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We employ the determinant projector quantum Monte Carlo method to investigate the ground-state magnetic
properties in the Mott insulating states of the half-filled SU (4) and SU (6) Fermi-Hubbard model in the two-
dimensional square lattice, which is free of the sign problem. The long-range antiferromagnetic Neel order is
found for the SU (4) case with a small residual Neel moment. Quantum fluctuations are even stronger in the
SU (6) case. Numeric results are consistent with either a vanishing or even weaker Neel ordering than that of
SU (4).
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I. INTRODUCTION

Quantum antiferromagnetism (AF) has been an important
topic of the two-dimensional (2D) strongly correlated systems
for decades. For the Hubbard model in the 2D square lattice,
the charge gap opens starting from an infinitesimal U . The
low-energy physics is described by the AF Heisenberg model.
For the SU (2) case, quantum spin fluctuations are not strong
enough to suppress the AF long-range order.1,2 Augmenting
the symmetry to SU (N ) or Sp(2N ) enhances quantum spin
fluctuations,3–5 which can be handled by the systematic
1/N -analysis. The SU (N ) spin operators can be formulated
in terms of either bosonic or fermionic representations. The
bosonic large-N analysis finds gapped quantum paramagnetic
states exhibiting various crystalline orderings,6 while the
fermionic one gives rise to gapless flux-type spin liquid
states.4,7 However, its stability remains an open issue. On the
other hand, short-range resonating-valence-bond-type gapped
spin liquid states have also been extensively studied.8–10

Due to the difficulty of handling strong correlations,
numerical simulations have been playing an important role
in the study of exotic quantum spin states.11–22 Whether
the spin-disordered quantum insulating states exist in the
honeycomb lattice or not is currently under debate.15,23

A constrained path-integral quantum Monte Carlo (QMC)
simulation finds evidence of a gapless spin disordered phase
in the square lattice with π flux per plaquette.16 Evidence of
gapped spin liquid phases has also been found by the density-
matrix-renormalization-group simulations of the frustrated
Heisenberg models in the Kagome lattice17,24 and in the square
lattice with diagonal couplings.18

The Fermi-Hubbard models with 2N components pos-
sessing the SU (2N ) or Sp(2N ) symmetries are not only of
academic interest now, but also have become the goal of
experimental efforts in ultracold atom physics.25 It was first
proposed to use large-spin alkali and alkaline-earth atoms to
realize the Sp(2N ) and SU (2N ) Hubbard models in Ref. 26,27
for the special case of 2N = 4 with the proof of a generic
Sp(4) symmetry without fine tuning. Currently, the SU (6) and
SU (10) symmetric systems of 173Yb and 87Sr atoms have been

realized, respectively.28–31 In particular, the 173Yb atoms have
been loaded into optical lattices to realize the SU (6) Hubbard
model, and the charge excitation gap has been observed.29,31 It
has also been expected that Pomeranchuk cooling is efficient
in the large-N case to further cool the system down to the
temperature scale of the AF exchanges.32–34

In this paper, we investigate the magnetic properties of the
half-filled SU (2N ) Hubbard models with 2N = 4 and 6 by
the sign-problem free determinant projector quantum Monte
Carlo (QMC) method. For the SU (4) case, the ground state
remains AF ordered as in the case of SU (2) although the
residual spin moments are much weaker. For the SU (6) case,
we find that the residual Neel moments are either absent or
extremely small beyond the resolution limit of our simulations
on structure factors and the finite-size scaling scheme.

The rest of the paper is organized as follows. We define the
SU (2N ) Hubbard model in Sec. II, and present parameters
for QMC simulations in Sec. III. The simulation results
of magnetic properties for the SU (4) and SU (6) cases are
presented in Sec. IV and Sec. V, respectively. The single-
particle gaps are shown in Sec. VI. Conclusions are made in
Sec. VII.

II. SU(2N) HUBBARD MODEL

In this section, we define the SU (2N ) Hubbard model,
related operators, and correlation functions. The SU (2N )
Fermi Hubbard model in the 2D square lattice at half-filling is
defined as

H = −t
∑

〈i,j〉,α
{c†iαcjα + H.c.} + U

2

∑
i

(ni − N )2, (1)

where t is scaled as 1 below; α represents spin indices running
from 1 to 2N ; 〈i,j 〉 denotes the summation over the nearest
neighbors; ni is the particle number operator on site i defined as
ni = ∑2N

α=1 c
†
iαciα . Equation (1) is invariant under the particle-

hole transformation in bipartite lattices as ciα → (−)ic†iα , and
thus the average filling per site 〈ni〉 = N . Similarly to the
case of SU (2), the SU (2N ) Hubbard model at half-filling in
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bipartite lattices is free of the sign problem for an arbitrary
value of 2N .

Let us fix the convention of the SU (2N ) generators. The
Hilbert space on site i filled with r(1 � r � 2N ) fermions
forms the SU (2N ) representation described by the single-
column Young pattern denoted as 1r where r is the number of
rows. For these 1r representations, the SU (2N ) generators are
defined as

J αβ(i) = c
†
iαciβ − δαβ

2N

2N∑
γ=1

c
†
iγ ciγ . (2)

Another standard definition is through the generalized Gell-
Mann matrices c

†
iαλa

αβciβ with 1 � a � 4N2 − 1 and the
normalization condition of tr[λaλb] = 1

2δab. The definition in
Eq. (2) has a simple commutation relation as [J αβ,J γ δ] =
δβγ J αδ − δαδJ

γβ . However, the price is that not all of the
operators of Eq. (2) are independent, which satisfy the
constraint

∑
α J αα = 0.

The quadratic Casimir operator is expressed as C2(2N ) =
1
2

∑
αβ J αβ(i)J βα(i). For the 1r representation denoted by the

Young pattern with a single column with r boxes, its value is
related to the filling number r through the Fierz identity as

C2(2N,r) = r(2N − r)(2N + 1)/(4N ). (3)

In the large-U limit in which charge fluctuations are negligible,
each site represents the self-conjugate representation 1N . The
two-site equal time spin-spin correlation function is defined as

CJ,SU (2N)(i,j ) = 1

C2(2N,N )

∑
α,β

1

2
〈J αβ(i)J βα(j )〉, (4)

where C2(2N,N ) = N (2N + 1)/4 is the Casimir for 1N

representation. CJ,SU (2N)(i,i) approaches 1 in the large-U
limit. The normalized spin structure factor at the AF wave
vector �Q is defined as

SSU (2N)( �Q) = 1

C2(2N,N )

∑
αβ

1

2
〈J αβ ( �Q)J βα( �Q)〉, (5)

where J αβ ( �Q) = 1
L

∑
i e

i �Q·�ri J αβ(i). The imaginary-time-
displaced spin-spin correlations at wave vector �Q are defined
as

SSU (2N)( �Q,τ ) =
∑
αβ

〈J αβ( �Q,τ )J βα( �Q,0)〉, (6)

which are used to extract spin gaps below.
For the usual case of SU (2), i.e., 2N = 2, the generators of

Eq. (2) are reduced to

J 11(i) = Ŝz
i = 1

2 (ni↑ − ni↓) = −J 22(i) (7)

J 12(i) = Ŝ+
i = c

†
i↑ci↓ = [J 21(i)]†, (8)

which satisfies the constraint J 11(i) + J 22(i) = 0, and the
Casimir for 11 representation C2(2,1) = 3/4. The correlation
function in Eq. (4) becomes

CJ,SU (2)(i,j ) = 4

3

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j + Ŝz
i Ŝ

z
j

)
, (9)

where S
x,y,z

i are the usual spin- 1
2 operators.

III. PARAMETERS FOR THE QMC SIMULATIONS

We use the determinant projector QMC method for
fermions with the periodical boundary condition as described
in Appendix A.35–37 The simulated system sizes L × L

range from L = 4 to 16. Finite-size scaling is performed to
extrapolate the ground-state properties in the thermodynamic
limit. The initial trial wave function is the ground state
of the free part of Eq. (1) to whose hopping integral is
attached a small flux to break the degeneracy.15 Such a Slater-
determinant plane-wave state for the imaginary-time evolution
is assumed to be nonorthogonal to the true ground state
of the entire Hamiltonian. The second-order Suzuki-Trotter
decomposition is performed with the imaginary time step
	τ = 0.05. The convergence of the simulation results with
respect to different values of 	τ has been checked. The length
of the imaginary-time evolution is β = 40. For the SU (2)
case, the Hubbard-Stratonovich (HS) transformation is usually
performed by using the discrete Ising spin fields.1 However,
the spin channel decomposition does not easily generalize to
the SU (2N ) case due to the increasing of spin components.
Instead, we follow the approximate discrete HS decomposition
in the density channel at the price of involving complex
numbers.38 The error of this approximation is at the order
(	τ )4, smaller than that of the Suzuki-Trotter decomposition,
thus is negligible. This method has the advantage that the
SU (2N ) symmetry is maintained explicitly, and also it easily
generalizes to large values of 2N . For the largest lattice size
we simulated (L = 16), the typical CUP time for a QMC
thread with 1000 warmup steps plus 1000 QMC steps is about
50 hours, and 128 QMC threads are taken to evaluated the
average values and error bars of the physical quantities of the
system.

IV. MAGNETIC PROPERTIES OF THE SU(4) CASE

In this section, we present the study of quantum spin
fluctuations starting with the SU (4) case in the square lattice,
in which long-range Neel ordering is found.

The finite-size scaling of the spin structure factor
1
L2 SSU (4)( �Q) at the AF wave vector �Q = (π,π ) is plotted in
Fig. 1(a). For example, at U = 8, it extrapolates to a small
but finite value of s0 = 0.025 as L → ∞, which indicates the
existence of the AF long-range Neel order. In comparison, for
the SU (2) case at the same value of U , the extrapolated value of
limL→∞ 1

L2 SSU (2)( �Q) ≈ 0.118. This shows the enhancement
of quantum spin fluctuations as 2N increases.

Let us bipartition the lattice into A and B sublattices. One
typical classic SU (4) Neel configuration is that A sites are
filled with components 1 and 2, and B sites are filled with
components 3 and 4. SU (4) is a rank-3 Lie group, and thus
its Cartan algebra has three commutable generators defined
as K1,2 = 1

2
√

2
[(n1 − n2) ± (n3 − n4)], and K3 = 1

2
√

2
[(n1 +

n2) − (n3 + n4)]. Each site of the above SU (4) configuration
is a singlet of K1,2, and with the eigenvalues of ± 1√

2
for K3.

The AF long-range-ordered states possess gapless Goldstone
modes, and the Goldstone manifold is the eight-dimensional
Grassmann one U (4)/[U (2) × U (2)]. The spin excitations

125108-2



QUANTUM MAGNETIC PROPERTIES OF THE SU (2N ) . . . PHYSICAL REVIEW B 88, 125108 (2013)

(c)

(b)

(a)

FIG. 1. (Color online) The half-filled SU (4) Hubbard model in
the square lattice. (a) The appearance of the AF long-range order
from the finite-size scaling of the spin structure factor at �Q = (π,π )
for U = 6 and 8. Solid curves are quadratic fits of data. The inset
shows a typical SU (4) AF configuration in which different colors
represent different spin components. (b) The absence of the spin gap
from the finite-size scaling of 	s( �Q). (c) The scalings of the farthest
point correlations CJ,SU (4)(L/2,L/2) for U = 6 and 8.

carry quantum numbers of K1,2,3 as (± 1√
2
,0, ± 1√

2
) and

(0, ± 1√
2
, ± 1√

2
).

To verify the absence of spin gap, we calcu-
late the imaginary-time-displaced spin correlation function
SSU (4)( �Q,τ ).39,40 The finite-size spin-gap 	s( �Q,1/L) is fitted

from the slope of ln SSU (4)( �Q,τ ) vs τ . The finite-size scaling
is plotted in Fig. 1(b), which shows the absence of spin gap
consistent with the long-range AF ordering. To confirm the
existence of the AF long-range order in the ground state,
we also plotted the farthest two-point equal-time spin-spin
correlations CJ,SU (4)(L/2,L/2) as a function of L, as shown
in Fig. 1(c). The extrapolated values in the thermodynamics

FIG. 2. (Color online) Spin correlations of the half-filled SU (6)
Hubbard model. (a) The finite-size scalings of the spin structure
factors at �Q = (π,π ) at U = 4,8, and 12 are consistent with either
zero or a very weak Neel ordering. Solid curves are quadratic fits.
(b) The finite-size scalings 	s(Q) show the absence of spin gap.
(c) The scalings of the farthest point correlations CJ,SU (6)(L/2,L/2)
for U = 8 and 12.
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limits agree very well with those obtained from the spin
structure factors.

V. MAGNETIC PROPERTIES OF THE SU(6) CASE

In this section, we present the QMC simulation results for
the SU (6) case in which quantum spin fluctuations become
even stronger.

The QMC simulation of the spin structure factors at �Q =
(π,π ) is presented in Fig. 2(a). The finite size scalings of the
SU (6) AF structure factor for all the cases of U = 4,8, and 12
extrapolate to zero. However, because the 1/L extrapolation
of the AF structure factor is proportional to the square of the
AF moments, the possibility of a weak AF long-range order
cannot be excluded. For example, a Neel moment at the order
of 10−2 corresponds to the structure factor at the order of
10−3 or 10−4, which is beyond our current resolution limit.
We further calculate the spin gap value at �Q = (π,π ) from
the imaginary-time-displaced SU (6) spin correlation function
SSU (6)( �Q,τ ), and plot the extracted spin gap values in Fig. 2(b).
The finite-size scaling shows the vanishing of spin gap in
the SU (6) case for all the three values of U = 4,8, and
12. The vanishing of spin gaps is also consistent with very
small but nonzero AF moments. The two-point equal-time
spin-spin correlations CJ,SU (6)(L/2,L/2) are calculated and
plotted in Fig. 2(c), which are fitted with algebraic correlations

FIG. 3. (Color online) Spin singlet channel operators of the
half-filled SU (6) Hubbard model. (a) The finite-size scaling of the
columnar dimer structure factors at �Q′ = (π,0). (b) The finite-size
scaling of the DDW structure factors at �Q = (π,π ).

as CJ,SU (6)(L/2,L/2) ≈ L−η. However, due to the limited
sample size, these algebraic correlations are well fitted at
a intermediate length scale. We still cannot exclude the
possibility of small long-range AF moments.

We further check other possible ordering patterns involving
two neighboring sites. At half filling, the total particle number
on a bond is 2N , which is sufficient to form a SU (2N ) singlet
to minimize the spin superexchange energy. We consider
ordering patterns in the spin singlet channel with translational
symmetry breaking. The bond dimer and current operators
are defined as the real and imaginary parts of the hopping
amplitudes between nearest neighbors as

Dij =
∑

α

c
†
i,αcj,α + H.c., Fij =

∑
α

i(c†i,αcj,α − H.c.),

(10)

and d-density-wave (DDW) operators as DDW (i) =
(−)i

∑
j F (i,j ) where �rj − �ri = ±êx , and ±êy . In the large U

limit, the Heisenberg term Sαβ (i)Sβα(j ) is generated from the
second-order virtual hopping process, thus Dij can be used

FIG. 4. Single-particle gaps of half-filled SU (2N ) Hubbard
models. (a) Charge gaps with U = 8 at 2N = 2,4, and 6. (b) The
1/L scaling of the charge gap for the half-filled SU (6) model at
U = 12.
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as the dimer order parameter. The structure factor of Dij at
�Q′ = (π,0) and that of DDW at �Q = (π,π ), after being divided

by L2, and are plotted in Figs. 3(a) and 3(b), respectively. They
are fitted by a power law (1/L)2, thus their correlations are
short ranged.

VI. SINGLE-PARTICLE GAPS

In this section, we further present the simulation results
of the single-particle gaps for the SU (4) and SU (6) Hubbard
cases.

The single-particle gaps are calculated at half filling through
the onsite imaginary-time-displaced Green’s function

G(0,τ ) = 1

L2

∑
i

〈�G|c(i,τ )c†(i,0)|�G〉, (11)

where |�G〉 is the ground state. At long time displacement,
G(0,τ ) → e−	cτ where 	c is the single-particle excitation
gap, thus 	c can be fitted from the slope of ln G(0,τ ) vs τ .
Let us consider the large-U limit for an intuitive picture: in the
Mott-insulating background, the energy of adding a particle is
lowered from U by further virtual particle-hole excitations. In
other words, the Mott insulator is polarizable. As increasing
2N , the configuration numbers of the virtual particle-hole
excitations increase, which enhances charge fluctuations and
thus reduces the single-particle gap. In Fig. 4(a), 	c’s are
plotted at a fixed U = 8 for 2N = 2,4 and 6, all of which are
finite. For the SU (6) case, 	c = 0.15 is rather small at U = 8.
Nevertheless, 	c increases to 1.26 at U = 12 at which the
system is safely inside the Mott-insulating regime. The charge
localization length can be estimated as ξc ≈ vf /	c ≈ 3 ∼ 4,
which is much smaller than the maximal sample size L = 16.

VII. CONCLUSIONS

In summary, we have studied the ground-state quantum
antiferromagnetism in a half-filled SU (2N ) Hubbard model
in square lattice. For the case of SU (4), a long-range AF
order still survives with a much smaller value of Neel moment
compared to that of SU (2). For the SU (6) case, we have
found the absence of spin gap. The current numeric results are
consistent with either a vanishing or very weak AF ordering
beyond the resolution limit in this simulation. We have also
found that the single-particle gap is strongly suppressed as N

increases.
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APPENDIX A: METHOD OF THE PROJECTOR QUANTUM
MONTE CARLO

At zero temperature, the ground-state (GS) wave function
|�G〉 can be obtained by the projector quantum Monte Carlo

FIG. 5. The imaginary-time-displaced onsite Green’s functions of
the SU (6) model for U = 12 with different sample sizes of L = 8,12,

and 16.

(PQMC) method, which projects a trial wave function |�T 〉 in
the following way:

|�G〉 = lim
β→∞

e−βĤ |�T 〉, (A1)

where |�T 〉 is required to be nonorthogonal to |�0〉. As β is
large, these projection procedures can filter out states other
than the GS. β plays the role as the projector parameter. The
expectation value in the zero temperature limit is defined as:

〈Ô〉 = 〈�0|Ô|�0〉
〈�0|�0〉 = 〈�T |e− β

2 Ĥ Ôe− β

2 Ĥ |�T 〉
〈�T |e−βĤ |�T 〉 . (A2)

Similarly to the finite-temperature scheme, the zero-
temperature problem can be formulated as the determinant
QMC method with Suzuki-Trotter decompositions and auxil-
iary fields {l}, called projector quantum Monte Carlo (PQMC).

In the framework of the PQMC, the trial wave function is
chosen as a ground state of the noninteracting Hamiltonian.
We consider a free tight-binding Hamiltonian on the square
lattice with a tiny magnetic flux  through the sample as

H0 = −t
∑
〈ij〉

{
c
†
j cie

i 2π
0

∫ i

j
dl·A + H.c.

}
, (A3)

where A = ex/L is the vector potential and 0 = hc/e. In
Eq. (A3), we neglect the spin index for simplicity. The purpose
of introducing the flux is to break the ground-state degeneracy
at half filling for Eq. (A3). Due to the SU (2N ) symmetry, the
trial wave function for all the 2N components can be chosen
the same, and thus the total trial wave function is the direct
product of them. In our simulations, we take /0 = 0.0001.

125108-5



ZI CAI, HSIANG-HSUAN HUNG, LEI WANG, AND CONGJUN WU PHYSICAL REVIEW B 88, 125108 (2013)

FIG. 6. Finite scalings of the single-particle gap for the half-
filled SU (2N ) Hubbard model with 2N = 2,4, and 6 at U = 8. The
extrapolated single-particle gap values are 	c = 2.26, 0.89, and 0.15,
for 2N = 2,4, and 6, respectively.

APPENDIX B: DERIVATIONS OF THE SINGLE-PARTICLE
GAPS FROM THE TIME-DISPLACED GREEN’s

FUNCTIONS

We define the single-particle gap as the ground-state energy
change of adding a particle to the ground state of the N -particle
system as 	c = E0(N + 1) − E0(N ) − μ, where μ accounts
for the changing of the particle number. The time-displaced
Green’s function is defined as

G>(0,τ ) = 〈
�N

0

∣∣ci(τ )c†i
∣∣�N

0

〉

= 1

L2

∑
i

〈
�N

0

∣∣eτĤ cie
−τĤ c

†
i

∣∣�N
0

〉

= 1

L2

∑
i,n

e−τ (EN+1
n −EN

0 −μ)
∣∣〈�N

0

∣∣ci

∣∣�N+1
n

〉∣∣2
. (B1)

Therefore, at large τ , we have G>(�r = 0,τ ) ∼ e−τ	c to
estimate the values of 	c.39

We present the QMC simulation results for the imaginary-
time-displaced Green’s functions for U = 12 in Fig. 5. The

FIG. 7. The imaginary-time-displaced spin-spin correlation at
momentum Q = (π,π ) of the SU (4) model for U = 8 with different
sample sizes of L = 4,8, and 12.

slopes of ln G(0,τ ) vs τ give rise the finite-size single-particle
gap presented in Fig. 4(b) in the main text, in which the finite
scaling shows that 	c = 1.26. We also present the finite-size
scaling of the single-particle gap values presented in Fig. 4(a)
(main text) in Fig. 6. They are the single-particle gaps at U = 8
for half-filled SU (2N ) models with 2N = 2,4, and 6, which
show the rapid decrease of gap values as increasing 2N .

APPENDIX C: DERIVATIONS OF THE SPIN GAPS FROM
THE TIME-DISPLACED SPIN-SPIN CORRELATIONS

The spin gap is defined as:

	s(�q) = E0(S = 1,N,�q) − E0(S = 0,N ), (C1)

in which E0(S = 1,N,�q) denotes the ground-state energy with
the total spin S, momentum �q, and particle number N . For
the antiferromagnetic state, the spin gap 	s = min�q 	s(�q) =
	s( �Q) with �Q = (π,π ).

To extract the spin gap, we define the imaginary-time-
displaced spin-spin correlations at wave vector �Q are defined
as

SSU (2N)( �Q,τ ) =
∑
αβ

〈J αβ( �Q,τ )J βα( �Q,0)〉. (C2)

Similarly to the derivation of the charge gap, we find that
S( �Q,τ ) ∝ exp[−τ	s( �Q)] as τ t � 1. As shown in Fig. 7, the
slopes of ln S( �Q,τ ) vs τ give rise the finite-size spin gap.
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