖ is chosen to 3.5, which
guarantees that all bands are filled at r = 0.

The distributions of the filling number 〈n(�r)〉 are depicted
in Fig. 11 at (a) �/t‖ = 3

2 and (b) �/t‖ = 2, respectively.
At �/t‖ = 3

2 , the second and third bands touch each other
at a Dirac cone located at the center of the BZ. The DOS
vanishes linearly and, thus, the density profile exhibits a
soft slope instead of a flat plateau in Fig. 11(a). In both
Figs. 11(a) and 11(b), the density distributions between the
first and second bands also exhibit soft slopes, although there
does exist a band gap in the homogeneous system. This is
because the potential gradient increases as r goes larger in the
confining trap, which closes the small gap between the first
and second bands at large values of �.

The local anomalous Hall conductances defined in Eq. (31)
are depicted in Fig. 12 at �/t‖ = 3

2 and 2. In the insulating
plateaus between the third and fourth bands, σρθ is close
to the quantized value of 1/h for both rotation angular
velocities. The small deviation comes from the finite width
of the insulating regions. In the region with soft slopes of the
distributions of 〈n(r)〉 between the first and second bands,
σρθ is significantly smaller than 1/h because this region
is not rigorously insulating. In the inhomogeneous metallic
regions, the values of the local anomalous Hall currents are
nonquantized and are determined by the combined effects
from the gradients of the trapping potential and the density
distribution.
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FIG. 11. (Color online) The particle-density distributions 〈n(�r)〉
vs the radius r at (a) �/t‖ = 3

2 and (b) 2 (the blue dots). The radius
is in the units of the lattice constant a. The DOS at the local chemical
potential µloc(r) in the LDA approximation is plotted with the black
dashed lines. µloc(r)/t‖ = 3.5 at the center of the trap and ωT /

t‖ = 0.1.

C. Temperature effects

In this section, we briefly discuss the finite-temperature
effects to the anomalous Hall conductance. The QAHE is a
topological property existing in band-insulating regions, thus
it is robust against finite temperatures provided that their scale
is small compared to the band gap. On the other hand, we do
expect that the anomalous Hall conductance in the metallic
regions will be significantly affected by finite temperatures.

The radial distribution of the local anomalous Hall con-
ductance σ eff

ρθ (r) versus r is plotted in Fig. 13(a) at different
temperatures. The rotation angular velocity is taken as �/t‖ =
3
4 . In this case, the band gaps are at the same order of t‖ as
shown in Fig. 7. σρθ remains nearly quantized in the insulating
regions for T/t‖ = 0.1 ∼ 0.2. According to the calculation of
band structures in Ref. [68], t‖ ≈ 0.24Er at V0/Er = 15 and
the typical energy scale of Er is 0.1 ∼ 0.2µK , thus, the QAHE
signature should survive at the order of 10 nK, which is an
experimentally accessible temperature scale. In the metallic
regions, naturally σρθ ’s are more strongly affected by finite
temperatures. As T further increases to the half-value of t‖,
the quantized signatures of σρθ disappear.

We also present the entropy distributions in real space at
various temperatures as shown in Fig. 13(b). The local entropy
is defined as

S(�r,T ) = −kB

∑
i

|ψi(�r)|2{ni(T ) ln ni(T )

+[1 − ni(T )] ln[1 − ni(T )]}, (38)
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FIG. 12. (Color online) The effective local Hall conductance
σρθ (r) vs r defined in Eq. (31) at (a) �/t‖ = 3

2 and (b) 2. The radius is
in the units of the lattice constant a. The results from diagonalizing the
free Hamiltonian with the trapping potential is marked with asterisks,
and those from the modified LDA are plotted with dashed lines.

where kB is the Boltzmann constant, the subscript i is the
index of energy levels, ψi(�r) is the wave function at the
location �r , and ni(T ) is the Fermi distribution function. At low
temperatures (e.g., T/t‖ = 0.1 and 0.2), S(�r,T ) concentrates
in the gapless metallic regions and remains negligible in
the band-insulating regions. We have the coexistence of the
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FIG. 13. (Color online) The radial distributions of (a) the anoma-
lous Hall conductance σρθ (�r,T ) and (b) the entropy S(�r,T ) with
�/t‖ = 3

4 . The black dot, blue plus sign, magenta diamonds, and red
asterisks of the data represent temperatures at T = 0, T/t‖ = 0.1,
T/t‖ = 0.2, and T/t‖ = 0.5, respectively.

insulating QAHE regions and the metallic regions to hold
a significant amount of entropy. The tolerance of the large
residue entropy densities in the trap greatly facilitates the
experimental realization of the QAHE state. As temperatures
go high, say, T/t‖ = 0.5, the entropy distribution becomes
more uniform, and there are no clear distinctions between
insulating and metallic regions anymore. This agrees with
the picture in Fig. 13(a), in which the plateaus of quantized
anomalous Hall conductance disappear.

VI. EXPERIMENTAL DETECTIONS

In experiments, the plateaus of commensurate fillings of
atoms in Figs. 8 and 11 can be observed by measuring
the in-trap density distribution or the compressibility of the
lattice system, as clearly demonstrated in recent experiments
[80–83]. However, the density plateaus can not distinguish the
conventional band insulators and the quantum anomalous Hall
insulators.

In solid-state systems, the Hall conductivity is obtained
from transport measurements, which are very difficult for the
cold-atom experiments. Nevertheless, it has been proposed that
this can be detected through the response of the atom density
to an external magnetic field [84], which can be realized by
further rotating the harmonic trap [85] or coupling atoms with
additional laser fields. In particular, the motion of atoms in
laser fields leads to an artificial magnetic field, which has
been observed in a recent experiment [86]. In the presence
of an artificial magnetic field, the quantized anomalous Hall
conductivity σxy = ( ∂n

∂B
)µ, according to the well-known Streda

formula [87] derived for the quantum Hall effects in the solid
state. Therefore, the density of atoms changes linearly with
respect to the applied magnetic field when σxy is quantized in
some regions of the harmonic trap.

Another possible method to detect the anomalous Hall
current is as follows. We assume that all atoms are initially
prepared in a hyperfine ground state |1〉. To detect the
anomalous Hall current shown in Fig. 9, we apply a local two-
photon Raman transition using two co-propagating focused
laser beams in a small area S to transfer atoms in S to another
hyperfine state |2〉. A subsequent time-of-flight measurement
of the velocity distribution of atoms in state |2〉 gives the
initial velocity distribution (thus the current) of atoms in the
state |1〉 in the optical lattice. The above density and current
measurements provide the experimental signature of the
quantum anomalous Hall effects in the p-orbital honeycomb
lattice.

VII. CONCLUSIONS AND OUTLOOK

In summary, we have proposed the realization of the
quantum anomalous Hall states in the cold-atom optical lattices
based on the experimentally available technique of the on-site
rotation developed by Gemelke et al. This rotation generates
the orbital Zeeman coupling, the energy scale of which can
reach the order of the band width. In the p-orbital bands of the
honeycomb lattice, the band structures become topologically
nontrivial at any nonzero rotation angular velocities. A
topological transition occurs at �c/t‖ = 3

2 with different band
Chern-number patterns below and above �c. At � > �c, the
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band topology is equivalent to a double copy of Haldane’s
quantum anomalous Hall model. Flat band structures are also
found at �/t‖ = 3

4 with localized eigenstates that can be
constructed as circulating plaquette current states. The flat
band structures may bring strong correlation effects, such
as Wigner crystal and ferromagnetism, when interactions are
turned on.

The effects of the spatial inhomogeneity to the p-orbital
quantum anomalous Hall states are also investigated. At
each commensurate filling of 1

2 ,1, 3
2 , and 2, the density

profile exhibits insulating plateaus, the Hall conductances
of which are quantized at integer values. In the metallic
regions between two adjacent plateaus, the anomalous Hall
currents are determined by the nonlocal response, which can
be understood as the combined effects of the gradients of
the confining potential and particle density. We have also
showed that the QAHE is robust at finite but low temperatures
compared to band gaps.

We further point out that the generation of the quantum
anomalous Hall states from this “orbital Zeeman” effect
is very general not just for the honeycomb lattice. The

advantage of the p-orbital honeycomb lattice is that an
infinitesimal value of � is enough to generate the quantum
anomalous Hall states. For other generic lattice structures,
beyond a critical value of �, which is comparable to the
band width, the orbital Zeeman effect generates inverted
orbital bands of different orbital angular momenta. The
further hybridization among them brings nontrivial band
topology, which is a similar mechanism to achieve topolog-
ical insulators in semiconducting systems through spin-orbit
couplings. A systematic study will be presented in a later
publication.
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