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We nonperturbatively investigate the ground state magnetic properties of the 2D half-filled SU(2N)
Hubbard model in the square lattice by using the projector determinant quantum Monte Carlo simulations
combined with the method of local pinning fields. Long-range Néel orders are found for both the SU(4) and
SU(6) cases at small and intermediate values of U. In both cases, the long-range Néel moments exhibit
nonmonotonic behavior with respect to U, which first grow and then drop as U increases. This result is
fundamentally different from the SU(2) case inwhich theNéelmoments increasemonotonically and saturate.
In the SU(6) case, a transition to the columnar dimer phase is found in the strong interaction regime.
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The ultracold atom systems have opened up a wonderful
opportunity for studying novel phenomena that are not easily
accessible in usual solid state systems. For example, the large-
spin ultracold alkali-metal and alkaline-earth-metal fermions
exhibit quantummagnetic properties fundamentally different
from the large-spin solid state systems such as transitionmetal
oxides [1]. In solids, Hund’s rule coupling combines several
electrons on the same cation site into states carrying large spin
S. However, the symmetry of these systems is usually only
SU(2). The leading order coupling between two neighboring
sites is mediated by exchanging one pair of electrons no
matter how large S is; thus, quantum spin fluctuations are
suppressed by the 1=S effect. In contrast, large-hyperfine-
spin ultracold fermion systemswhichmeans thats of SUð2NÞ
and Spð2NÞ. For the simplest case of spin 3

2
, a generic Sp(4)

symmetrywas provedwithout fine tuning,which includes the
SU(4) symmetry as a special case [2]. Such a high symmetry
gives rise to exotic properties in quantum magnetism and
pairing superfluidity [3–12]. Furthermore, large-spin alka-
line-earth-metal fermion systems have been experimentally
realized in recent years [13–15]. In particular, a SU(6) Mott
insulator of 173Yb has also been observed [1,16]. The above
theoretical and experimental progress has stimulated a great
deal of interest in exploring novel properties of strongly
correlated systems with high symmetries [17–23].
The SUð2NÞ Heisenberg model was first introduced into

condensed matter physics to apply the large-N technique to
systematically handle strong correlation effects in the
context of high Tc cuprates [24–28]. It was found that on
2D bipartite lattices the SU(2) Heisenberg model displays
long-range Néel ordering [29]. As 2N increases, enhanced
quantum fluctuations suppressNéel ordering and the ground
states eventually become dimerized [27,28]. This transition

has been observed by quantum Monte Carlo (QMC)
simulations [30–35] for certain representations of the
SUð2NÞ symmetry [36]. However, for the self-conjugate
representations, a consensus has not been achieved yet. A
variational Monte Carlo study [34] found Néel ordering
when 2N ¼ 2 and 4, and columnar dimer ordering for
2N ≥ 6. However, in a determinant QMC calculation [35],
dimer ordering was found at 2N ≥ 6 in agreement with the
variational QMC study, while for the SU(4) case, neither
Néel nor dimer ordering exists in the Heisenberg limit.
The above Heisenberg-type models neglect charge fluc-

tuations. The interplay between charge and spin degrees of
freedom is contained in the SUð2NÞ Hubbard model
[21,37,38]. However, owing to the lack of nonperturbative
methods, the SUð2NÞ Hubbard model receives much less
attention. To the best of our knowledge, a systematic
nonperturbative study of the ground state properties of
the 2D half-filled models is still missing. It is even not clear
whether Néel or dimer ordering exists in the weak-,
intermediate-, and strong-coupling regimes, respectively.
In this Letter, we perform a nonperturbative determinant

QMC study on the half-filled SUð2NÞ Hubbard model in
the 2D square lattice. The ground state magnetic properties
are investigated by using the local pinning-field method,
which directly measures the spatial decay of the induced
order parameters [39]. Long-range Néel order is identified
at weak and intermediate values of U in the SUð2NÞ
Hubbard models of 2 ≤ 2N ≤ 6 we studied. In the cases of
SU(4) and SU(6), the Néel moments first grow then drop
with increasing U. Furthermore, a transition from the Néel-
ordering phase into the columnar dimer-ordering phase is
observed at a large value of U in the SU(6) case. This
transition is conceivably owing to the competition between
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the weak-coupling physics of Fermi surface nesting and
strong coupling local moment physics.
We consider the SUð2NÞ Hubbard model in the 2D

square lattice with the periodic boundary condition as

H ¼ −t
X

hi;ji;α
ðc†iαcjα þ H:c:Þ þ U

2

X

i

ðni − NÞ2; (1)

where t is the nearest neighbor hopping integral (t ¼ 1
below); U is the on-site repulsion; α is the spin index
running from 1 to 2N; ni ¼

P
2N
α¼1 niα is the total fermion

number operator on site i. Equation (1) possesses the
particle-hole symmetry ciα → ð−1Þic†iα, which means that it
is at half filling. In this case, it is well-known that Eq. (1) is
free of the sign problem for all the values of N.
We employ the projector QMC method to investigate its

quantum magnetic properties in the ground states. In QMC
studies, the long-range ordering is usually obtained through
the finite-size scaling of the corresponding structural factors,
or, correlation functions. Assuming that the system size is
L × L, the extrapolated values asL → ∞ are proportional to
themagnitude square of order parameters. Thus it is difficult
to distinguish the weakly ordered states from the truly
disordered ones. For this reason, there has been a debate
whether a quantum spin liquid phase exists near the Mott
transition in the honeycomb lattice [40–44]. To overcome
this difficulty, we use the pinning-field method [39,44], and
measure the spatial decay of the induced order parameters.
Order parameters instead of their magnitude square are
measured, and thus numerically they are more sensitive to
weak orderings. This method has also been used in the
projector QMC method recently [44]. To decouple the
interaction term, we adopt the Hubbard-Stratonovich trans-
formation in the density channel, which involves complex
numbers [45]. We have designed a new discrete Hubbard-
Stratonovich decomposition that is exact for the cases from
SU(2) to SU(6) Hubbard models, and the algorithm details
can be found in the Supplemental Material [46]. Unless
specifically stated, the following parameters are used in
simulations: the projection time β ¼ 240 and the discretized
imaginary time step Δτ ¼ 0.05.
Next we use the pinning-field method to study the

magnetic long-range order of the SUð2NÞ Hubbard model.
We define the SUð2NÞ generators as Sαβi ¼ c†i;αci;β −
ðδαβ=2NÞni. At half filling, in the Heisenberg limit in which
charge fluctuations are neglected, each site belongs to the
self-conjugate representation with one column of N boxes.
Without loss of generality, the classic Néel state configu-
ration can be chosen as follows: each site in sublattice A is
filled with N fermions from components 1 to N, while that
in sublattice B is filled with components from N þ 1 to 2N.
We define the magnetic moment operator on each site i as

mi ¼
1

2N

�XN

α¼1

Sααi −
X2N

α¼Nþ1

Sααi

�
: (2)

For the configuration defined above, the value of the classic
Néel moment is mi ¼ ð−1Þi 1

2
. Within the zero temperature

projector QMC method, good quantum numbers are con-
served during the projection. Thus we use a pair of pinning
fields on two neighboring sites with a Néel configuration to
maintain the relation hGjPiS

αα
i jGi ¼ 0 for every α. The

pinning-field Hamiltonian is

Hpin;n ¼ 2Nhi0j0fmi0 −mj0g; (3)

where i0 and j0 are two neighboring sites defined as i0 ¼
ð1; 1Þ and j0 ¼ ð2; 1Þ, respectively. The initial trial wave
functions can be chosen as the half-filled plane-wave states.
TheHamiltonian Eq. (1) plus Eq. (3) remains free of the sign
problem at half filling.
Because the pinning fields in Eq. (2) break the SUð2NÞ

symmetry, the induced magnetic moments prefer the
direction defined in Eq. (2). The distribution of mi is
staggered with decaying magnitudes as away from two
pinned sites i0 and j0. The Néel order parameter is its
Fourier component at the wave vector Q ¼ ðπ; πÞ defined
as mQðLÞ ¼ ð1=L2ÞPið−1Þimi. The long-range order mQ
can be extrapolated as the limit of

mQ ¼ lim
L→∞

mQðLÞ: (4)

This is because the Fourier component of the pinning field
at Q is hQ ¼ 2hi0j0=L

2, which goes to zero as L → ∞ for
any finite value of hi0j0 .
To illustrate the sensitivity of the pinning-field method to

weak orders, we present the simulations for the SU(6) case
of Eq. (1) with U ¼ 4. The finite-size scalings of mQðLÞ
are presented in Fig. 1 for two different values of hi0j0 ¼ 1
and 2. Their extrapolated values as 1=L → 0 are 0.0261�
0.0008 and 0.0253� 0.0009, respectively, which are con-
sistent with each other and confirm the validity of this
method. Such a small moment is hard to identify using the
finite size scaling of the structural factors, as shown in the
Supplemental Material [46] and related works [40,42,44].
Another observation is that the induced values of mQðLÞ
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FIG. 1 (color online). Finite size scaling of the residual Néel
moment mQðLÞ vs 1=L under pinning fields described by Eq. (3)
with hi0j0 ¼ 1 and 2. The largest value of L is 16. The quadratic
polynomial fitting is used. Error bars are smaller than symbols.
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are weaker at hi0j0 ¼ 2 than those at hi0j0 ¼ 1 at finite
values of L, which shows nonlinear correlations between
the pinning centers and the measured sites. Certainly they
converge in the limit of 1=L → 0. In the following, we only
present the results of hi0j0 ¼ 2.
One may question whether the pinning-field method

overestimates the tendency of long-range ordering. In the
Supplemental Material [46], we apply it to the 1D SU(2)
and SU(4) Hubbard chains at half filling. In the SU(2) case,
the ground state is known as a gapless spin liquid, while in
the SU(4) case, it is gapped with dimerization. The pinning-
field method shows the absence of long-range Néel order-
ing in both cases and the asymptotic behavior of power-law
spin correlations in the case of SU(2). This further confirms
the validity of this method.
We further test the validity of the pinning-field method in

the extensively studied half-filled SU(2) Hubbard model in
the square lattice by the QMC method [47,48]. The long-
range Néel ordering we obtained based on the pinning-field
method is consistent with that in previous QMC literature
based on the finite-size scaling of structure factors. Our
results are shown in the Supplemental Material [46]. The
long-range Néel ordering appears from weak to strong
interactions. The extrapolated values of mQ increase as U
goes up, and begin to saturate around U ¼ 10. At U ¼ 20,
mQ ¼ 0.297� 0.002, which is in a good agreement with the
long-rangeNéelmoment 0.3070(3) of the SU(2)Heisenberg
model [49]. This behavior is well known [47,48]: asU goes
up, charge fluctuations are suppressed, and thus the low
energy physics is described by the Heisenberg model.
Next we simulate the SU(4) Hubbard model, and

the magnetic ordering is presented in Fig. 2. Similarly to the
SU(2) case, long-range Néel ordering appears for all the
values ofU ≤ 20. At each value ofU, the extrapolated long-
range Néel momentmQ is weaker than that in the SU(2) case,
which is a result of the enhanced quantum fluctuations.
Moreover, a striking new feature appears: the relationmQ vs
U becomes nonmonotonic as shown inFig. 4 below.TheNéel
momentmQ reaches the maximum around 0.178� 0.008 at
U ≈ 8, and then decreases as U further increases. It remains
finitewith the largest value ofU ¼ 20 in our simulations. It is
not clear whethermQ is suppressed to zero or not in the limit
of U → ∞. A previous QMC simulation on the SU(4)
Heisenberg model shows algebraic spin correlations [35].
It would be interesting to further investigate whether the
algebraic spin liquid state survives at finite values of U.
With further increases in 2N, the Néel ordering is more

strongly suppressed by quantum spin fluctuations. The
finite-size scalings for the SU(6) case at different values of
U are presented in Fig. 3. For all the values of U ≤ 14, we
find nonzero Néel ordering by using the quadratic poly-
nomial fitting. The extrapolated Néel momentsmQ vsU for
the SU(6) case are plotted in Fig. 4. For comparison, those
of the SU(2) and SU(4) are also plotted together. Similar
to the SU(4) case, the long-range Néel moments are

nonmonotonic, which reach the maximum around
U ≈ 10. Strikingly, the Néel ordering disappears beyond
a critical value of Uc, which is estimated as 14 < Uc < 16.
The low energy effective model of half-filled Hubbard

models in the strong-coupling regime is the Heisenberg
model. According to the large-N study of the SUð2NÞ
Heisenberg model with the self-conjugate 1N representa-
tion [27,28], dimerization appears in the large-N limit.
Thus the suppression of the Néel order at large values of U
is expected from the competing dimer ordering. To inves-
tigate this competition, we further apply the pinning-field
method to study the dimer ordering for the SU(6) Hubbard
model, and the results are presented in Fig. 5. The
following dimer pinning field is applied, which changes
the hopping integral of a bond i0j0 [50],

Hpin;dim ¼ −Δti0j0
X

α

fc†i0;αcj0;α þ H:c:g; (5)

where i0 and j0 are defined as before. The bonding
strength between sites i and iþx̂ is defined as
di;x ¼ 1

2
hGjc†iαciþx;α þ H.c.jGi, where jGi is the ground
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FIG. 2 (color online). Finite size scalings of mQðLÞ vs 1=L for
the half-filled SU(4) Hubbard model with different values of U.
The largest size is L ¼ 16. The quadratic polynomial fitting is
used. Error bars of QMC data are smaller than symbols.
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FIG. 3 (color online). Finite size scalings of mQðLÞ vs 1=L for
the SU(6) Hubbard model at different values of U. The largest
size is L ¼ 16. The quadratic polynomial fitting is used. Error
bars of QMC data are smaller than symbols.
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state. We define the dimer order parameter at the wave
vector (π, 0) as

dimðπ;0ÞðLÞ ¼
1

L2

X

i

ð−1Þixdi;x; (6)

where ix is the x coordinate of site i. Following the same
reasoning to extrapolate the long-range Néel ordering as
before, we define the long-range dimer order parameter as
dimðπ;0Þ ¼ limL→∞ dimQðLÞ. The finite-size scalings for
dimðπ;0ÞðLÞ are plotted in Fig. 5(a), which shows that the
columnar dimerization appears when U is above a critical
value U0

c, which is also estimated around 14–16. It lies in
the same interaction regime that Néel ordering starts to
vanish. However, whether this transition is of second order
such that Uc ¼ U0

c or it is of first order still needs further
numeric investigation. We also measure the dimerization at
Q ¼ ðπ; πÞ induced by the pinning-field Eq. (5), defined as
dimðπ;πÞðLÞ ¼ ð1=L2ÞPið−1Þidi;x, whose finite-size scal-
ing shows the absence of long-range order.

The nature of the transition between the Néel and dimer
orderings is an interesting question. In the literature [51,52],
ring exchange terms are added to the SU(2) Heisenberg
model, which suppress Néel ordering and lead to dimeriza-
tion. However, our SU(6) case is dramatically different. The
SU(6) Néel ordering appears in the regime of weak and
intermediate interactions. In this regime ring exchanges are
prominent because they reflect short-range charge fluctua-
tions. Our results agree with the picture of Fermi surface
nesting because the Néel orderingwave vectorQ ¼ ðπ; πÞ is
commensurate with the Fermi surface at half filling, while
dimerization is not favored because its wave vector Q0 ¼
ðπ; 0Þ does not satisfy the nesting condition [53]. On the
other hand, local moment physics dominates when deeply
inside the Mott insulating phase in the strong-coupling
regime. The exchange energy per site in the dimerized phase
is estimated at the order of N2J with J ¼ 4t2=U, while that
of the Néel state is zNJ, where z is the coordination number.
Thus dimerization wins when both conditions of large-U
and large-N limits are met in agreement with previous
theoretical results on SUð2NÞ Heisenberg models [27].
Summary.—We have applied the method of local pinning

fields in QMC simulations to investigate quantum magnetic
properties of the 2D half-filled SUð2NÞHubbard model in the
square lattice. This method is sensitive to weak long-range
orders. Long-range Néel ordering is found for the SU(4) case
from weak to strong interactions. For the SU(6) case, a
transition from the staggered Néel ordering to the columnar
dimerization is found as increasing U. The conceivable
mechanism is the competition between the weak-coupling
Fermi surface nesting physics and the strong-coupling local
moment physics. The above QMC simulations may provide a
reference point for further investigating the even more chal-
lenging problem of doped SUð2NÞ Mott insulators.
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Supplementary Material on ”Competing orders in the 2D half-filled SU(2N) Hubbard
model through the pinning field quantum Monte-Carlo simulations”

Da Wang, Yi Li, Zi Cai, Zhichao Zhou, Yu Wang, and Congjun Wu

In this supplementary material, we explain the algo-
rithm of the projector quantum Monte Carlo method in
Sect. I. Various tests of the local pinning field method
are presented in Sect. II. The error analysis is performed
in Sect. III.

I. PROJECTOR QUANTUM MONTE CARLO
AND HUBBARD-STRATONOVICH

DECOMPOSITION

We adopt the projector determinant QMC method1 to
study the half-filled SU(2N) Hubbard model. The basic
idea is to apply the projection operator e−βH/2 on a trial
wave function |ΨT ⟩. If ⟨ΨG|ΨT ⟩ ̸= 0 and there exists
a nonzero gap between |ΨG⟩ and the first excited state,
|ΨG⟩ is arrived as the projection time β → ∞,

|ΨG⟩ = lim
β→∞

e−βH/2|ΨT ⟩. (1)

The projection time β can be divided into M slices with
β = M∆τ .
The second order Suzuki-Trotter decomposition is used

to separate the kinetic and interaction energy parts in
each time slice,

e−∆τ(K+V ) = e−∆τK/2e−∆τV e−∆τK/2 + o[(∆τ)3], (2)

where K and V represent the kinetic and interaction
terms, respectively. For the V term, a discrete Hubbard-
Stratonovich (HS) transformation is defined as2

e−λ2(ni−N)2 =
1

4

∑
l=±1,±2

γi(l)e
iηi(l)(ni−N) + o[(∆τ)4], (3)

where ni =
∑2N

α=1 c
†
iαciα; λ =

√
∆τU/2; γ’s and η’s are

discrete HS fields given by the following values3

γ(±1) = 1 +

√
6

3
, γ(±2) = 1−

√
6

3
,

η(±1) = ±
√
∆τU

√
3−

√
6,

η(±2) = ±
√
∆τU

√
3 +

√
6. (4)

This decomposition is widely used in QMC
simulations3,4. However, one should be careful that at
large values of U and |n − N | in Eq. 3. In Fig. 1, we
plot the values of the left and right hand sides of Eq. 3
as functions of ∆τU for comparison. We consider the
situations of |n − N | = 1, 2 and 3, respectively. The
errors of this discrete HS decomposition Eq. 4 depend
on |n − N | significantly. At |n − N | = 1 and 2, the

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

∆τ U

e−
∆τ

 U
(n

−
N

)2 /2

 

 

|n−N|=1, exact
|n−N|=2, exact
|n−N|=3, exact
|n−N|=1, HS
|n−N|=2, HS
|n−N|=3, HS

FIG. 1. Error due to the HS decomposition using parame-
ters defined in Eq. 4. The dashed lines are exact results of

e−∆τU(ni−N)2/2 with |n−N | = 1, 2, 3 respectively. The circles
represent the results after the HS transformation.

decomposition yields values almost exact, or, with slight
deviations for ∆τU < 1. However, at |n − N | = 3, the
deviation becomes manifest when ∆τU > 0.5, and even
more terribly, the weight becomes negative.

Therefore, we design an exact HS decomposition for
the cases from SU(2) to SU(6) in which the operator
ni −N only takes eigenvalues among 0,±1,±2, and ±3.
The form of the new HS decomposition is the same as
Eq. 4 but it is exact. The values of the discrete HS fields
are defined as follows

γ(±1) =
−a(3 + a2) + d

d
, γ(±2) =

a(3 + a2) + d

d
,

η(±1) = ± cos−1

{
a+ 2a3 + a5 + (a2 − 1)d

4

}
η(±2) = ± cos−1

{
a+ 2a3 + a5 − (a2 − 1)d

4

}
, (5)

where a = e−
1
2∆τU , d =

√
8 + a2(3 + a2)2. Eq. 5 is used

for all of our simulations in 2D SU(2N) Hubbard model
in the main text.

After integrating out fermions, we arrive at the fermion
determinant whose value depends on the discrete HS
fields. The HS fields are sampled using the standard
Monte Carlo technique.
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FIG. 2. Finite size scalings of mQ(L) v.s. 1/L for the half-
filled SU(2) Hubbard model. The lines are fitted by the
quadratic polynomial fitting of the QMC data. Error bars
of QMC data are smaller than symbols.

II. TESTS OF THE PINNING FIELD METHOD

Below we present various tests of the pinning field
method to confirm its validity and its sensitivity to weak
orderings.

A. Test of the pinning field method in the
half-filled SU(2) Hubbard model

We have performed the QMC simulations with the lo-
cal pinning field method for the half-filled SU(2) Hubbard
model in the square lattice. The finite-size scaling is pre-
sented in Fig. 2. The parameter values are the pinning
field hi0j0 = 2 and the projection time β = 240. The
extrapolated values of the Neel moments mQ defined in
Eq. increase monotonically as U increases and become
to saturate around U = 10. The Neel moment reaches
0.297± 0.002 at U = 20 in our simulation, which agrees
well with previous QMC simulations. This test confirms
the validity of the pinning field method.

B. Sensitivity of the pinning field method to weak
ordering

We consider the cases of weak Neel ordering in the half-
filled SU(6) Hubbard model in the square lattice with
U = 4 and U = 10. The finite-size scalings based on
structure factor are shown in Fig. 3. Quadratic poly-
nomials are used to fit the structure factor S(Q)/L2 as
defined in Ref. 5. It is difficult to conclude whether
long-range Neel ordering exists or not in both cases. In
contrast, for the case of U = 4, the finite-size scaling
based on the pinning field method in Fig. 1 in the main
text yields the extrapolated Neel moment mQ = 0.026.
The corresponding value of S(Q)/L2 is its square at the
order of 10−3 and thus is too weak to identify in Fig. 3.
Moreover, for the case of U = 10 in which the largest
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FIG. 3. Finite size scalings of the structure factor S(Q)/L2

in the case of SU(6) with U = 4 and U = 10. Quadratic
polynomials are used to fit the data. Error bars of QMC data
are smaller than symbols. In these calculations, projection
time β = 80 is used.

Neel moment appears (Fig. 4 in the main text), the cor-
responding structure factor remains too small to be ex-
trapolated through the finite size scaling. The weak Neel
orderings in the SU(6) Hubbard model were not found
in a previous work based on the structure factor method
by some of the authors either5. Due to the improved nu-
meric resolution, they are identified through the pinning
field method.

C. The pinning field method for the 1D SU(2) and
SU(4) Hubbard models
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FIG. 4. Finite size scaling of m(L) v.s. (logL)
1
4 /L

1
2 for the

1D half-filled SU(2) Hubbard model. Parameter values are
β = 80, U = 4 and hi0j0 = 2.
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FIG. 5. (a) Finite size scaling of m(L) v.s. 1/L for the
1D half-filled SU(4) Hubbard model. (b) Finite size scaling
of dimx(L) v.s. 1/L for the 1D half-filled SU(4) Hubbard
model. Parameter values are β = 80, U = 4 and ∆ti0j0 = 2.

Since the pinning field method is sensitive to weak
long-range orderings, a natural question is that whether
it is oversensitive. To clarify this issue, we apply it to 1D
half-filled SU(2) and SU(4) Hubbard models in which it
is well-known that magnetic long-range orders do not ex-
ist. The QMC simulation results presented below are in
an excellent agreement with previous analytic and nu-
meric results. This confirms the validity of the pinning
field method. We use the pinning fields described in the
Eq. 3 and Eq. 5 in the main text to investigate Neel and
dimer orderings, respectively.
For the 1D half-filled SU(2) Hubbard model, the

pinned sites are set as i0 = 1 and j0 = 2, respectively, and
values of the pinning fields are hi0,j0 = 2. We consider

the induced magnetic moment on the furthest sites L
2 and

L
2 + 1 defined as ±m(L). Strong quantum fluctuations
suppress the long-range Neel ordering, and the asymp-
totic behavior of the two-point spin correlation functions
at half-filling follows the pow-law decay as6

⟨S(i)S(j)⟩ ∼ (−)i−j log
1
2 |i− j|
|i− j|

. (6)

Since spin moments are pinned at i0 and j0, m(L) should
scales as

m(L) ∼ (logL)
1
4

√
L

. (7)

Our QMC results with pinning fields are in an excellent
agreement with Eq. 6 as shown in Fig. 4.
The magnetic properties of the 1D half-filled SU(4)

Hubbard model are dramatically different from the SU(2)
case. Bosonization analysis7 shows that its ground states
exhibit long-range-ordered dimerization with a finite spin
gap, and the Neel correlation decays exponentially. We
set the pinned sites at i0 = 1 and j0 = 2, respectively,
and the pinning field for dimerization as ∆ti0j0 = 2. The
induced dimer order is defined as the difference between
two furthest bonds (L2 ,

L
2 + 1) and (L2 + 1, L

2 + 2) as

dimi(L) = (−)i
{
dL/2,x − dL/2+1,x

}
. (8)

Our QMC simulation results are illustrated in Fig. 5 (b),
which exhibit the long-range ordering in agreement with
previous analytic results.

D. The issue of non-linear response to the pinning
field
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FIG. 6. The induced magnetic momentsm(i) by pinning fields
in the non-interacting half-filled 1D SU(2) lattice model. (a)
The spacial distribution of m(i) with hi0j0 = 1 and L = 100.
(b) The induced moments m(i) v.s hi0,j0 at different sites
i = 10, 20 and 50 in the system with L = 100. (c) The scaling
of mQ(L) with Q = π at two different pinning fields.

In Fig. 1 of the main text, we present the scaling of
the residual Neel moment mQ(L) v.s. 1/L with two dif-
ferent values of the pinning fields. A counter-intuitive
observation is that m(L) is weaker at hi0j0 = 2 than that
of hi0j0 = 1. Below we present convincing evidence that
actually this is not an artifact of the finite size. This is a
typical behavior of responses on sites far away from the
scattering center in the strong scattering limit.

To illustrate this point, we present the calculation for
a toy model of a non-interacting half-filled SU(2) 1D lat-
tice system, such that we can easily calculate systems
with very large size up to L = 100. The pinning fields
are located at sites i0 = 1 and j0 = 2, and the induced
magnetic moments m(i) are presented in Fig. 6. Al-
though it is natural that the induced magnetic moments
increase monotonically with h right on the impurity sites,
there is no reason to expect the same behavior on sites
away from the scattering center. On these sites, in fact,
Fig. 6(b) shows that m(i)’s are non-monotonic with re-
spect to h. All of them decays at large values of h after
passing maxima at intermediate values of h. The finite
size scalings of mQ(L) defined in the main text are pre-
sented in Fig. 6(c) at h = 1 and 2. Both curves converge
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quantity QMC ED

⟨m(1, 1)⟩U=4 0.4340±0.0001 0.4342

⟨m(3, 3)⟩U=4 0.2344±0.0003 0.2351

⟨m(1, 1)⟩U=12 0.4796±0.0001 0.4807

⟨m(3, 3)⟩U=12 0.3207±0.0002 0.3218

⟨m(1, 1)⟩U=20 0.4902±0.0001 0.4915

⟨m(3, 3)⟩U=20 0.3248±0.0002 0.3261

TABLE I. The induced magnetic moments m(1, 1) and
m(3, 3) by the pinning fields for the half-filled SU(2) Hub-
bard model. Both the QMC and exact diagonalization re-
sults are presented for comparison. The parameter values are
hi0j0 = 2, β = 240, ∆τ = 0.05. The lattice size is 4× 4.

to 0 as they should be in non-interacting systems. Again,
the curve with h = 2 is lower than that of h = 1.

III. ERROR ANALYSIS

In this section, we present the comparisons with exact
diagonalization, the analyses on errors from the discrete
Suzuki-Trotter decomposition and finite projection time
β.

A. Comparison with the exact diagonalization

In order to check the numeric accuracy of our simula-
tions, we first compare our QMC results with the pinning
fields in the SU(2) case with those from the exact diag-
onalization in the 4 × 4 lattice.8 The pinning fields are
applied at sites i0 = (1, 1) and j0 = (2, 1) according to
Eq. 3 in the main text. In table. I, we list the magnetic
moments on sites (1, 1) and (3, 3) with different U ’s. As
U goes up, the numeric errors of QMC increase, but are
still less than 0.002 even at U = 20.

B. Scaling on the discrete ∆τ

For the Suzuki-Trotter decomposition defined in Eq. 2,
its error is at the order of tU2(∆τ)3. Such an error is
most severe in the large U regime, and thus we only
present the scaling with respect to ∆τ at U = 20.
The pinning fields are chosen in the same configuration

described in Eq. 3 in the main text. The distribution of
mi is staggered with decaying magnitudes as away from
two pinned sites i0 and j0. The weakest moments are
located at the central points (L2 +1, L

2 +1) and (L2 +2, L
2 +

1). The residual values at these two points are denoted
as ±m(L), respectively. The long-range order can also
be reached as the limit of m(L) in the thermodynamic
limit L → ∞.
In Fig. 7, curves of the Neel moment m(L) v.s. ∆τ are

plotted for the three cases of SU(2), SU(4), and SU(6),
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FIG. 7. Scaling of the Neel moments m(L) v.s. ∆τ for the
cases of SU(2), SU(4) and SU(6) shown in (a)∼(c), respec-
tively. In the case of SU(2), exact diagonalization results are
also plotted as the dashed line for comparison. The parame-
ters are U = 20, β = 80 and hi0j0 = 2.

respectively. The slopes of these scaling lines are nearly
independent on the lattice size L for all three cases. Due
to convergence of the finite ∆τ scaling, we use the value
of ∆τ = 0.05 in all our simulations.

C. The finite β scaling

Next we check the effect of the finite projection time
β. We use the residue Neel moment m(L) at the furthest
points for scaling as defined in Sect. III B. In Fig. 8, we
present the scalings of the Neel moments m(L) v.s. β
for different sizes L = 4, 6, 8, and 10. For each curve, we
define βc as the convergence projection time after which
m(L) converges, and its approximate position is marked
by an arrow. Here we only present the scalings at U = 2
in the weak coupling regime and at U = 20 in the strong
coupling regime. The largest values of βc are expected
in either of these two limits, which can be understood as
follows: βc is determined by the finite gap of the many-
body spectra. In the small U regime, the finite size gap
increases as increasing U , while in the large U regime,
it deceases as U increases because the energy scale is
controlled by the magnetic exchange scale J ∼ 4t2/U .

In the case of SU(2), the relations of βc’s on L are
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the half-filled SU(2N) Hubbard model. Lattice sizes are L =
4, 6, 8, 10. The interaction parameter for (a), (c), and (e) is
U = 2, and that for (b), (d), and (f) is U = 20. Error
bars of QMC data are smaller than symbols. The arrows
mark the estimated convergence projection time βc of these
curves. The approximate relations of βc v.s L are estimated
as βc = 8L, 12L and 15L for the cases of SU(2), SU(4) and
SU(6), respectively.

nearly the same for U = 2 and U = 20, which are es-
timated as 8L. In the cases of SU(4) and SU(6), βc’s
at U = 2 are larger than the corresponding ones at
U = 20. At U = 2, their dependence on L is estimated
as βc ≈ 12L for the SU(4) case and βc ≈ 15L for the
SU(6) case, respectively. At U = 20, the system enters
to the dimerization phase, and thus m(L) is suppressed
by longer projection time.

The largest size in our simulations is L = 16. Consid-
ering the above scalings, we choose β = 15 × 16 = 240
for all the simulations presented in the main text, which
should be sufficient to obtain accurate numeric results.
In particular, the major result in the main text, i.e., the
non-monotonic behavior of m(L = ∞) with increasing U
for both the SU(4) and SU(6) cases, is not an artifact
from the finite projection time β.
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