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Magnetic phases of bosons with synthetic spin-orbit coupling in optical lattices
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We investigate magnetic properties in the superfluid and Mott-insulating states of two-component bosons with
spin-orbit (SO) coupling in two-dimensional square optical lattices. The spin-independent hopping integral t and
SO coupled one λ are fitted from band-structure calculations in the continuum, which exhibit oscillations with
increasing SO coupling strength. The magnetic superexchange model is derived in the Mott-insulating state with
one particle per site, characterized by the Dzyaloshinsky-Moriya interaction. In the limit of |λ| � |t |, we find a
spin spiral Mott state whose pitch value is the same as that in the incommensurate superfluid state, while in the
opposite limit |t | � |λ|, the ground state exhibits a 2 × 2 in-plane spin pattern.
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Quantum many-body states with spontaneous incommen-
surate modulated structures have attracted considerable in-
terest in the past decades, and occur in many settings of
condensed matter and ultracold atom physics. Celebrated
examples include incommensurate magnetism with long- and
short-range magnetic orders [1,2] and Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) pairing states [3,4]. Recently, Bose-
Einstein condensations (BECs) with spin-orbit (SO) coupling
introduced a new member to this family. The SO coupled
BECs are genuinely new phenomena due to the fact that the
kinetic energy is not just a Laplacian but also linearly depends
on momentum, which gives rise to the complex-valued and
even quateronic-valued condensate wave functions beyond the
“no-node” theorem [5,6].

An important property of SO coupled condensates of
bosons is that they can spontaneously break time-reversal
symmetry, which is impossible in conventional BECs of
both superfluid 4He and many experiments of ultracold alkali
bosons [7]. For example, it is predicted that such condensates
can spontaneously develop a half-quantum vortex coexisting
with two-dimensional (2D) skyrmion-type spin textures in the
harmonic trap [8]. Experimentally, spin textures of the SO
coupled bosons have been observed in exciton condensations,
which is a solid-state boson system with relativistic SO cou-
pling [9]. Theoretically, extensive studies have been performed
for SO coupled bosons which exhibit various spin orderings
and textures arising from competitions among SO coupling,
interaction, and confining trap energy [8,10–18].

In the optical lattice, the SO coupled bosons are even
more interesting. Early investigations have showed that the
characteristic incommensurate wave vectors are incommensu-
rate with the lattice [19]. In this Rapid Communication, we
study the SO coupled Bose-Hubbard model, focusing on the
magnetic properties. The tight-binding model is constructed
and the spin-independent hopping integral t and SO coupled
hopping integral λ are calculated as functions of the SO
coupling strength in the continuum. Magnetic superexchange
models are derived as characterized by the Dzyaloshinsky-
Moriya (DM) interaction [20,21]. In the Mott-insulating phase,
the single-particle condensation is suppressed but the spin
orderings are not. The spin orderings are solved in two different

limits, |λ| � |t | and |t | � |λ|, respectively. In the former
case, the DM term destabilizes the ferromagnetic state to spin
spirals, while in the latter case, a 2 × 2 in-plane spin ordering
is formed.

We begin with the noninteracting Hamiltonian of bosons
with the Rashba SO coupling in a square lattice optical
potential as

H0 = h̄2k2

2m
1̂ + h̄2kso

m
(αkxσ̂y + βkyσ̂x) + V (x,y), (1)

where kso is the magnitude of wave vectors of laser beams
generating SO coupling. α and β characterize the anisotropy
of SO coupling. Below we consider two situations. First, SO
coupling is only along the x direction, i.e., α = 1, β = 0, which
agrees with the recent experiments [22]. Second, the isotropic
Rashba SO coupling with α = 1, β = 1. V (x,y) is the periodic
potential produced by laser beams with wavelength λ0 as

V (x,y) = −V0[cos2 k0x + cos2 k0y], (2)

where k0 = 2π/λ0, and the recoil energy Er = h̄2k2
0

2m
. We define

a dimensionless parameter γ0 = kso/k0 to characterize the
strength of SO coupling. The lattice constant a = λ0/2, and
the reciprocal lattice is G1 = ( 2π

a
,0), G2 = (0, 2π

a
). The band

structure of Eq. (1) is calculated by using the plane-wave basis.
In the absence of SO coupling, the two-component bosons

with strong optical potentials can be described by the lattice
Bose-Hubbard model as

HHub = −
∑
〈ij〉,σ

tij [b†i,σ bj,σ + H.c.] +
∑

i

[
U

2
n2

i − μni

]
,

(3)

where σ =↑ ,↓ denote the pseudospin components; biσ and
b
†
iσ are bosonic annihilation and creation operators for spin

σ at site i, respectively.
∑

〈i,j〉 denotes the summation over
all the nearest neighbors. ni is the boson density operator
at site i: ni = ∑

σ b
†
iσ biσ . Generally, the interaction can be

spin dependent, and we only consider the spin-independent
interaction below. A previous study of magnetism of two-
component bosons includes Ref. [23], and we will consider it
in the presence of SO coupling.
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The case of α = 1, β = 0 is directly related to current
experiments in the absence of optical lattice [22]. The SO
coupling induces an extra term in the tight-binding term as

Hso = −λ
∑

i

[
b
†
i,↑bi+�ex ,↓ − b

†
i,↓bi+�ex ,↑

] + H.c., (4)

where �ex is the unit vector along the x direction. In momentum
space, Eq. (4) becomes Hso = ∑

k �
†
kĤk�k, where �k =

[bk,↑,bk,↓]T , and Ĥ 1
k is a 2 × 2 matrix that reads as

Ĥk = εkÎ + 2λ sin kxσ̂y, (5)

where εk = −2(tx cos kx + ty cos ky) − μ and tx(ty) is the
hopping integrals along the x and y directions, respectively. In
the long-wave limit k → 0, Eq. (5) reduces to the Hamiltonian
in continuous space realized in experiments.

The SO coupling is equivalent to a pure gauge at β = 0,
which can be eliminated by a gauge transformation

U = exp{ikso · rσz}, (6)

which applies to the doublet (b↑,b↓). Physically, this gauge
transformation corresponds to a local pseudospin rotation by
θ (r) = kso · r about the pseudospin z axis. The energy spectra
of Eq. (5) has two branches as E± = −2ty[cos(kx ± kso) +
cos ky] − μ, and the following relations are satisfied:

tx = ty cos kso, λ = ty sin kso. (7)

Bosons condense into the energy minima of ±Q = (±k1,0)
with k1 = arctan(λ/ty). The corresponding single-particle
wave functions at these two minima are

�±Q = 1√
2
e±ir·Qsc

(
1
±i

)
. (8)

At the Hartree-Fock level, bosons can take either of �Qsc as a
plane-wave spin-polarized state, or a superposition of them
as 1√

2
(�Q + �−Q) = [cos Q · r, sin Q · r]T with the same

energy. The latter one can be stabilized by spin-dependent
interaction of Hsp,int = U ′ ∑(ni,↑ − ni,↓)2 with U ′ < 0. It
exhibits a spin spiral states in the xz plane with the pitch
wave vector 2Q as plotted in Fig. 1. We will see that in the
Mott-insulating state, although a strong interaction suppresses
the superfluidity, the spin configuration remains the same spiral
order.

We consider the Mott-insulating state at 〈ni〉 = 1, and
construct the superexchange Hamiltonian for the pseudospin- 1

2
bosons as

Heff =
∑

i

[
Hi,i+êy

+ Hi,i+êx

]
. (9)

FIG. 1. (Color online) Spin spiral configurations of the Bose-
Hubbard model with unidirectional SO coupling. It is valid for both
the incommensurate superfluid state, and the Mott insulating state.

For the vertical bond without SO coupling, Hi,i+ey
is just

the SU(2) ferromagnetic Heisenberg superexchange [24,25]
as Hi,i+êy

= −J1,ySi · Si+êy
, where J1,y = 4t2

y /U > 0. For the
horizontal bond, the SO coupling leads to the Dzyaloshinsky-
Moriya (DM) type superexchange terms [20,21] as

Hi,i+êx
= −J1,xSi · Si+êx

− J12di,i+êx
· (

Si × Si+êx

)
+ J2

[
Si · Si+êx

− 2
(
Si · di,i+êx

)(
Si+êx

· di,i+êx

)]
,

(10)

where J2 = 4λ2/U , J12 = 4txλ/U . di,i+êx
is a three-

dimensional (3D) DM vector defined on the bond [i,i + êx]
and di,i+êx

= êy .
The DM term of Eq. (10) prefers a spin spiral ordering

along the horizontal direction, as illustrated in Fig. 1. The
effect of the gauge transformation Eq. (6) on spin operators is
to rotate Si around the y axis at the angle of 2mθ , where m is
the horizontal coordinate of site i and θ = arctan(λ/tx) [26],
such that

S′
i = (1 − cos 2mθ )[d · Si]d + cos 2mθSi − sin 2mθSi × d,

(11)

where d = di,i+êx
= êy . Through this transformation, the

DM interaction is gauged away, and Eq. (10) turns into a
ferromagnetic coupling:

Hi,i+êx
= −J0S′

i · S′
i+êx

, (12)

where J0 = J1,x = 4(t2
x + λ2)/U . The exchange model be-

comes an isotropic ferromagnetic Heisenberg model, and thus
spin polarization can point along any direction. In order to
obtain the actual spin spiral configuration, we need to do the
inverse operation of Eq. (11). Say if we choose the classic spin
at the point of origin along z direction S[0,0] = êz, according
to the rotation defined in Eq. (11), all the spins in the classic
ground state are restricted within the x-z plane, and the classic
spin at the point [m,n] is S[m,n] = cos(2mθ )êz + sin(2mθ )êx .
As shown in Fig. 1(b), the classic spins form a chiral pattern
with a characteristic length, which is the same as in the
superfluid case as plotted in Fig. 1. The only difference is that
the superfluid phase coherence is lost in the Mott-insulating
state.

Now we discuss the isotropic Rashba SO coupling with
α = β = 1. From the symmetry analysis, we easily have
tx = ty for spin-independent hoppings, while the spin-
dependent SO hoppings become

H ′
so = −λ

∑
i

[
b
†
i,↑bi+�ex ,↓ − b

†
i,↓bi+�ex ,↑

] + H.c.,

− iλ
∑

i

[
b
†
i,↓bi+�ey ,↑ + b

†
i,↑bi+�ey ,↓

] + H.c. (13)

In momentum space, the tight-binding band Hamiltonian
becomes H ′ = ∑

k �
†
kĤ

′
k�k, where

Ĥ ′
k = εkÎ + 2λ[sin kxσ̂y + sin kyσ̂x], (14)

where εk = −2t(cos kxx + cos kyy). The energy spectra of
Eq. (14) read

E′
± = εk ± 2λ

√
sin2 kx + sin2 ky. (15)
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(a)
(b)

FIG. 2. (Color online) (a) The dependence of the spin-independent hopping integral t and the spin-dependent one λ vs the SO coupling
strength γ = kso/k0. The optical potential depth is V0 = 8Er . (b) Sketch of Wannier wave functions for f (r) (solid black line), f (r − a) (solid
red line), and g(r) (dashed blue line) in Eq. (16), where a is the lattice constant.

The band minima are fourfold degenerate at the points Qsc =
(±k,±k), where k = arctan λ√

2t
.

Next we calculate the band parameters t and λ versus the
SO coupling parameter γ by fitting the band spectra using the
plane-wave basis in the continuum. The results are plotted in
Fig. 2(a). Both t and λ oscillate and decay with increasing
γ , which can be understood from the behavior of the on-site
Wannier functions. Each optical site can be viewed as a local
harmonic potential and the lowest single-particle state wave
function was calculated in Ref. [8],

ψjz= 1
2
(�r) = [f (r),g(r)eiφ]T , (16)

and its time-reversal partner is ψjz=− 1
2
(�r) = [−g(r)eiφ,f (r)].

f (r) and g(r) are real radial wave functions, which exhibit
characteristic oscillations with the pitch value kso and a relative
phase shift approximately π

2 as plotted in Fig. 2(b). t and λ

are related to the off-centered integrals of f (r) and g(r) of
two sites, which overlap in the middle. As a result, t and λ

also oscillate as increasing γ , which also exhibit a phase shift
approximately at π/2 as shown in Fig. 2(a).

We would like to clarify one important and subtle point.
Actually the on-site Wannier functions are no longer spin
eigenstates, but the total angular momentum eigenstate jz = 1

2 ,

and thus are still a pair of Kramer doublets. For the operators
(bi↑,bi,↓)T defined on site i, they do not refer to spin eigenbasis
but to the jz eigenbasis. In fact, in the case that kso � k0,
the on-site spin moments are nearly zero. The jz movements
mainly come from an orbital angular momentum. As pointed
out in Ref. [8], the Wannier functions of jz eigenstates exhibit
skyrmion-type spin texture distributions and a half-quantum
vortex on each site. This phenomena also remind us of
the Friedel oscillation in solid-state physics. In the case of
kso � k0, each site exhibits Landau level-type quantization:
States with different values of jz are nearly degenerate [8,18],
and a single band picture ceases to work here.

Deep inside the Mott-insulating phase, we obtain the
effective magnetic Hamiltonian:

H ′
eff =

∑
i

[
H ′

i,i+êy
+ H ′

i,i+êx

]
. (17)

H ′
i,i+êx

is the same as Eq. (10), and

H ′
i,i+êy

= −J1Si · Si+êy
− J12di,i+êy

· (
Si × Si+êy

)
+J2

[
Si · Si+êy

− 2
(
Si · di,i+êy

)(
Si+êy

· di,i+êy

)]
,

(18)

FIG. 3. (Color online) (a) The pattern of DM vectors of the superexchange magnetic model in the Mott-insulating state. (b) Illustration of
the frustration in the spin configuration with DM interactions; the rotations around the x and y axes do not commutate with each other.
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where di,i+êy
= êx . The pattern of the DM vectors is shown in

Fig. 3(a), which is strongly reminiscent of that in the cuprate
superconductor YBa2Cu3O6 [27,28]. The classical ground
state of Eq. (17) is nontrivial because the DM interaction
cannot be gauged away: DM vectors in horizontal bonds favor
spiraling around the y axis, while those in vertical bonds
favor spiraling around the x axis. Since rotations around the
x and y axes do not commune, no spin configurations can
simultaneously satisfy both requirements, which leads to spin
frustrations shown in Fig. 3(b).

The quantum situation of Eq. (17) is even more involved,
which can only be solved approximately. Below we focus on
two situations: |λ| � |t | and |λ| � |t |. At λ = 0, the ground
state of Eq. (17) is known to be ferromagnetic. At |λ/t | � 1,
we use a spin-wave approximation to analyze the instability
of a ferromagnetic state induced by the DM interaction.
Notice that in this case, it is impossible to find a global
rotation as in Eq. (11) to gauge away the DM vectors and
transform Eq. (17) to an SO(3) invariant Hamiltonian, and
thus the quantized axis in the spin-wave analysis cannot be
chosen arbitrarily. To gain some insight, we choose a classic
ferromagnetic state as a variational ground state parametrized
by Si = S(cos γ sin η, sin γ sin η, cos η). The corresponding
variational energy E0 = −S2(J1 − J2 + 2 sin2 ηJ2) is mini-
mized when η = π/2, which implies that the xy plane is the
easy plane.

To calculate the spin-wave spectra, it is convenient to
rotate the coordinate so that the new z-axis points along the
direction l = [1̄1̄0] in the original coordinate (we choose l as
the quantized axis). The Holstein-Primakoff transformation is
employed to transform Eq. (17) into the bosonic Hamiltonian:

Hb =
∑
i,μ

−J0(cos 2θ − i sin 2θ/
√

2)a†
i ai+eμ

+ H.c., (19)

where θ = arctan(λ/t) as defined above, μ = x,y. We only
keep quadric terms and ignore the terms proportional to sin2 θ

since λ/t � 1. In momentum space, it becomes

H ′
ex = −2J0

∑
k

[
cos 2θ cos kx + 1√

2
sin 2θ sin kx

+ cos 2θ cos ky + 1√
2

sin 2θ sin ky

]
c
†
kck. (20)

The minimum of the dispersion of Eq. (20) occurs at points
QM = (±k′,±k′), where k′ satisfies tan k′ = 1√

2
tan 2θ . Com-

paring it with the energy minima in the noninteracting band
Hamiltonian Qsf = (±k,±k), we have k′ = 2k at the limit of
γ → 0. The nonzero minimum of the magnon spectrum is a
signature of the spin spiral order, as shown in Fig. 4(a).

In the opposite limit of |λ/t | � 1, if we consider the
Eq. (17) as a classic Hamiltonian, the J2 term has a continuous

FIG. 4. (Color online) (a) Spin spiral ordering in the limit of
|λ| � |t |. (b) The 2 × 2 pattern in limit of |t | � |λ|.

degenerate manifold. The DM J12 energy is zero for all of
them, and thus does not lift the degeneracy. The ferromagnetic
coupling J1 term selects the configuration of spin lying on
the xy plane with the 2 × 2 pattern shown in Fig. 4(b). This
is a discrete symmetry-breaking state, and thus there is no
Goldstone mode for these 2 × 2 states. The magnon excitation
should be gapped even at a quantum level, and such a state
is stable at large values of λ/t . For the intermediate values of
λ/t , we expect quantum phase transitions from the spin spiral
state in Fig. 4(a) to the 2 × 2 state in Fig. 4(b). Due to the very
different spin configurations, rich phase structures with exotic
patterns of spin spirals and textures are expected.

The magnetic orders proposed above can be detected by
the spin-dependent Bragg scattering. The transition rate for
the elastic Bragg scattering is directly related to the spin
structure factor for the atoms, and thus will exhibit a peak in the
characteristic momentum Q of the spin spiral states. Similar
methods have been proposed to detect the antiferromagnetic
state [29] as well as the FFLO state [24,25,30] in cold atoms.

In conclusion, we have investigated the magnetic ordering
of a two-component Bose-Hubbard model with synthetic
SO coupling. The band parameters of hopping integrals
exhibit characteristic oscillations with increasing SO coupling
strength, and the on-site magnetic moments are nearly orbital
moments at large SO coupling strength. In the Mott-insulating
state with one particle per site, an effective magnetic superex-
change model with the DM-type interaction is derived. The
spin spiral state and the 2 × 2 states are found in the limits of
|λ| � |t | and |λ| � |t |, respectively.

Recently, we become aware two papers on the similar topic
[31,32]. We also recently became aware of Ref. [33].
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