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Mott insulating states of the anisotropic SU(4) Dirac fermions
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We employ the large-scale quantum Monte Carlo simulations to investigate the Mott-insulating states of the
half-filled SU(4) Hubbard model on the square lattice with a staggered-flux pattern. The noninteracting band
structure that evolves from a nested Fermi surface at zero flux to isotropic Dirac cones at π flux, exhibits
anisotropic Dirac cones as the flux varies in between. Our simulations show transitions between the three phases
of the Dirac semimetal, antiferromagnet, and valence-bond solid. A direct continuous transition between the
antiferromagnetic phase and the valence-bond-solid phase is realized via varying the flux in the Mott regime.
The simulated critical exponents remarkably agree with those of SU(4) J-Q model. Inside the valence-bond-solid
phase induced by the flux, the plaquette valence-bond state with vanishing single-particle gap is identified. At
strong coupling, the valence-bond-solid phase disappears and the Mott-insulating state is always accompanied
by antiferromagnetic ordering, regardless of the magnitude of the flux.
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I. INTRODUCTION

Quantum phase transition has long been among the re-
search foci of condensed matter physics, which is driven
by quantum fluctuations in many-body systems [1]. Systems
with enlarged degrees of freedom can exhibit SU(2N) sym-
metry, which can induce even richer states of matter [2,3].
SU(2N) symmetry is common in high-energy physics, while
it early emerged in condensed matter physics as a mathemat-
ical tool of the 1/N expansion for the purpose of handling
strong correlation effects [4–7]. After years of development,
the SU(4) symmetry can arise in realistic solid-state sys-
tems: transition-metal oxides by tuning the parameters of the
two-orbital model [8–11], the d1 systems such as α-ZrCl3
by combining spin and orbital to form the local moment
of j = 3/2 in the strong spin-orbit coupling limit [12], and
twisted bilayer systems where the layer pseudospin and the
real spin are unified together [13,14]. Beyond research on con-
densed matter, it has been proposed that large-spin ultracold
fermions trapped in optical lattices provide highly tunable
systems to explore exotic many-body SU(2N) and Sp(2N)
physics [15–20]. Recent experiments have witnessed dramatic
developments on SU(2N) physics in cold atoms [21–27], par-
ticularly the SU(6) Mott insulator [28] and antiferromagnetic
correlations [29,30]. The SU(2N) fermionic atoms are more
quantum-like since the number of large spin components 2N
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enhances quantum fluctuations, while in contrast, the SU(2)
fermions with large composite spin magnitude S are very
classical-like. The fermionic atoms with SU(2N) (N > 1)
symmetry can generate even richer quantum phases than elec-
trons, which greatly enriches the understanding of quantum
phase transitions.

The Hubbard model is a prototype model for studying
Mott transitions of strongly correlated fermions. The Mott-
insulating states of the half-filled SU(2) model are associated
with antiferromagnetic (AFM) order on a square lattice, inde-
pendent of the flux [31–35]. In the half-filled SU(4) model,
the minimal SU(2N) symmetry beyond SU(2), the Mott tran-
sition on a square lattice is accompanied with the AFM
ordering which varies nonmonotonically with increasing Hub-
bard U , first ascending to a peak value and then descending
to a finite residual value [36–38]. By contrast, in the half-
filled SU(4) models on both the honeycomb and π -flux
square lattices, which exhibit the Dirac spectrum, the valence-
bond-solid (VBS) order emerges in the Mott-insulating state
[39,40].

In this paper, we explore Mott physics in the half-filled
staggered-flux SU(4) Hubbard model on a square lattice.
The synthetic flux (0 < φ � π ) coupled to the hopping of
fermions is treated as a control parameter of phase transi-
tion. Our sign-problem-free projector determinant quantum
Monte Carlo (QMC) simulations demonstrate a continuous
AFM-VBS quantum phase transition via tuning the flux,
and interestingly, identify a plaquette valence-bond order-
ing region with finite spin gaps but vanishing single-particle
gaps.
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FIG. 1. (a) The square lattice with a staggered-flux pattern. The
fermion hopping around a plaquette along the direction of the arrow
acquires a phase φ. (b) The Brillouin zone (red) and the Dirac points
K = ( π

2 , π

2 ), K′ = ( π

2 , − π

2 ).

II. MODEL

We consider the half-filled SU(4) Hubbard model on the
square lattice with a staggered-flux pattern

H = −
∑

〈i j〉,α
(ti jc

†
iαc jα + H.c.) + U

2

∑

i

(ni − 2)2, (1)

where 〈i j〉 denotes the nearest-neighbor (NN) sites and α is
the flavor index running from 1 to 4. U describes the Hubbard
repulsion and ni = ∑4

α=1 c†
iαciα is the on-site particle number

operator at site i. The Hamiltonian satisfies the particle-hole
symmetry, meaning that it is at half filling. The NN hopping
term is written as ti j = teiθi j where t = 1 is set as the energy
unit in our simulations. As illustrated in Fig. 1(a), when hop-
ping around a plaquette once, the fermion acquires a phase∑

� θi j = (−1)ix+iyφ where the symbol
∑

� is the sum over
the four sites in a plaquette and (ix, iy) is the coordinate of the
bottom-left site. When φ = 0, π , the time-reversal symmetry
is restored (let |θi j | = φ/4 for convenience). The staggered
flux states were theoretically proposed in the study of strongly
correlated systems such as high-Tc cuprates [4,41]. In cold
atom experiments, the synthetic flux of the order of flux quan-
tum per plaquette has been realized in optical lattices [42–44].
Moreover, various tunable alternating flux patterns have been
implemented on the square [45], triangular [46], and honey-
comb [47] lattices by laser-assisted tunneling, lattice shaking,
and lattice modulation, respectively.

In the noninteracting limit, when φ = π , there exist two
low-energy Dirac cones located at ( π

2 ,±π
2 ) for each flavor

and the Fermi velocity is vF = 2t/h̄. When 0 < φ < π , the
Dirac cones become anisotropic, namely, that the Fermi ve-
locities around ( π

2 , π
2 ) turn out to be h̄v⊥

F = 2
√

2t cos φ

4 along

the (êkx + êky )/
√

2 direction and h̄v
‖
F = 2

√
2t sin φ

4 along the
(êkx − êky )/

√
2 direction [48]. With increasing φ, the differ-

ence between v⊥
F and v

‖
F decreases, leading to the suppression

of the anisotropy of Dirac cones.

III. AFM-VBS TRANSITION

The projector-determinant QMC method [57,58] is em-
ployed to investigate competing orders in our model via
varying φ and U . At half-filling it is sign-problem-free and
yields asymptotically exact results [36,40]. Variation of flux

FIG. 2. Schematics of (a) pVBS, (b) cVBS, and (c) AFM orders.

modulates the anisotropy of Dirac cones, which, in turn, af-
fects the orderings in the Mott-insulating states. The AFM
order takes place at the wave vector Q = (π, π ). The VBS
orderings include the plaquette VBS (pVBS) and the colum-
nar VBS (cVBS) patterns as depicted in Figs. 2(a) and 2(b),
respectively. The ordering wave vector for the cVBS is Qx =
(π, 0), or, Qy = (0, π ). The pVBS is a superposition of cVBS
orderings both at Qx and Qy.

The correlation functions and structure factors are used
to characterize the AFM and VBS ordering. For the AFM
order, the equal-time SU(2N) spin-spin correlation function
is defined as S(i, j) = ∑

α,β〈Sαβ (i)Sβα ( j)〉 where Sαβ (i) =
c†

i,αci,β − δαβ

2N

∑2N
γ=1 c†

i,γ ci,γ are the spin generators for a
SU(2N) group. The spin structure factor is then defined via
the spin-spin correlation functions

χS (Q) = 1

L2

∑

i j

S(i, j)eiQ·ri j , (2)

where ri j = ri − r j is the relative position vector between
sites i and j. Then the AFM order parameter is given
by the expression limL→∞

√
χS (Q)/L. For the VBS order,

the bond operator di,êa is defined via the kinetic energy
di,êa = ∑2N

α=1(ti,i+êa c†
iαci+êa,α + H.c.) where êa (a = x, y) are

the primitive lattice vectors of the square lattice. The VBS
structure factor is then defined in terms of the bond-bond
correlations

χD =
∑

a=x,y

χD,a(Qa) =
∑

a=x,y

1

L2

∑

i j

〈
di,êa d j,êa

〉
eiQari j . (3)

The expression limL→∞
√

χD/L serves as the VBS order pa-
rameter. Note that, due to the suppression of the overall kinetic
energy scale, the VBS order parameter defined by Eq. (3)
decreases to the order of magnitude of |t |2/U in the large-U
regime [39,40].

To locate the transition point more accurately, we consider
the AFM and VBS correlation ratios

RAFM = 1 − 1

4

∑

a=x,y

χS (Q − δqa) + χS (Q + δqa)

χS (Q)
,

RVBS = 1 − 1

4

∑

a=x,y

∑

b=x,y

χD,a(Qa + δqb)

χD,a(Qa)
,

(4)

with δqx = ( 2π
L , 0) and δqy = (0, 2π

L ), which approach their
size-independent values for sufficiently large L. Note that
the ratio between the SU(4) AFM and VBS structure fac-
tors, χS (Q)/χD, is independent of the lattice size at the
AFM-VBS critical point due to the emergence of enlarged
symmetries [59].
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FIG. 3. (a) The VBS correlation ratio; (b) the AFM correlation
ratio; (c) the ratio between the SU(4) AFM and VBS structure
factors; (d) the finite-size extrapolation of the crossing points. Here
U/t = 10.

We shall demonstrate the AFM-VBS Mott transition at
U/t = 10 by varying the flux φ. Figures 3(a), 3(b), and 3(c)
show, respectively, plots of RVBS, RAFM, and χS (Q)/χD as a
function of φ. In each case, the crossing points of curves for
lattice sizes L and L − 2 can be fitted into the curve equa-
tion φc(L) = φc + aL−b, and then the critical point is obtained
in the L → ∞ limit [34,60,61], according to which the critical
fluxes are found to be φc/π = 0.345(3) for VBS, φc/π =
0.356(13) for AFM and φc/π = 0.350(3) for χS (Q)/χD, as
shown in Fig. 3(d). The consistency of the critical fluxes infers
a direct continuous AFM-VBS transition in our model.

Figures 4(a) and 4(b) show the scaling collapse of the struc-
ture factors and correlation ratios, respectively. In the vicinity
of the critical point, they obey the scaling law characterized
by the anomalous scaling dimension η, the correlation length
critical exponent ν, and the dynamical critical exponent z as
[34,61–63]

χ (δφ, L) = L−(d+z−4+η)χ̃ (δφL
1
ν ), (5)

R(δφ, L) = R̃(δφL
1
ν ), (6)

where d = 2 is the spatial dimensionality; δφ = φ − φc is
the deviation from the critical point φc and χ̃ and R̃ are the
scaling functions; z = 1 [37,64–66]. We define ζ = −ν(d +
z − 2 + η)/2 for convenience. Typically, η can be obtained
from the slope of the log-log plot of χ versus L at the critical
point φc/π = 0.35, as shown in Fig. 4(c). η is found to be
0.50 and 0.92 via the linear fitting for the AFM and VBS
orders, respectively. Then, the best-fitting analysis is per-
formed in Fig. 4(d) where ζ and ν are obtained simultaneously
by optimizing the scaling collapse [67,68]. The critical ex-
ponents are summarized as follows: νAFM = 0.70(1), ηAFM =
0.50(4) and νVBS = 0.74(3), ηVBS = 0.92(2). The AFM and

FIG. 4. The scaling collapse of (a) structure factors and (b) cor-
relation ratios at U/t = 10. (c) The log-log plot of order parameters
versus L in the vicinity of critical point. (d) Best-fitting analysis of
the critical exponents ζ and ν simultaneously. The converged values
are colored while the initial guess values are greyed. The dashed lines
represent the standard errors.

VBS orders give rise to similar values of exponent ν but
different η due to the simplified definition of VBS order
parameter. Our QMC results of ν and η are almost identical
to those obtained from the SU(4) J-Q model [69,70] where
ν = 0.70(2) and ηAFM = 0.42(5), except for ηVBS = 0.64(5)
due to different definitions of the VBS order parameter. There-
fore, the AFM-VBS transitions in our model and the SU(4)
J-Q model belong to the same universality class.

IV. LARGE-U MOTT PHYSICS

The AFM and VBS order parameters for various U are
obtained by finite-size extrapolation, and then are extrapolated
to the large-U limit using a linear function of t/U . As shown
in Fig. 5(a), the AFM order parameter for finite U decreases
with φ, and in the large-U limit the AFM order parameters
for φ/π = 0, 0.1 and 0.25 reasonably converge to the same
extrapolated value 0.12(1) that is also found in the SU(4)
Heisenberg model [38]. At φ/π = 0.5, the VBS-AFM tran-
sition occurs with increasing U . Figure 5(b) shows that the
VBS order parameters vanish for U > 30, regardless of φ.

The suppression of AFM ordering with increasing flux φ

can be attributed to the ring-exchange process, which can be
understood by considering the Néel and SU(2N) bond singlet
configurations on a plaquette of the square lattice, as depicted
in Fig. 6.

To maintain the Néel configuration, spin-flip processes are
not allowed. In Fig. 6(a), two fermions of certain species on
one site can hop to the NN sites, but they must hop back,
canceling out the staggered phase ±φ. The number of NN
sites is denoted by the coordination number c, and then the
total number of the virtual hopping processes is cN (N − 1).
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FIG. 5. The finite-U extrapolation of the order parameters.
(a) The AFM (full circle) order parameters for φ/π � 0.5 and the
VBS (open square) order parameter at φ/π = 0.5. (b) The VBS
order parameters for φ/π � 0.5.

The interaction energy due to the virtual hopping process is
indicated for each configuration in Fig. 6. Therefore, the en-
ergy gain at the fourth-order superexchange level is cN (N −
1) t4

4U 3 → cN2J ′ with J ′ = t4

U 3 . Other types of fourth-order
superexchange processes [40] that own the same energy scale
of N2 are not depicted here.

Furthermore, as illustrated in Fig. 6(b), one fermion of a
certain species undergoes a (counterclockwise) ring-exchange
process around the plaquette, acquiring a staggered phase fac-
tor e±iφ . There is also the (clockwise) ring-exchange process
with a staggered phase factor e∓iφ around the same plaquette.
The total number of the virtual hopping processes is cN .
Hence, the energy gain of the fourth-order ring-exchange pro-
cess is cN t4

U 3 cos φ → cNJ� with J� = t4

U 3 cos φ.
In contrast, spin-flip processes are allowed in the SU(2N)

kinetic dimer and one site can only be involved in the for-
mation of a single singlet, as depicted in Fig. 6(c). The

FIG. 6. The fourth-order perturbation theory for the energy
scales of AFM and VBS orderings. (a) The superexchange pro-
cess occurring exclusively between two sites. (b) The ring-exchange
process connecting four lattice sites, relevant to AFM ordering.
(c) The superexchange process corresponding to the fourth-order
perturbation term in a two-site singlet bond. Interaction energies are
respectively indicated at the bottom of each configuration.

FIG. 7. In the L → ∞ limit, (a) the single-particle gap sg and
(b) the spin gap σ behave as a function of U for various φ. The
arrows indicate the critical coupling strength determined by the VBS
correlation ratio.

energy scale of the fourth-order superexchange process is
N (N − 1)(N + 2)(N + 1) t4

4U 3 → N4J ′.
Similarly, the energy gains at the second-order perturbation

level are cNJ and N (N + 1)J → N2J for the Néel and bond
singlet configurations, respectively, where J = t2

U .
Overall, the energy scale of the AFM state is estimated

at cNJ + cN2J ′ + cNJ�, while the energy scale of the VBS
state is estimated at N2J + N4J ′. Hence, increasing φ sup-
presses AFM due to the decrease of the ring-exchange term
J� at finite U , whereas, for sufficiently large U , the ring-
exchange process is inhibited so that the flux stops affecting
AFM ordering. In contrast, the VBS state is dimerized, in
which case the ring-exchange process does not contribute at
the leading level and thus is not affected by the increasing
flux.

V. GAP OPENING MECHANISM

The single-particle gap sg and the spin gap σ are defined
at the wave vector K = ( π

2 , π
2 ) and the AFM wave vector Q =

(π, π ), respectively. In the weak-coupling regime, for φ > 0
the system lies in the semimetal phase. With the increase of U ,
the system undergoes Mott transition accompanied by single-
particle gap opening. In the Mott-insulating regime, the spin
gap opens in the VBS phase, but closes in the AFM phase.

In Figs. 7(a) and 7(b), for various φ, the L → ∞ limits of
sg and σ are plotted as a function of U , respectively. For
φ/π = 0.35, the spin gap closes at U/t � 10, corresponding
to the Goldstone modes in the AFM phase. For φ/π = 0.5
and 0.7, the spin gap opens at Uc/t ≈ 9.1 and 9.5, respec-
tively, which coincides with the emergence of VBS orders.
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This means that spin-gap opening and symmetry breaking
occur simultaneously. Remarkably, in the coupling regime
9 � U/t � 10, sg = 0 but σ > 0. This can be interpreted
as a pVBS state, as explained below.

The kinetic bond operator between site i and site i +
êa is defined as di,êa = ∑2N

α=1 (ti,i+êa c†
iαci+êa,α + H.c.) where

a = x, y. Now, consider the bond-bond interaction term
− g

2

∑
i,a di,êa di,êa , and combine it with the noninteracting

Hamiltonian

H0 = −
∑

〈i j〉,α
(ti jc

†
iαc jα + H.c.), (7)

we obtain

H = H0 − g

2

∑

i,a

di,êa di,êa . (8)

The second term on the right-hand side can be expanded as

di,êa di,êa =
∑

αβ

(
t2
i,i+êa

c†
iαc†

iβci+êa,βci+êa,α

+ c†
iαci+êa,αc†

i+êa,β
ciβ + H.c.

)
. (9)

Since there is no long-range pairing order in our model, we
can omit the first pair-hopping term when performing the VBS
mean-field calculations. Therefore, the problem now is to find
the mean-field solution of the Hamiltonian

H = H0 − g
∑

i,a

∑

αβ

c†
iαci+êa,αc†

i+êa,β
ciβ. (10)

This allows us to construct the valence bond operator χ̂i,êa =
g
∑

α c†
iαci+êa,α [4,5]. By introducing the static Hubbard-

Stratonovich field χi,êa , the mean-field Hamiltonian is written
as [4,5]

HMF = H0 −
∑

i,a,α

(
χi,êa c†

i+êa,α
ciα + H.c.

)
, (11)

where χi,êa = g
∑

α〈c†
iαci+êa,α〉. For the VBS order, the mean-

field valence bond order parameter is defined as

χi,êa = χae−iQari , (12)

χa = g
∑

α

eiQari
〈
c†

iαci+êa,α

〉
, (13)

where e−iQari represents the periodic bonding strength along
the a axis. For convenience, the flavor index α is omitted
hereafter.

Substituting Eq. (12) into Eq. (11), the mean-field Hamil-
tonian in the reciprocal space takes the form

HMF = −
∑

k

[a(k)c†
AkcBk + H.c.]

+
∑

k

[
iχx sin kx

(
c†

A,k+Qx
cBk + c†

B,k+Qx
cAk

)

+ iχy sin ky
(
c†

A,k+Qy
cBk + c†

B,k+Qy
cAk

) + H.c.
]
, (14)

where ck ≡ (cAk, cBk ) is the basis of second quantized op-
erators for sublattices A and B, and a(k) = e−iφ/4 cos kx +
eiφ/4 cos ky. In the basis of (cK, c−K′ , c−K, cK′ ), the four zero-
energy single-particle states at Dirac points | ± K〉 and | ± K′〉

FIG. 8. The phase diagram of the SU(4) Hubbard model on
the square lattice with a staggered-flux pattern. Error bar on the
semimetal-pVBS phase boundary is smaller than the line width.

are connected by the valence bond orderings. The effective
Hamiltonian matrix is expressed as

HMF = −iχx|K〉〈−K′| − iχy|K〉〈K′|
+ iχx|−K〉〈K′| + iχy| − K〉〈−K′| + H.c. (15)

By the degenerate perturbation theory, the first-order correc-
tion λ is determined by

λ4 − 2λ2
(
χ2

x + χ2
y

) + (
χ2

x − χ2
y

)2 = 0. (16)

For pVBS ordering [Fig. 2(a)], χx = χy and then a two-fold
degeneracy remains (vanishing of the single-particle gap). By
contrast, for cVBS ordering [Fig. 2(b)], either χy = 0 or χx =
0, which completely lifts the degeneracy (gap opening). Thus
the VBS state with zero single-particle gap is a pVBS.

VI. PHASE DIAGRAM

The phase diagram for our staggered-flux SU(4) Hubbard
model is shown in Fig. 8. The blue and red solid curves
are respectively determined by the correlation ratios, which
depict the phase boundaries between semimetal, AFM, and
VBS phases. The pink dotted curve is the “boundary” of
the pVBS phase with vanishing single-particle gap, while the
green dotted curve is the “boundary” of the VBS phase with
single-particle gap opening (with denser data, the two “bound-
aries” should merge into one). The blue dashed curve fits the
blue-square points corresponding to the vanishing VBS order
parameter. When U/t � 11, the blue and red solid curves be-
tween AFM and VBS phases do not precisely coincide owing
to strong finite-size effects.

In the large-U regime U/t > 30, the Mott-insulating states
always accompany with AFM ordering which is consistent
with the SU(4) Heisenberg model. When 8.2 � U/t � 30,
the continuous AFM-VBS transitions occur at critical cou-
pling Uc(φ) which increases with the flux φ. Remarkably
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when 8.2 � U/t � 9, the φ-induced AFM-pVBS transitions
accompany with single-particle gap closing and spin-gap
opening. For φ/π � 0.25, the U -induced Mott transitions
occur with the emergence of AFM order, whereas for 0.25 �
φ/π < 1 semimetal-pVBS transitions do not open a Mott gap.

VII. CONCLUSION

We performed the large-scale QMC simulations to in-
vestigate the Mott-insulating states of the half-filled SU(4)
Hubbard model on the square lattice with a staggered-flux
pattern. Increasing flux φ suppresses the single-particle gap
opening and the AFM ordering, whereas the effects of the flux
is completely inhibited in the large-U limit where our model
reduces to the SU(4) Heisenberg model. With the influence of
flux φ, the VBS phase emerges in the SU(4) Dirac fermions,
and particularly the pVBS phase with zero single-particle
gap is identified. We realized the continuous AFM-VBS tran-
sition in the SU(4) Hubbard model via tuning the flux φ

when 8.2 � U/t � 30. The critical exponents calculated by
QMC simulations remarkably agree with those of the SU(4)
J-Q model. In comparison with other SU(4) models for

AFM-VBS transitions, our model opens an avenue for ex-
ploring the AFM-VBS transition in a prototype model [e.g.,
SU(4) Hubbard model] by tuning a realistic controllable pa-
rameter (e.g., synthetic flux φ in optical lattices). In general,
the emergence of VBS order accompanies the opening of the
single-particle gap and spin gap. In our simulations we found a
pVBS region of 8.2 � U/t � 10 and 0.25 � φ/π < 1 where
the single-particle gap closes. This result extends the under-
standing of VBS states.

It is worth noting that spin gap calculations using
imaginary-time Green’s function formalism may not distin-
guish a “pseudo gap” due to overdamped spin excitations
around (π, π ), which is left for future study.
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