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Slater and Mott insulating states in the SU(6) Hubbard model
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We perform large-scale projector determinant quantum Monte Carlo simulations to study the insulating states
of the half-filled SU(6) Hubbard model on the square lattice. The transition from the antiferromagnetic state
to the valence bond solid state occurs as increasing the Hubbard U . In contrast, in the SU(2) and SU(4) cases
antiferromagnetism persists throughout the entire interaction range. In the SU(6) case, antiferromagnetism starts
to develop in the weak interacting regime based on the Slater mechanism of Fermi surface nesting. As U passes
a crossover value U ∗/t ≈ 9, the single-particle gap scales linearly with U , marking the onset of Mott physics. In
the Mott regime, antiferromagnetism becomes to be suppressed as U increases and vanishes after U passes the
critical value UAF,c/t = 13.3 ± 0.05. The critical exponents are obtained via critical scalings as νAF = 0.60 ±
0.02 and ηAF = 0.44 ± 0.03. As U further increases, the valence bond solid ordering appears exhibiting the
anomalous dimension ηVBS = 0.98 ± 0.01.
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I. INTRODUCTION

How repulsive interactions turn a partially filled electron
band into the insulating state is an important question of
strong correlation physics. In the presence of nested Fermi
surfaces, the antiferromagnetic (AF) order appears at infinites-
imal interactions based on Fermi surface nesting. The single-
particle gap is at the same order of the AF gap function [1].
Such a state is known as the Slater insulator exhibiting strong
charge fluctuations. On the other hand, charge fluctuations are
frozen in the strong interaction regime due to the large charge
gap linearly scaling with the repulsive interaction [2], and
such a state is Mott insulating. The low-energy physics lies in
the spin channel arising from the superexchange among local
spin moments. Mott insulators can even exhibit no symmetry
breaking; for example, the one-dimensional Hubbard model
at half-filling exhibits power-law AF correlations and charge
gap but without long-range AF ordering.

However, in strongly correlated electron systems, the
above two pictures of insulators are often blended together
[3,4]. For example, in the half-filled SU(2) Hubbard model
on the square lattice, Fermi surface nesting leads to the Slater
AF state at weak U , while the strong U side is effectively
described by the Heisenberg model and attributed to the Mott
AF insulator. Both regimes exhibit the commensurate Neel
ordering smoothly connected by a crossover [5,6].

In recent years, the rapid development of ultracold atoms
has provided a new route to investigate strong correlation
physics. It was proposed that cold fermions with multiple spin
components are ideal systems to study high symmetries that
typically are met in high-energy physics [7–9]. For example,
the spin-3/2 fermion systems possess a generic Sp(4) sym-
metry without fine-tuning, which is further enlarged to SU(4)
when the interaction is spin-independent. These symmetries
play an important role to study novel quantum magnetism

beyond SU(2) [7,10–14]. The study of high-symmetric ultra-
cold fermions has been attracting considerable interest both
experimental and theoretical recently [7,8,15–17].

As for the SU(4) Hubbard model at half-filling on the
square lattice, i.e., two fermions per site, a pervious determi-
nant quantum Monte Carlo shows that the AF order is non-
monotonic as U increases: After reaching a maximal at U/t ≈
8, the AF order starts to decrease but remains finite throughout
the interaction range simulated U/t � 20 [13]. Meanwhile,
the system exhibits no valence bond solid (VBS) ordering.
A recent study directly on the SU(4) Heisenberg model with
the one-column self-conjugate representation also shows the
survival of the AF order [18]; hence, the AF order should
also persist through the entire interaction range. The SU(4)
and SU(6) Hubbard models of Dirac fermions in the honey-
comb lattice and the π -flux square lattice exhibit the transition
from the Dirac semimetal phase to VBS state and show the
absence of the AF order [19,20]. In contrast, the half-filled
SU(6) Hubbard model in the square lattice behaves very
differently. The QMC simulations show a transition from the
AF state at weak U to the VBS state at strong U [13,21]. In
the weak U limit, the AF is a direct consequence of the Fermi
surface nesting and the Van Hove singularity, while the VBS
state is a manifestation of the Mott physics. How such a Slater
to Mott transition occurs is an interesting and open question,
which is the main aim of the present work.

On the other hand, the quantum phase transition from the
AF state to the VBS one is argued to be continuous as a result
of the deconfined criticality beyond the Landau-Ginzburg-
Wilson paradigm [22]. Such a prediction has been supported
by numerical simulations in recent years [23,24]. But there
are also works claiming the first-order phase transition [25].
Nearly all these models studied so far are based on quantum
spin models in which charge fluctuations are frozen. It would
be interesting to directly investigate the transition between the
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FIG. 1. Phase diagram of the half-filled SU(6) Hubbard model.
The AF and VBS order parameters are defined as

√
m2

Q and
√

O2
vbs

at L → ∞ marked by the blue and green lines, respectively. The
error bars are determined by the 95% confidence bounds of the least-
square fittings of the finite-size data. The single-particle gap �c at
U/t � 10 marked by the red line is extracted from the single-particle
Green’s function at k = (π, 0) and L = 14. The solid black line
indicates the transition from AF to VBS, which is obtained from the
data crossing as shown in Fig. 3. The dashed black line is obtained
from the linear extrapolation (dashed red line) of �c at large U ,
which indicates the crossover from the Slate and Mott regimes. (The
order parameter values at U/t � 8 are taken from Ref. [13], and �c

at U/t = 8 is taken from Ref. [31].)

AF and VBS states based on the fermionic Hubbard model,
which takes into account both charge and spin fluctuations.

An additional motivation of this work is that the AF order
studied below belongs to the self-conjugate representation of
SU(N), which could be described by the U (N )/[U (N/2) ⊗
U (N/2)] nonlinear σ -model [26–28]. The symmetry class is
different from the widely studied CPN−1 model which respects
the fundamental representation corresponding to the case of
U (N )/[U (1) ⊗ U (N − 1)]. Therefore, the AF phase transi-
tion here (if continuous) belongs to a different universality
class, the critical exponents of which would be interesting to
characterize such a university class.

In this work, we apply the projector determinant QMC free
of the sign problem to study the half-filled SU(6) Hubbard
model on the square lattice. By employing a different ap-
proach (without the pinning field), we confirm the previous
results of the SU(6) Hubbard model [13]: the AF-VBS transi-
tion as U increases. Furthermore, we focus on the Slater-Mott
crossover and the critical behavior of the AF-VBS transition
in this work. Our main results are shown in Fig. 1. From the
slope of the single-particle gap, a crossover from the Slater
to Mott insulating regime around U ∗/t ≈ 9 are accompanied
by the obvious enhancement of the AF order. The AF order
reaches the maximum around U/t ≈ 10 and then starts to
drop as U further increases. In the Mott insulator side, the
vanishing of the AF order occurs at UAF,c/t = 13.3 ± 0.05,
and simulations show a continuous transition with the critical
exponents νAF = 0.60 ± 0.02 and ηAF = 0.44 ± 0.03. As for
the appearance of the VBS order, ηVBS = 0.98 ± 0.01, and

more properties of this transition will be deferred for a future
study.

II. THE MODEL DEFINITION AND QMC PARAMETERS

The SU(N) Hubbard model on the square lattice at half-
filling is defined as

H = −t
∑

〈i, j〉,α

(
c†

iαc jα + H.c.
) + U

2

∑
i

(
ni − N

2

)2

, (1)

where ciα is a fermion annihilation operator with i the site
index and α the flavor index satisfying 1 � α � N . The t-
term represents hoppings between the nearest - sites, and
t is the hopping integral. The U -term describes the on-site
Hubbard interaction as usual and the onsite particle number
ni = ∑N

α=1 c†
iαciα . Equation (1) satisfies the particle-hole sym-

metry; hence, the average particle number per site is fixed
at N/2, and the chemical potential μ is not shown explicitly.
When N = 2, Eq. (1) goes back to the usual spin- 1

2 Hubbard
model. In this article, we focus on N = 6.

The half-filled SU(N) (with even N) Hubbard model on a
bipartite lattice is free of the sign problem in auxiliary field
QMC simulations as a result of the particle-hole symmetry
[29], which enables us to perform large-scale simulations.
Details of the algorithm can be found elsewhere [13,19,30]
and will not be repeated here. In our simulations, the projec-
tion time β = 2L is used, which is long enough to achieve
convergence for a given linear lattice size L up to 24. The
discrete time slice �τ = 0.05 is chosen. For each group of
parameters, the simulation is performed on 24 cores with 1000
Monte Carlo steps for warming up and no less than 1000 steps
for measurements on each core. The exception is the case
of L = 24, which is performed on 48 cores with 500 Monte
Carlo steps for warming up and no less then 500 steps for
measurements.

For later convenience, we define the following correlation
functions. For the AF order, due to the SU(6) symmetry, we
take the diagonal component of the spin-moment operator

mr = 1

6

(
3∑

α=1

nrα −
6∑

α=4

nrα

)
, (2)

whose largest eigenvalue is normalized to 1/2 as in the case of
SU(2). The Fourier component of spin moment at Q = (π, π )
corresponds to the AF order parameter m = 1

L2

∑
r mr (−1)r .

Due to the finite sizes of QMC simulations, there is no spon-
taneous symmetry breaking, and we measure spin structural
factor defined as the equal-time spin-spin correlation,

SmQ = 1

L2

∑
rr′

〈mrmr′ 〉(−1)r−r′
. (3)

To describe the VBS order, we define the kinetic dimer
operator,

drê =
6∑

α=1

(c†
rαcr+êα + c†

r+êcrα ), (4)

where ê = x̂, ŷ. Then the VBS order parameters dx̂ and dŷ

are defined as the Fourier components at (π, 0) and (0, π ),
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respectively,

dx̂(ŷ) = 1

L2

∑
r

drx̂(ŷ)(−1)rx (ry ). (5)

Again, we directly measure the structure factor of dimer-
dimer correlation,

Svbs = 1

L2

∑
rr′,ê

〈drêdr′ ê〉(−1)rê−r′
ê . (6)

In large U limit (Heisenberg limit), the kinetic dimer order is
equivalent to the spin-Peierls VBS, defined as

drê ∝ t

U

∑
αβ

c†
rαcrβc†

r+êβcr+êα, (7)

for the SU(N) Heisenberg models [28,32] through the second-
order perturbation theory. (For finite U , charge fluctuations
may cause the inequivalence of these two kinds of VBS
definitions.) Based on the AF and VBS structure factors SmQ

and Svbs, we further denote

m2
Q(L) = SmQ/L2, O2

vbs(L) = Svbs/L2. (8)

In the presence of long-range ordering of AF and VBS, m2
Q

and O2
vbs exhibit nonvanishing values in the thermodynamic

limit L → ∞, respectively.

III. QMC SIMULATION RESULTS

We first present the single-particle gap �c extracted
from the slope of ln G(τ, k), where G(τ, k) is the
single-particle Green’s function defined as G(τ, k) =
− 1

L2

∑
rr′ 〈Tτ crα (τ )c†

r′α〉eik·(r−r′ ). The momentum k is taken at
(π, 0) on the Fermi surface. The results for L = 14 are shown
in Fig. 1. When �c � 1, it shows very little size dependence,
because it describes the local charge fluctuations with a very
short charge coherence length estimated as ξc ∼ t/�c � 1.
Hence, the results at L = 14 already can be taken as the
thermodynamic limit. An interesting observation is the nearly
linear dependence of �c on U at U > U ∗ ≈ 9t , whose slope
is very close to 1/2, indicating the characteristic feature of
the Mott insulator. This is consistent with that in the atomic
limit, i.e., t/U → 0, which is simply U/2, the energy cost
by adding or removing an electron on the half-filled Mott
insulating background. On the other hand, in the regime
U < U ∗, �c keeps at very small values, which is consistent
with the AF insulators based on the Fermi surface nesting as
in a Slater insulator. Therefore, we take U ∗ as a crossover
from the Slater to Mott regimes since no symmetry breaking
occurs.

Next we consider the AF and VBS orderings near the AF-
VBS transition by performing the finite-size extrapolation of
m2

Q and O2
vbs at L → ∞. Without a precise prior knowledge of

finite-size effects, we have tried different fitting functions. It
turns out that the usual polynomial (neither square nor cubic)
functions of 1/L used in Ref. [33] fail to fit the data. Instead,
a simple (noninteger) power-law function

f (L) = a + b

Lc
(9)
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FIG. 2. Finite-size extrapolations of (a) m2
Q and (b) O2

vbs vs 1/L
at various values of U near the quantum phase transition point. The
fitting uses the power-law relation given in Eq. (9). The logarithmic
coordinates are used for the vertical axes for the order parameter
squares.

works pretty well, where a, b, and c are fitting parameters.
We suspect that this is due to strong quantum fluctuations in
the interaction parameter regime (from U/t = 10 to 16) near
the quantum phase transition. The complex excitations would
significantly change the finite-size effect. The finite-size scal-
ings are shown in Fig. 2. The extrapolated values of the AF
and VBS order parameters are plotted in Fig. 1. Both of them
drop to zero as the interaction parameter approaches a small
regime of 13 < U/t < 13.5 from the opposite directions. We
have also checked the evolutions of total and kinetic energies.
Neither of them shows an obvious discontinuous behavior,
which suggests continuous transitions.

Certainly, there exist a few possibilities regarding the na-
ture of these two ordering transitions: (1) There is only a
direct second-order phase transition as in the framework of the
deconfined criticality, i.e., the two orderings share the same
critical value of U ; (2) they exhibit two separate but very close
second-order phase transitions with a quantum disordered
phase in between; (3) the same as in (2) but with a small
coexistence regime of both orders; and (4) a weak first-order
transition between them. To further address the details of these
transitions, we perform the following scaling analysis.

We first consider the scalings from the AF side. The
following definition of the AF correlation length is employed
based on spin-spin correlations [34],

ξAF = 1

q

√
m2

Q

m2
Q+q

− 1, (10)

where Q = (π, π ) is the ordering wave vector, and q is a small
deviation from Q chosen as q = (2π/L, 0). In Fig. 3(a) we
plot ξAF/L versus U at different values of L and find that
they cross at UAF,c/t = 13.3 ± 0.05, which is taken as the
transition point for the AF order.

Based on the critical value of UAF,c, we further perform the
data collapse as plotted in Fig. 3(b) according to the scaling
function of ξAF,

ξAF(U, L) = L f [|U − UAF,c|L1/νAF ], (11)
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FIG. 3. Scaling analysis of the AF correlation length ξAF and
correlation m2

Q. (a) ξAF/L vs U shows a crossing point at UAF,c/t =
13.3 ± 0.05. (b) The data collapse of ξAF/L as a universal function
of (U − Uc )L1/ν with ν = 0.60 ± 0.02. (c) Log-log plots for m2

Q vs
L in the vicinity of UAF,c The fitting of the slopes gives rise to the
anomalous dimension of ηAF.

where the exponent of the divergence of correlation length is
determined to be νAF = 0.60 ± 0.02. Such an exquisite scal-
ing behavior is a strong hint to a continuous phase transition.

At a quantum critical point, the two-point correlation
function in d + 1 dimensions is expected to be algebraic

decay as

〈(−)rmrm0〉 ∼
∫

dd qei 
q·
r
∫

dω

(
1

ω2/z + q2

) 2−ηAF
2

∼ 1

rd+z−(2−ηAF )
, (12)

where z is the dynamic critical exponent and ηAF is the
anomalous dimension [35]. After the Fourier transformation,
the structure factor at finite-size L scales as

m2
Q ∼ 1

Ld+z−2+ηAF
, (13)

at large enough values of L. In Fig. 3(c) m2
Q is plotted versus

L on a log-log coordinate around UAF,c, which exhibits a good
linear behavior up to L = 24. From their slopes, z + ηAF =
1.44 ± 0.03 is found. In our simulations, z is difficult to
determine accurately since it requires the time evolutions of
two-particle Green’s functions, which, however, tend to be
gapless at the critical point. If we adopt the z = 1 directly
following the prediction of the deconfined critical theory [22],
we arrive at the anomalous dimension ηAF = 0.44 ± 0.03.

Based on the above analysis, the AF transition exhibits
quite clear evidence of a second-order phase transition. Here
we summarize the critical value of UAF,c and the two critical
exponents for the AF transition as

UAF,c = 13.3 ± 0.05,

νAF = 0.60 ± 0.02, ηAF = 0.44 ± 0.03. (14)

As for the correlations for the VBS orderings, unfortu-
nately it is difficult to obtain high-quality data for the scaling
of the VBS correlation length to determine the critical value of
UVBS,c and compare it with UAF,c. Nevertheless, since the VBS
transition is very close to the AF one, we present the log-log
plot of O2

vbs(L) ∼ (1/L)d+z−2+ηVBS for U in the vicinity of
UAF,c. The fitting of the slopes yields z + ηVBS = 1.98 ± 0.01,
which corresponds to

ηVBS = 0.98 ± 0.01. (15)

The above anomalous dimensions ηAF and ηVBS are dif-
ferent from those obtained from the SU(6) J-Q model [24]
indicating they indeed belong to different universality classes.
Our case is based on the fermionic SU(6) Hubbard model, and
in its Mott insulating state each site is in the self-conjugate
representation, i.e., three fermions per site, while the J-Q
model is equivalent to the noncompact CP5 model in which
neighboring states belong to the SU(6) fundamental and anti-
fundamental representations.

In order to identify the type of the VBS order, we plot the
histograms of the VBS configurations during QMC simula-
tions, as shown in Fig. 4(b). Deep inside the VBS state (for
large U and large L), the histogram shows larger weights at
arg(dx + idy) = 0 than π/4, indicating that the VBS belongs
to the columnar type. However, near the phase boundary, the
histograms are difficult to tell of which type the VBS is, which
in fact is consistent with an emergent U (1) symmetry in the
framework of deconfined criticality [23].
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FIG. 4. (a) Log-log plots for O2
vbs vs L in the vicinity of UAF,c.

The fitting of the slopes gives rise to the anomalous dimension
ηvbs. (b) Histogram of the VBS configurations during the QMC
simulations. The result shows the VBS belongs to the columnar type
deep inside the VBS state.

IV. SUMMARY AND DISCUSSION

In summary, we have performed large-scale projector
QMC simulations on the half-filled SU(6) Hubbard model in
the square lattice. As U increases, we have found a crossover
at U ∗/t ≈ 9 from the Slater-AF to the Mott-AF insulators.
As U further increases, we find a (signature of) continuous
phase transition at Uc/t = 13.3 ± 0.05 from the Mott-AF to
Mott-VBS states.

Several remarks about these numerical observations are
given as follows: (1) The finite-size extrapolations in this work
are based on the power-law fitting in Eq. (9), which is different
from most studies, especially the SU(2) Heisenberg model
where the cubic-order polynomial works very well [33]. The
difference may be rooted in the stronger quantum fluctuations
from the higher symmetry group SU(N ). A full understanding
requires more sophisticated knowledge of the excitation

properties of the SU(N) Hubbard, which is left to future
studies. (2) We have also tried to obtain the universal plots of
ξVBS/L and Lz+ηVBS O2

vbs versus |U − Uc|L1/νVBS but failed. Of
course, this may be caused by insufficient lattice sizes up to
L = 24 in our simulations. However, another possible reason
may be the recently proposed two-length scaling hypothesis
[24], which requires very large lattice sizes difficult to
reach for the determinant QMC simulations for fermions.
(3) By symmetry analysis, the observed AF-VBS phase
transition belongs to a broader universality class governed by
a U (N )/[U (m) ⊗ U (N − m)] nonlinear sigma model beyond
the CPN−1 model corresponding to m = 1. A full understand-
ing, e.g., critical exponents, of the m > 1 models calls for
more elaborated theoretical efforts via, e.g., 1/N expansion
[36] or renormalization group analysis [37] in the future.

Our results here are remarkably different from those of the
SU(2) Hubbard model. We have shown that the suppression
of the AF order and the appearance of the VBS order in the
SU(6) case are caused by the strong quantum magnetic fluctu-
ations enhanced by the large symmetry group. In contrast, in
the plain SU(2) Hubbard model, only the AF order survives
while the VBS order does not appear in either the square
or the honeycomb lattice. Further enhancement of quantum
fluctuations is needed to stabilize the VBS order. One way
to achieve this goal is by introducing magnetic frustrations
via suitably designed interaction terms in the Hamiltonian
[23,38]. But typically the sign problem will appear such that
the QMC simulations would be very difficult. In our case,
we use a different strategy to increase the number of fermion
components that is simpler and can be realized in ultracold
atomic physics [15–17].

Another possibility of the long-range order in the large
N limit is the π -flux current order [32]. In our simulations,
we have not found evidence of such an order. The observed
AF and VBS orders break SU(N) and rotational symmetries,
respectively, both inconsistent with the π -flux order. The only
possibility for such an order is near the AF-VBS transition.
However, since such a transition is deep inside the Mott phase,
charge fluctuations as required by current carrying orders
[32,39] are already gapped out. Therefore, the π -flux order
is very unlikely in the SU(6) Hubbard model. Whether it can
exist for larger N > 6 is an interesting question.
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