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Unlike charge and spin, the orbital degree of freedom of electrons in transition metal oxides is difficult

to detect. We present a theoretical study of a new detection method in metallic orbitally active systems by

analyzing the quasiparticle scattering interference (QPI) pattern of the spectroscopic imaging scanning

tunneling spectroscopy, which is sensitive to orbital structures and orbital ordering. The QPIs for the dxz
and dyz-orbital bands in the t2g-orbital systems show a characteristic stripelike feature as a consequence of

their quasi-one-dimensional nature, which is robust against orbital hybridization. With the occurrence of

orbital ordering proposed in Sr3Ru2O7 and iron pnictides, the stripelike QPI patterns exhibit nematic

distortion breaking the C4 symmetry.
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The orbital, a degree of freedom independent of charge
and spin, plays an important role in various phenomena of
transition metal oxides (d orbital) and heavy-fermion com-
pounds (f orbital), including metal-insulator transitions,
unconventional superconductivity, and colossal magneto-
resistance [1–4]. Orbital ordering and excitations have
been observed in many Mott-insulating transition metal
oxides such as La1�xSrxMnO3, La4Ru2O10, LaTiO3,
YTiO3, KCuF3, etc. [5–8]. In addition, cold atom optical
lattices have opened up a new opportunity to study orbital
physics with both bosons and fermions, which has recently
attracted considerable experimental and theoretical re-
search attention [9–15].

Many metallic transition metal oxides, such as strontium
ruthenates and iron pnictides, are orbitally active. Their
Fermi surfaces are composed of different components of
the t2g orbitals, i.e., dxy, dxz, and dyz. Different from the

dxy band which is quasi–two dimensional (2D), the dxz and

dyz bands are quasi–one dimensional with strong in-plane

anisotropy. Their Fermi surfaces are strongly nested, re-
sulting in strong incommensurate spin fluctuations in
strontium ruthenates and iron pnictides [16–18].
Furthermore, the quasi-1D bands also play an important
role in the electronic nematic ordering observed in the
bilayer Sr3Ru2O7 [19–21] between two consecutive meta-
magnetic transitions in the external magnetic field, which
contributes another intriguing example of spin-orbital in-
terplay [22–26]. The nematic ordering has been interpreted
as orbital ordering between dxz and dyz orbitals by us [27]

and also independently by Raghu et al. [28].
In contrast to charge and spin whose detection methods

have been maturely developed, the orbital degree of free-
dom is very difficult to measure especially in metallic
orbital systems. In this Letter, we present the theoretical
study of a new method to detect the orbital degree of
freedom by employing the technique of spectroscopic
imaging scanning tunneling microscopy (SI-STM). This
technique is an important tool to study competing orders in

strongly correlated systems [29–33], and has been just
applied into the metallic t2g-orbital systems of Sr3Ru2O7

[34]. We find that this technique provides a sensitive
method to detect orbital degree of freedom and orbital
ordering by studying the quasiparticle interference (QPI)
in the quasi-1D dxz and dyz bands. In contrast to the well-

established QPI scenario for the single band system before,
the T matrix acquires momentum-dependent form factors
which forbid some QPI wave vectors and result in stripe
features in the Fourier transformed STM images. The
orbital ordering exhibits in the nematic distortion of the
stripe QPI patterns. The applications of our analysis to the
nematic orbital ordering in strontium ruthenates and the
iron pnictide superconductors will be demonstrated.
We consider the band Hamiltonian with the dxz and

dyz-orbital bands as H0 ¼ P
~k�H~k� and

H~k� ¼ �xz; ~kd
y
xz ~k�

dxz; ~k� þ �yz; ~kd
y
yz; ~k�

dyz; ~k�

þ ðf ~k�d
y
xz; ~k�

dyz; ~k� þ H:c:Þ; (1)

where �xz; ~k ¼ �2tk coskx � 2t? cosky � 4t0 coskx cosky,
�yz; ~k ¼ �2t? coskx � 2tk cosky � 4t0 coskx cosky. f ~k� is

the hybridization between dxz and dyz orbitals, which is

different from materials to materials and can be a complex
function in general. tk and t? are the nearest neighbor

longitudinal and transverse hopping integrals for the dxz
and dyz orbitals, and tk � t?. t0 is the next-nearest neigh-
bor intraorbital hopping integral. We define the basis of the

pseudospinor as �̂ ~k� ¼ ðdxz ~k�; dyz ~k�ÞT . H~k� can be diago-

nalized by introducing the unitary transformation Û ~k� such

that Ûy
~k�
Ĥ ~k�Û ~k� ¼ diagfEþ

~k�
; E�

~k�
g. U reads in the basis of

�̂ ~k� as

Û ~k� ¼ cos� ~k� �ei� ~k� sin� ~k�

e�i� ~k� sin� ~k� cos� ~k�

 !
; (2)
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where tan2� ~k� ¼ 2jf ~k�j
�
xz; ~k

��
yz; ~k

, �~k� ¼ Argðf ~k;�Þ. The eigen-

values and the corresponding eigenvectors are E�
~k�

¼
ð�xz; ~k þ �yz; ~k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�xz; ~k � �yz; ~kÞ2 þ 4jf ~k�j2

q
Þ=2 and c ~k� ¼

ð�þ; ~k�; ��; ~k�ÞT ¼ Ûy
~k�
�̂ ~k�, respectively.

Next we introduce the scattering Hamiltonian for the
nonmagnetic single impurity at ~ri. Assuming the isotropy
of the impurity, Himp does not mix dxz and dyz orbitals as

Himp ¼ V0

P
i�ðdyxz;i�dxz;i� þ dyyz;i�dyz;i�Þ�i;~ri , where we

set the impurity location ~ri ¼ ð0; 0Þ at the origin. In the
basis of the band eigenfunction c ~k�, Himp is expressed as

Himp ¼ 1

N

X
~k; ~k0;�

ĉ y
~k�;a

V̂�
~k; ~k0;ab

ĉ ~k0�;b; (3)

where V̂�
~k; ~k0;ab

¼ V0½Ûy
~k�
Û ~k0��ab is the effective scattering

matrix, and a, b ¼ � are eigenband indices. This mo-
mentum dependence generated by the orbital hybridization
has nontrivial consequences in the QPI spectra shown later.

The Green functions with the impurity satisfy

Ĝ �ð ~k; ~k0Þ ¼ Ĝ0;�ð ~kÞ�~k; ~k0 þ Ĝ0;�ð ~kÞT̂�
~k; ~k0
Ĝ0;�ð ~k0Þ; (4)

where Ĝ, Ĝ0, and the T matrix are 2� 2 matrices in terms
of band indices. The T matrix and the bare Green’s func-

tions Ĝ0;�ð ~kÞ defined as

T̂ �
~k; ~k0

¼ V̂�
~k; ~k0

þ 1

N

X
~p

V̂�
~k; ~p
Ĝ0;�ð ~pÞT̂�

~p; ~k0
; (5)

and ½Ĝ�1
0;�ð ~kÞ�ab ¼ ð!þ i�� Ea

~k�
Þ�a;b.

In previous theoretical analysis of QPI [31], the single
impurity T matrix was simplified as momentum inde-
pendent for the single band systems. This simplification
is no longer valid in hybridized quasi-1D bands of dxz and
dyz. In the following, we consider a square lattice contain-

ing 41� 41 sites and solve the momentum-dependent
T matrix numerically. The local density of states at energy
E, which is proportional to the conductance (dI=dV) mea-
sured by the STM, and its Fourier transformation
(FT-STM) can be calculated as

�ð~r; EÞ ¼ � 1

N�

X
�; ~k; ~k0

Imfe�ið ~k� ~k0Þ�~r

� Tr½Û ~k;�Ĝ�ð ~k; ~k0; EÞÛy
~k0;�

�g;

�ð ~q; EÞ ¼ 1

N

X
~r

e�i ~q� ~r�ð~r; EÞ:

(6)

Note that in all the FT-STM images presented below,
�ð ~q ¼ 0; EÞ are removed to reveal the weaker QPI [31],
and the absolute intensities of �ð ~q; EÞ are plotted.

We start with a heuristic example of ideal quasi-1D case
in which only tk is nonzero without hybridization. In this

case, the Fermi surface of each band is a set of two straight
lines located at kx ¼ �kF (ky ¼ �kF) for dxz (dyz) bands

as shown in the Fig. 1(a). Because the density of states
(DOS) is uniform along the Fermi surface, all the quasi-
particle scatterings on the Fermi surface are equally im-
portant. The quasiparticle scatterings occur either within
the same ‘‘Fermi lines’’ [Fig. 1(a)] giving rise to the stripes
on the x̂ and ŷ axes in the FT-STM image [Fig. 1(b)], or
between the different ‘‘Fermi lines’’ [Fig. 1(a)] leading to
the remaining weaker stripes in Fig. 1(b). These weaker
stripes appearing at the lines of qx ¼ �2kF and qy ¼
�2kF are the quasi-1D analogues of Friedel oscillation in
exact 1D systems. Note that all the QPIs have C4 symmetry
because we assume that the dxz and dyz bands are degen-

erate and no spontaneous nematic order is present.
With turning on the hybridization, naively it may be

expected that these stripe features should disappear since
the Fermi surfaces are 2D-like. However, we will show
explicitly that due to the momentum-dependent T matrix
some quasiparticle scatterings on the Fermi surfaces are

greatly suppressed even as the DOS of ~k points are large.
As a result, the stripe features still survive as long as the
Fermi surfaces remain connected. This unique feature dis-
tinguishes the hybridized quasi-1D bands from a single 2D
band, for example, the dxy band with similar Fermi surface

topology.
Below we consider the on-site spin-orbit (SO) coupling

HSO ¼ 	
P

i
~Li � ~Si to hybridize the dxz and dyz bands

[28,35]. Projecting it onto the dxz and dyz subspace, we

obtain the hybridization function as f ~k� ¼ i�	=2.

Consequently, the effective scattering matrix V̂�
~k; ~k0;ab

in

the eigenband basis becomes

V̂ �
~k; ~k0

¼ V0
cosð� ~k � � ~k0 Þ �i� sinð� ~k � � ~k0 Þ

i� sinð� ~k � � ~k0 Þ cosð� ~k � � ~k0 Þ
� �

; (7)

FIG. 1 (color online). (a) The Fermi surfaces with an ideal
quasi-1D bands without hybridization and (b) the corresponding
FT-STM image. The stripe features in (b) at qx ¼ 0 and qy ¼ 0

result from the quasiparticle scatterings indicated by arrows
within the same lines in (a), and those appearing at qx ¼
�2kF and qy ¼ �2kF come from scatterings indicated by

arrows between different lines in (a), echoing the Friedel oscil-
lation in exact 1D case.
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where tan2� ~k ¼ 	=ð�xz; ~k � �yz; ~kÞ. The diagonal terms (the

intraband scattering) are modulated by the form factor of
cosð� ~k � � ~k0 Þ, which is suppressed around � ~k � � ~k0 � �=2

is enhanced around � ~k � � ~k0 � 0. For the aid to eyes, the

values of the � ~k are represented by the background gray

scales plotted in Figs. 2(a), 2(c), and 3(a), showing white
for � ~k ! 0 and dark gray for � ~k ! �=2. Since the larger

V̂�
~k; ~k0

leads to the larger T̂�
~k; ~k0
, the QPI wave vectors con-

necting two ~k points from different color areas have van-
ishing weights in the FT-STM images.

In the hybridized dxz and dyz bands, the DOS van Hove

(vH) singularity occurs at ~X ¼ ð�; 0Þ and ~X0 ¼ ð0; �Þ.
Figure 2 summarizes the results for energies below and
above the vH singularity. The model parameters are chosen
as ðtk; t?; t0; 	; V0Þ ¼ ð1:0; 0:1; 0:025; 0:2; 1:0Þ consistent

with those in Refs. [27,28,35]. In Fig. 2(b), the stripe
features remain dominant in the FT-STM images at energy
below the vH singularity as explained below. Although
Fermi surface is a 2D closed loop shown in Fig. 2(a), the
QPI wave vectors corresponding to scatterings indicated by
the solid arrows are prohibited due to the angular form

factor discussed above. The dominant scatterings still oc-
cur in the same way as discussed in Fig. 1(a), except
several ~q vectors on the stripes have stronger features
because of the small variations of the DOS introduced by
t? and t0. As energy crosses the vH singularity, the topol-
ogy of the Fermi surface turns into discrete segments as
shown in Fig. 2(c). The stripe features of the QPI wave
vectors disappear and instead they become several discrete
points whose positions depend on the model parameters.
As the energy is very close to the vH singularity, it has been
shown in Refs. [27,28] that the spontaneous nematic order
� appears with multiband Hubbard interactions, which
gives an anisotropic renormalization of dispersion of
�0
xz; ~k

¼ �xz; ~k þ � and �0
yz; ~k

¼ �yz; ~k ��. Figure 3 plots

the Fermi surface and the FT-STM image for the ground
state with � ¼ 0:05. The stripe features only extend along
one particular direction and breaks the C4 symmetry down
to C2 symmetry, as expected for a nematic order.
Now we connect the above discussion to the bilayer

Sr3Ru2O7 system which has the additional Fermi surfaces
of the quasi-2D dxy band and the bilayer structure. The

interband scatterings between the quasi-2D and 1D bands
are also suppressed due to the similar reason of different
orbital nature presented above. The QPI pattern of the intra
dxy-band scattering should follow the similar analysis pub-

lished before [29,31]. The quasi-1D bands of dxz and dyz
have large bilayer splittings resulting in bonding and anti-
bonding versions. Usually the impurity only lies in one
layer and, thus, breaks the bilayer symmetry and induces
both intraband and interband scatterings among bonding
and antibonding bands. And all of them should have the
stripe pattern illustrated before.
The change of the FT-STM images as energy across the

vH singularity can be used to distinguish the orbital con-
figuration of the Fermi surface responsible for the nematic
ordering observed in Sr2Ru3O7, which has been proposed
both in the quasi-2D dxy band [22–24] and the quasi-1D

bands of dxz and dyz [27,28]. Both proposals have similar

Fermi surface topology, but the QPIs will be very different.

FIG. 3 (color online). (a) Fermi surface and (b) FT-STM image
of the two quasi-1D band model for Sr3Ru2O7 with nematic
order right at the van Hove singularity (E ¼ 1:9).

FIG. 2 (color online). Fermi surfaces (dashed lines) of the two
quasi-1D bands at energies (a) just below the vH singularity
(E ¼ 1:8) and (c) just above the vH singularity (E ¼ 2:0). The
corresponding FT-STM images are presented in (b) and (d). The
background gray scale in (a) and (c) represents the values of � ~k,

exhibiting from white to dark gray for � ~k ¼ 0 ! �
2 . The scatter-

ings between two ~k points in areas with different colors (in-
dicated by the solid arrows) are strongly suppressed. The striped
pattern disappears and discrete QPI wave vector points become
dominant when the Fermi surface breaks down to discrete seg-
ments. The dashed arrows in (a) and (c) refer to the scatterings
responsible for the strongest features in the FT-STM images.
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The stripe features are direct consequences of the quasi-1D
bands which have comparable DOS on the Fermi surfaces.
For the 2D dxy bands, the QPIs are dominated by several

discrete ~q vectors connecting ~k points with largest DOS as
has been demonstrated nicely in the high-Tc cuprate
Bi2Sr2CaCu2O8þ� [29]. Accordingly, we predict that if it
is the 2D dxy band responsible for the nematic order, the

FT-STM will show similar QPIs containing several dis-
crete ~q vectors as the magnetic field is tuned through
the critical point for the nematic order, while a signifi-
cant change in the topologies of QPIs from Fig. 2(b) !
Fig. 3(b)! Fig. 2(d) will be seen if the hybridized dxz and
dyz bands are responsible.

These results may also apply to the iron pnictide super-
conductors with multiple Fermi surface sheets: 
1;2 bands

located near the � point composed mostly of dxz and
dyz orbitals and �1;2 bands residing near X and X0 points
with large fraction of dxy orbital [36,37]. Given that the

tunneling rate along the ẑ direction is strongly suppressed

with the increase of magnitude of in-plane momentum j ~kkj
[38], the tunneling matrix elements of �1;2 bands are

naturally to be much smaller than those of 
1;2 bands.

The similar suppression of tunneling matrix elements at
large in-plane momentum has been demonstrated in the
graphene systems [39]. As a result, SI-STM is expected to
observe mostly the QPI scatterings from the 
1;2 bands,

and therefore the stripe features should be observed with a
length roughly the size of the 
1;2 pockets in the normal

state of the iron pnictides. More interestingly, it has been
suggested [40] based on a recent neutron scattering mea-
surement performed on the undoped CaFe2As2 that a
Heisenberg model with highly anisotropic in-plane ex-
change interactions is required to fit the spin-wave disper-
sion, indicating the possibility of nematic order [41].
Besides, the nematic order in LaOFeAs compound has
also been theoretically predicted [18,42,43]. If such ne-
matic order exists, the stripe features along one certain
direction resembling Fig. 3(b) should be observable in the
FT-STM image.

In conclusion, we have performed the theoretical inves-
tigation of a new detection method to the orbital degree of
freedom and the orbital ordering in metallic transition
metal oxides. For the quasi-1D dxz and dyz bands in the

t2g-orbital systems, the Fourier transformed STM image of

the QPIs exhibit the stripe pattern. When the orbital hy-
bridization is present, the T matrix becomes momen-
tum dependent even for a single impurity problem and
will suppress some QPI wave vectors depending on the
hybridization angle � ~k. The consequences of the orbital

ordering in Sr3Ru2O7 and the iron pnictide superconduc-
tors have been pointed out as a nematic distortion of the
stripe pattern of the QPI.
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