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We have systematically studied the thermodynamic properties of a two-dimensional half-filled SU(2N )
Hubbard model on a square lattice by using the determinant quantum Monte Carlo method. The entropy-
temperature relation, the isoentropy curve, and the probability distribution of the on-site occupation number are
calculated in both SU(4) and SU(6) cases, which exhibit prominent features of the Pomeranchuk effect. We
analyze these thermodynamic behaviors based on energy scales in the density and spin channels. In the density
channel, the interaction strength that marks the crossover from the weak to strong interaction regimes increases
with the number of fermion components. In the spin channel, increasing the number of fermion components
enhances quantum spin fluctuations, which is shown in the simulations of uniform spin susceptibilities and
antiferromagnetic structure factors.
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I. INTRODUCTION

In condensed matter physics, the goal of generalizing SU(2)
lattice fermion or spin models to those with high symmetries
of SU(N ) [1–3] or Sp(N ) [4,5], was originally to employ
the systematic 1/N expansion to handle strong correlation
physics, especially in the cases with doping or frustrations.
Generally speaking, the large symmetries of SU(N ) and
Sp(N ) enhance quantum spin fluctuations and suppress the
antiferromagnetic (AF) order [1,2,5]. Various exotic quantum
paramagnetic phases have been proposed based on the large-N
method, including various valence bond solid states and
quantum spin liquid states [6–10]. However, in conventional
solid states, the SU(N ) symmetry is rare and thus the SU(N )
Hubbard or Heisenberg models are purely of academic interest.

With the rapid development of the ultracold atom experi-
ments, the realization of multicomponent fermionic Hubbard
models with the SU(2N ) or Sp(2N ) symmetry has become a
realistic goal (the number of fermion components due to the
hyperfine spin degree of freedom is naturally an even number).
It was proposed that the simplest Sp(2N ) and SU(2N ) Hubbard
models with 2N = 4 can be realized in the hyperfine spin-
3
2 alkali and alkaline-earth atoms [11,12]. In these spin- 3

2
Hubbard models, an exact Sp(4) spin symmetry exists without
any fine tuning of parameters, which is further enlarged to
SU(4) when the interactions do not rely on hyperfine spin.
The alkaline-earth atoms, e.g., 173Yb and 87Sr, have a closed
shell of valence electrons and thus their hyperfine spins are
simply nuclear spins. The interactions between the atoms with
different hyperfine spins are insensitive to the nuclear spins,
leading to the SU(2N ) symmetry with 2N being the number
of fermion components [13,14].

Recently, significant progress has been made in the experi-
ments of ultracold alkaline-earth fermions with large hyperfine
spins. The 173Yb and 87Sr atoms have been cooled down
to quantum degenerate temperatures [15–17], revealing the
SU(6) and SU(10) symmetries, respectively. Furthermore, an
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SU(6) single-band fermionic Hubbard model has also been
realized with 173Yb atoms in a three-dimensional (3D) optical
lattice [18]. Beyond the single-band case, the spin-exchange
interactions have recently been observed in the two-orbital
SU(6) and SU(10) fermion system, respectively [19,20].
Moreover, the number of spin components can be tuned
experimentally [21]. Theoretically, the novel symmetries of
the multicomponent Hubbard model can give rise to the novel
superfluidity [22–28] and exotic quantum magnetism [29–38].

In ultracold atom experiments, achieving low enough
temperature regime below the spin superexchange scale
has been considered a benchmark for simulating strongly
correlated quantum systems. Despite numerous efforts by
experimentalists, achieving this temperature regime is still out
of reach and remains one of the most challenging problems
in this field. So far, ultracold fermions in optical lattices have
been cooled down to temperature regime below the hopping
energy scale, T ∼ t . One of the promising schemes for further
cooling the system into spin superexchange scale T ∼ J is
known as interaction-induced adiabatic cooling [39], a cooling
scheme by adiabatically increasing interactions. This cooling
scheme utilizes the Pomeranchuk effect, which was originally
proposed in the 3He systems. However, for a conventional
two-component Hubbard model in lattices, the Pomeranchuk
effect is weak due to the antiferromagnetic correlations in
the SU(2) Mott insulator. It is still controversial whether the
system can be cooled down to spin superexchange temperature
by Pomeranchuk cooling [39–42]. As we show below, the
multicomponent SU(2N ) Hubbard model significantly facil-
itates the Pomeranchuk cooling, cooling the system down to
the temperature scale of J from an initial temperature that is
currently accessible in experiments.

This paper extends the previous work reported in Ref. [43].
We have performed detailed determinant quantum Monte
Carlo (DQMC) simulations of thermodynamic properties of
the half-filled SU(2N ) Hubbard model with 2N = 4 and 6 in
the temperature regime J < T < t . We calculated the entropy-
temperature relation and isoentropy curves, which show the
enhancement of entropy with increasing interaction strength
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in the intermediate temperature regime, i.e., the Pomeranchuk
effect. The probability distributions of the on-site occupation
number show the enhancement of particle localization as
temperature increases in the low and intermediate temperature
regimes. The uniform spin susceptibilities and AF structure
factors are also calculated.

The rest of this paper is organized as follows. In Sec. II,
we introduce the definition of the SU(2N ) Hubbard model.
A discussion of the density and spin energy scales of the
half-filled SU(2N ) Hubbard model is followed in Sec. III. The
parameters of the DQMC simulations are given in Sec. IV.
In Sec. V, we present the results of DQMC study on the
thermodynamic properties of the half-filled SU(4) and SU(6)
Hubbard models. Subsequently the probability distribution of
on-site occupation number is calculated in Sec. VI. In Sec. VII,
the magnetic properties at finite temperatures are investigated.
Conclusions are drawn in Sec. VIII.

II. SU(2N) HUBBARD MODEL

Since naturally the number of fermion components due
to the hyperfine spin degree of freedom is an even number,
we only consider Hubbard model with SU(2N ) symmetry. At
half-filling, an SU(2N ) Hubbard model is defined by the lattice
Hamiltonian:

H = −t
∑

〈i,j〉,α
{c†iαcjα + h.c.} + U

2

∑
i

(ni − N )2, (1)

where 〈i,j 〉 denotes nearest neighbors and the sum runs
over sites of a two-dimensional square lattice; α represents
spin indices running from 1 to 2N ; ni is the particle number
operator on site i defined by ni = ∑2N

α=1 c
†
iαciα; t and U

are the nearest-neighbor hopping integral and the on-site
interaction, respectively.

This definition of Hubbard Hamiltonian Eq. (1) offers
several advantages. In the atomic limit (t = 0), consider a half-
filled lattice with N particles per site, the energy cost of moving
a particle from one site to its neighboring site is U , which is
independent of N . Due to half-filling, the chemical potential μ

vanishes in this grand canonical Hamiltonian, and thus is not
explicitly shown in Eq. (1). Equation (1) possesses the particle-
hole symmetry in bipartite lattices, which removes the sign
problem in DQMC simulations for an arbitrary value of 2N .

In terms of the multiplets of SU(2N ) fermions in the
fundamental representation, the generators of the SU(2N )
group can be written as

Sαβ(i) = c†α(i)cβ(i) − δαβ

2N

2N∑
γ=1

c†γ (i)cγ (i), (2)

where α and β run from 1 to 2N . The generators defined
above are not independent of each other, since the diagonal
operators satisfy the relation,

∑
α Sαα(i) = 0. Nevertheless,

the definition of operators, Eq. (2), results in a simple
commutation relation

[Sαβ,Sγ δ] = δβγ Sαδ − δαδS
γβ. (3)

For convenience, we define the structure factor Ssu(2N)(q) as

Ssu(2N)(q) = 1

L2

∑
i,j

eiq·rSspin(i,j ), (4)

where r is the relative vector between sites i and j . Sspin(i,j )
is the SU(2N ) version of equal-time spin-spin correlation
functions defined by

Sspin(i,j ) = 1

(2N )2 − 1

∑
α,β

〈Sαβ,iSβα,j 〉. (5)

III. ENERGY SCALES IN DENSITY AND SPIN CHANNELS

Before going to the results of DQMC simulation, let us present
a qualitative understanding of the physics of the half-filled
Hubbard model on a square lattice. The density channel and
spin channel are characterized by two energy scales �c and
�s , respectively, which will be discussed in both the weak
and strong interaction regimes below. In condensed matter
literature, the term of charge channel is more frequently used.
To avoid confusion, here we use density instead of charge,
since ultracold atoms are neutral.

A. Weak interaction regime and atomic limit

We first consider the weak interaction limit (U → 0). In this
regime, the underlying Fermi surface plays an important role,
which possesses the diamond shape and thus exhibits perfect
nesting. The key physics then arises from the Fermi surface
nesting: the spin susceptibility in the noninteracting limit
diverges logarithmically, and thus an infinitesimal repulsive
interaction generates the AF long-range order. In this case, the
gapped quasiparticle excitations carry both quantum numbers
of particle number and spin. The density and spin energy scales
are identical in this regime as [44]

�s/t = �c/t = 4π2e−2π
√

t/U . (6)

Certainly, in the weak interaction regime, the system is a weak
insulator. Although it is gapped, density fluctuations cannot
be neglected. On the contrary, in the atomic limit (t = 0,
or, U → +∞), the Fermi surface completely disappears,
and we need to use the local moment picture. At zero
temperature, density fluctuations are completely frozen. In
the Mott-insulating state, we use the single-particle gap
to denote the density fluctuations, i.e., the energy cost by
adding or removing a particle from the Mott-insulating state.
It is the energy difference between the two energy levels
�c = Eni=N+1 − Eni=N , which equals U

2 in the atomic limit.
Since the hopping process is completely suppressed, the AF
exchange energy J = 0, i.e., the spin energy scale �s is zero
in the atomic limit.

B. Strong interaction regime

Let us consider the strong interaction regime in which U

is large but not strong enough to completely suppress density
fluctuations, i.e., t/U � 1. Let us consider the density channel
energy scale �c by adding an extra particle (hole) onto the
background of the Mott-insulating state. As shown in Fig. 1(a),
the propagation of the particle (hole) expands the excitation
energy level at U/2 in the atomic limit into an energy band.
The density channel gap corresponds to the band bottom and
thus is lowered to

�c = U

2
− W

2
, (7)
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FIG. 1. (Color online) (a) Energy dispersion of a hole excitation
on the background of the half-filled Mott-insulating state: (left)
the atomic limit with t/U = 0, (right) t/U � 1. (b) Sketches of
a hole hopping in the SU(2) (up) and SU(4) (down) AF backgrounds,
respectively. (Figure 1(b) is from Ref. [43].)

where W is the band width and is determined by the hopping
process of the extra particle (hole).

In Fig. 1(b), we compare the hopping process of an extra
hole in the half-filled SU(2) and SU(4) Mott insulators. In the
SU(4) case, there are many more routes for the hole to hop
from one site to its neighboring site than it does in the SU(2)
case. Typically speaking, the number of hopping process for
an extra particle or hole under the half-filled Mott-insulating
background scales as N , thus we estimate W ∝ Nt . The
mobility of the extra hole is greatly enhanced in the SU(2N )
Mott-insulating state. Consequently, the density channel en-
ergy scale �c is significantly lowered with increasing 2N .
Naively, we could estimate that �c vanishes at

Uc ≈ Nt. (8)

Certainly, due to Fermi surface nesting, �c does not vanish
even in the weak interaction regime but becomes exponentially
small. Nevertheless, Uc sets up a scale of interaction strength
to separate the regime of the Fermi surface nesting and that of
local moments.

The low-energy physics in the strong interaction regime
is described by the SU(2N ) generalization of the Heisenberg
model:

H = J
∑

α,β,[�i �j ]

Sαβ,�iSβα, �j , (9)

where the SU(2N ) spin operators are defined in Eq. (2). J

describes the strength of spin superexchange energy scale,
which can be viewed as the spin energy scale �s . The second-
order perturbation theory yields J = 4t2/U , which decreases
as U increases. Noting that �s ≈ 4π2te−2π

√
t/U in the weak

interaction regime, which increases with U , there should exist
a peak in the intermediate interaction regime.

C. Finite-temperature effect

When the fermion system is deep in the Mott-insulting state,
in the low-temperature regime T � �s , density fluctuations
are strongly suppressed, and the physics is dominated by
the spin superexchange process. Therefore quantum spin
fluctuations play an important role in determining the magnetic
properties of the Mott-insulating state at low temperatures.
On the contrary, at high temperatures T � �c, quantum
fluctuations give way to thermal fluctuations, which suppress
quantum correlations, and thus interaction effects can be
neglected. In the intermediate temperature regime �s < T <

�c, T is high enough to suppress the AF correlations, but not
sufficient to defreeze the on-site particle number fluctuations.
Both quantum and thermal fluctuations are important in the
intermediate temperature regime, and the interplay between
them gives rise to interesting phenomena and universal
properties [45].

IV. DQMC METHOD

The DQMC method is a widely used nonperturbative
method for studying strongly correlated fermion systems
[46–53]. Provided that there is no sign problem, DQMC
is known to be a well-controlled and unbiased method,
which yields asymptotically exact results through finite size
scaling. One of the most remarkable DQMC results is the
AF long-range order in the ground state of 2D SU(2) half-
filled Fermi-Hubbard model on a square lattice [48,49,54].
In the subsequent sections, we will use the DQMC method
to simulate the thermodynamic properties of the half-filled
SU(2N ) Hubbard model in different regimes of temperature
T and interaction U . We will also show how those results
are related to the two energy scales �s and �c analyzed in
previous section.

Considering the error accumulation from matrix multi-
plications and simulation time, the lowest temperature in
simulations is set as TL/t = 0.1 (with β = t/TL = 10). The
Suzuki-Trotter decomposition is used in which the error is
proportional to the cube of time discretization parameter
(�τ )3. �τ is set from 0.02 to 0.05 in the temperature regime
TL/t < T/t < 0.5, and the convergence with respect to the
scalings of �τ has been checked.

The Hubbard-Stratonovich (HS) transformation in the
determinant QMC algorithm can be performed in the density
channel [7] preserving the SU(2) symmetry of the Hubbard
model, which can also be generalized to the SU(2N ) Hubbard
model. The discrete HS decomposition with an Ising field only
applies to the spin- 1

2 case [47,48]. For the cases of SU(4) and
SU(6), an exact discrete decomposition has been developed in
Ref. [55], which is explained in the Appendix and employed
in our simulations. The simulated system is a L × L square
lattice with L = 10. We focus on the parameter regimes of
0.1 < T/t < 10 and 2 � U/t � 12. For a typical data point,
we use 10 QMC bins each of which includes 2000 warm-up
steps and 8000 measurement steps. We collect data once in
each time slice. In our simulations, t is set to unity and then
the Hubbard U and temperature T are given in the unit of t .
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V. THERMODYNAMIC PROPERTIES OF HALF-FILLED
SU(2N) HUBBARD MODEL

In this section, we present the simulations of the ther-
modynamic properties of the half-filled SU(2N ) Hubbard
model with 2N = 4 and 6 on a square lattice, includ-
ing the entropy-temperature relation, and the Pomeranchuk
effect.

A. Entropy-temperature relation

In cold atom experiments, entropy is actually a more
physical quantity than temperature to characterize the system.
Below we present the simulated entropy in the half-filled SU(4)
and SU(6) Hubbard models. The parameters of simulation are
chosen in the regimes of 0.1 < T/t < 10 and 2 � U/t � 12,
which are of interest in experiments. The simulated entropy per
particle (not per site) is defined by SSU (2N) = S/(NL2), where
S is the total entropy in the lattice. The following formula is
employed to calculate SSU (2N):

SSU (2N)(T )

kB

= ln 4 + E(T )

T
−

∫ ∞

T

dT ′ E(T ′)
T ′2 , (10)

where ln 4 is the entropy at infinite temperature; E(T ) denotes
the internal energy per particle at temperature T .

In Fig. 2, we show the entropy (per particle) of SU(4) and
SU(6) fermions as a function of T for various values of U .
In both cases, the curves cross at two typical temperatures Tl

(low) and Th (high), which divide the temperature into three
different regimes. Let us first look at the SU(4) case as follows.

Low-temperature regime TL < T < Tl . In this regime, the
dependence of the entropy per particle SSU (2N) on U is
nonmonotonic, which can be understood by the competition
between the spin energy scale �s and the density energy scale
�c as explained below.

For weak interactions U/t < 4, SSU (4) is insensitive to
U . As explained in Sec. III A, the physics in this regime
is characterized by the Fermi surface nesting �c and �s

which are equal and are smaller than TL/t ≈ 0.1 (the lowest
temperature reached in our simulations), and thus interaction
effects are unimportant. SSU (4) is then approximately the
same as that in the noninteracting limit. The nonzero residue
entropy is due to the finite-size effect, which is caused by the
degeneracy of single-particle states right located on the Fermi
surface. As U increases, �c increases faster than �s , while �s

quickly reaches its maximum. In this interaction regime. the
relation �c > �s > T holds, and thus increasing U freezes
the on-site particle number fluctuations and enhances AF
correlations. Even though there cannot be true long-range
AF ordering at finite temperatures in two dimensions, the
AF correlation length scales as e− �s

T . Consequently, SSU (4)

drops with increasing U and the residue entropy, in principle,
approaches zero. If U continues to increase and reaches the
strong interaction regime, say, U/t > 8, �c � U/2 increases
while �s � J = 4t2/U decreases. Thus the relation �c �
T � �s holds. T is low enough to freeze the on-site particle
number fluctuations but high enough to disorder AF corre-
lations. Therefore, increasing U (or equivalently, decreasing

FIG. 2. (Color online) The entropy per particle as a function of T

at different values of U in (a) SU(4) and (b) SU(6) Hubbard models.
The system size is L × L with L = 10.

�s) enhances the entropy at a fixed T in the low temperature
regime.

Intermediate-temperature regime Tl < T < Th. In this tem-
perature regime, SSU (4) monotonically increases with U at a
fixed T . At small U the system is in the weak Mott-insulating
state with small values of �s and �c, which is very close
to a Fermi liquid state. The system enters the solidlike
strong Mott state at large U , where the physics is mostly
local-moment-like. The increase of entropy with U means that
the liquidlike state is more ordered than the solidlike state,
known as the Pomeranchuk effect. In this temperature regime,
T is high enough compared to �s , and thus thermal fluctuations
suppress magnetic correlations, while it remains smaller than
�c, such that the on-site particle number fluctuations are still
frozen. In the strong Mott-insulating state, fermions on each
site are nearly independent of each other, and thus the entropy
per site is proportional to the logarithm of the spin degeneracy.
In the weak Mott-insulating state, we could think there is still a
reminiscence of Fermi surface, which strongly suppresses the
entropy contribution. Therefore, the liquidlike state is more
ordered than the solidlike state in the intermediate-temperature
regime.

On the other hand, the Pomeranchuk effect does not occur
in the low-temperature regime (T � �s), where thermal
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fluctuations are not strong enough to suppress AF correlations.
In this case, the AF correlations between adjacent sites lift spin
degeneracy and lower the entropy in the strong Mott-insulating
state. Consequently, the Pomeranchuk effect is prominent in
the intermediate-temperature regime.

High-temperature regime T > Th. In this case, not only spin
fluctuations but also the on-site particle number fluctuations
are defrozen by thermal fluctuations T > �c. Thus the on-site
particle number fluctuations make a significant contribution to
the entropy. Therefore, increasing U can decrease the on-site
particle number fluctuations and thus lowers the entropy at a
fixed T in the high temperature regime.

As for the SU(6) case, the behavior of entropy vs U and T

is qualitatively similar to that in the SU(4) case. Nevertheless,
the intermediate temperature regime of the former is broader
than the latter, which means that the Pomeranchuk effect is
more prominent.

B. Pomeranchuk effect

As analyzed in Sec. V A, in the strong Mott-insulating
regime the lattice system has larger entropy capacity than in the
weak Mott-insulating regime, which leads to the Pomeranchuk
effect. This effect was first proposed in the 3He system, where,
in the low-temperature regime, increasing pressure adiabati-
cally can further cool the system. In low-temperature physics,
this effect was employed as an effective cooling method
named after Pomeranchuk. The similar situation occurs in the
Hubbard model. Nevertheless, at low temperatures where the
AF correlations are important, the spin degeneracy is lifted,
which reduces the entropy in the Mott-insulating state. In this
case, the Pomeranchuk effect does not occur. The DQMC
simulations have been performed for the half-filled SU(2)
Hubbard model in the literature. Both in 2D and 3D cases, the
Pomeranchuk effect is not obvious in the range of the entropy
per particle SSU (2) between 0.1–0.9, even if the interaction
achieves U/t ∼ 10 [40–42].

In the multicomponent SU(2N ) Hubbard model, the
situation is different. Due to the increase of the number
of fermion components, the Pomeranchuk effect is greatly
amplified [43,56]. The isoentropy curves vs U and T are
plotted in Figs. 3(a) and 3(b) for the SU(4) and SU(6) Hubbard
models, respectively. In both cases, the Pomeranchuk effects
are prominent in the intermediate-temperature regime with
intermediate interaction strengths, which emerge at 0.4 <

SSU (4) < 0.8 for the SU(4) case, and at 0.3 < SSU (6) < 0.9
for the SU(6) case.

The enhancement of the Pomeranchuk effect can be
illustrated by comparing the SU(2) and SU(4) cases. When
deeply inside the Mott-insulating state, in the intermediate
temperature regime, the AF correlations can be neglected,
and the entropy per particle SSU (2N) is dominated by the
contribution of spin degeneracy. Therefore, the entropy ca-
pacities can be estimated as SSU (2) = ln 2 ≈ 0.69, which is
smaller than SSU (4) = ln C2

4/2 ≈ 0.89. On the other hand, in
the intermediate interaction regime, the density channel gap in
the SU(4) case is significantly smaller than that in the SU(2)
case for the same interaction U . This means that fermions in
the SU(4) Hubbard model can be more easily excited to the

FIG. 3. (Color online) The isoentropy curves for the half-filled
(a) SU(4) and (b) SU(6) Hubbard models on a 10 × 10 square lattice.
The entropy per particle SSU (2N) is indicated on each curve. (b) was
published in Ref. [43], which is reproduced here with a new curve of
SSU (6) = 0.3 added.

upper Hubbard band than those in the SU(2) case, which also
enhances the entropy capacity of fermions in the SU(4) case.

VI. PROBABILITY DISTRIBUTION OF ON-SITE
OCCUPATION NUMBER

To characterize the on-site particle number fluctuations,
we study the probability distribution of the on-site occupation
number. In the SU(2) case, at half filling the double-occupation
number nd (i) = 〈n(i)↑n(i)↓〉 is related to the local moment
〈m2

z〉 = 1 − 2nd , which exhibits a slightly nonmonotonic
behavior as a function of T for fixed U [57]. Also, in cold atom
experiments, this quantity can be measured with in situ single-
site resolution techniques [58,59]. Let us consider the SU(4)
case. At half filling the most probable configuration of on-site
particle number is n(i) = 2. At finite U , particles are allowed
to hop between different sites, leading to on-site particle
number fluctuations. Due to the particle-hole symmetry, the
probabilities for the occupation numbers n and 2N − n are
equal. Thus we only need to calculate P (n) with n = 0,1, and
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2, respectively. They are defined as

P (0) =
4∏

α=1

(
1 − nα

i

)
;

P (1) =
4∑

α=1

nα
i

∏
β �=α

(
1 − n

β

i

)
; (11)

P (2) =
∑
α �=β

nα
i n

β

i

∏
γ �=α β

(
1 − n

γ

i

)
.

Obviously, they satisfy the relation 2P (0) + 2P (1) +
P (2) = 1.

The simulation results of P (n) (n = 0,1 and 2) as a function
of T for various U are presented in Fig. 4. In the weak
and intermediate interaction regimes, density fluctuations are
significant. The maximal probability of the exact half-filling
P (2) only achieves around 70% when U/t = 6. In contrast,
the probabilities of one-particle fluctuation defined by 2P (1)
fall in the range between 30% and 40%. The probabilities of
two-particle fluctuation, 2P (0), are typically as low as a few
percent. Each P (n) (n = 0,1, and 2) exhibits nonmonotonic
behavior as T increases. For example, at low temperatures
P0 and P1 fall with the increase of T ; then after reaching
their minima at the temperature scale around t , they grow
again. This indicates that in the temperature regime T < t ,
the on-site particle number fluctuations are suppressed with
increasing T . This counterintuitive phenomenon reminds us
of the Pomeranchuk effect, that the system tends to localize
fermions in the intermediate temperature regime to maximize
the entropy, which mainly comes from the spin degeneracy.
When the temperature further increases, the particle number
fluctuations are activated and grow with T .

VII. MAGNETIC PROPERTIES

In this section, we study the magnetic properties of the
half-filled SU(2N ) (2N = 4 and 6) Hubbard model on a square
lattice at finite temperatures, including both the uniform spin
susceptibilities and the AF structure factor.

A. Uniform spin susceptibilities

We now consider the uniform spin susceptibilities χSU (2N).
Because the total spin is conserved, χSU (2N) can be expressed
as the equal-time correlations through the structure factor at
q = 0:

χsu(2N)(T ) = 1

kBT
SSU (2N)(q = 0), (12)

where the structure factor Ssu(2N)(q) is defined by Eq.(4).
In the 2D half-filled SU(2) Hubbard model [42], or, the

Heisenberg model [60], it is known that at high temperatures,
χsu(2) behaves as the Curie-Weiss law, which is proportional
to 1/T . At low temperatures, χsu(2)(T ) is suppressed due to
the AF correlations, and therefore it exhibits a peak at a low-
temperature scale Tp. Tp can be used to roughly characterize
the spin energy scale Tp � �s (in Heisenberg model Tp � J ).

The simulation results of the uniform spin susceptibilities
for the SU(4) and SU(6) Hubbard models are presented in

FIG. 4. (Color online) The probabilities P (n) for the on-site
particle numbers (a) P (0), (b) P (1), and (c) P (2) vs T and U in the
half-filled SU(4) Hubbard model. Due to the particle-hole symmetry,
P (0) = P (4), and P (1) = P (3), and 2P (0) + 2P (1) + P (2) = 1.
The lattice size is L × L with L = 10.

Figs. 5(a) and 5(b), respectively. Only the weak and interme-
diate interaction regimes with 2 � U/t � 12 are considered
here. In the SU(4) case, when U/t < 6, the energy scale of
�s is very small, and thus the peak location is beyond the
temperature scope T/t > 0.1 in our simulations. Compared to
the SU(2) case, �s in the SU(4) case is significantly weakened.
For example, the peak in the SU(2) Hubbard model is located
around Tp/t ≈ 0.3 when U/t = 4 as simulated in Ref. [43].
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FIG. 5. (Color online) The uniform spin susceptibilities vs T for
various U in the half-filled (a) SU(4) and (b) SU(6) Hubbard models.
The system size is L × L with L = 10. Error bars are smaller than
the data points.

Nevertheless, the peak locations in the interaction regime
6 < U/t < 12 have already become visible at temperatures
Tp/t > 0.1. Furthermore, the magnitude of Tp and the peak
of χSU (4) increases with U , which shows the enhancement of
the AF correlations. In the SU(6) case, the AF correlations
are further weakened compared to the SU(4) case: among the
curves in Fig. 5(b), only the one with U/t = 12 exhibits a
peak visible at temperatures Tp/t > 0.1. This indicates the
weakening of the spin energy scale �s in the intermediate
interaction regime with increasing the number of fermion
components.

B. AF structure factors

We use the AF structure factor SSU (2N)(Q) defined with
staggered wave vector Q = (π,π ) to describe the AF corre-
lations. In Fig. 6(a), the curves of the AF structure factor
v.s. T are plotted at U/t = 12 in both the SU(4) and SU(6)
cases. Both SSU (4)(Q) and SSU (6)(Q) increase monotonically
with the decrease of T , which indicates the development of AF
correlations. At a fixed T , SSU (4)(Q) is stronger than SSU (6)(Q),

FIG. 6. (Color online) The AF structure factors SSU (2N)(Q) with
Q = (π,π ): (a) as a function of T at fixed U/t = 12, and (b) as a
function of U at fixed T/t = 0.1 in the half-filled SU(4) and SU(6)
Hubbard models. The system size is L × L with L = 10. Error bars
are smaller than the data points.

which becomes even more prominent at low temperatures.
This is consistent with the picture that increasing the number
of fermion components suppresses AF correlations.

In Fig. 6(b), the dependence of SSU (2N)(Q) on U at a fixed
temperature, T/t = 0.1, is plotted in both SU(4) and SU(6)
cases, where the U dependencies exhibit a nonmonotonic
behavior. At small U , SSU (4)(Q) and SSU (6)(Q) increase with
U . In this weak interacting regime, �c � �s < T = 0.1t ,
and thus increasing U enhances the spin energy scale but
suppresses density fluctuations, which facilitates to build
up the AF correlation. Again, the enhancement of the AF
correlation is more prominent in the SU(4) case than in the
SU(6) case. An interesting feature is that the rates of increase
jump at U/t ≈ 4 in the SU(4) case, and at U/t ≈ 10 in the
SU(6) case. This may be due to a rapid increase of the density
channel energy scale �c, which indicates the crossover from
the weak interaction regime to the intermediate interaction
regime. The AF in the weak interaction regime is due to Fermi
surface nesting, and it evolves to the local moment physics as
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U enters the intermediate interaction regime. At large values
of U , �s � J = 4t2/U decreases with the increase of U .
Thermal fluctuations are described by the parameter T/J , and
thus increasing U effectively enhances thermal fluctuations.

On the other hand, the zero-temperature projector QMC
results [55] show that the AF long-range orderings reach the
maxima around U/t ≈ 8 and 10 in the SU(4) and SU(6)
cases, respectively. The AF ordering is then suppressed
by further increasing U , which is an effect of quantum
fluctuations. In the SU(6) case, the AF long-range order is even
completely suppressed around U/t ≈ 15 at zero temperature.
This is because when deeply inside the Mott-insulating
regime, the number of superexchange processes between two
adjacent sites increases rapidly with the number of fermion
components, which indicates the enhancement of quantum
fluctuations. Combining both effects of quantum and thermal
fluctuations, the AF correlations are weakened with increasing
U in the strong interaction regime.

VIII. DISCUSSIONS AND CONCLUSIONS

So far, we have only considered the homogeneous lattice
system for the half-filled SU(2N ) Hubbard models. In real
optical lattices, there is also a harmonic confining potential
V (r) = 1

2mω2
T r2, which makes the system inhomogeneous

and corresponds to a site-dependent chemical potential. If the
density channel gap �c is large, a large region of the half-filled
Mott-insulating state can exist in the central region of the trap
and extends out. Due to the gap of �c, the compressibility of
the Mott-insulating state vanishes at zero temperature and is

exponentially suppressed as e
− �

kB T at T < �c, thus the filling
number exhibits a plateau of N particles per site with a radius

roughly rM =
√

2�c

mω2
T

. Within this half-filled Mott-insulating

region, the thermodynamic properties simulated above, such
as the Pomeranchuk effect, still qualitatively apply. However,
outside this Mott-insulating region, the particle number density
is reduced from half filling, i.e., doping is introduced. In
particular, near the edge of the system, the particle filling
number drops to zero. As is well-known, the ground state and
low-energy properties of doped Mott insulators are a major
challenge to contemporary condensed matter physics. The
particle-hole symmetry is also broken in the doped case, and
thus the sign problem appears except in one dimension and
QMC simulations are no long applicable at low temperatures.
In the doped case, even though the Mott-insulating phase
does not exist, strong interactions still enhance the tendency
of localization of particles and then the spin channel mostly
contributes to the entropy, and thus the Pomeranchuk effect
should still survive. For example, in the one-dimensional
case where the sign problem disappears even away from half
filling, the QMC results still show the prominent feature of the
Pomeranchuk effect in the SU(2N ) Hubbard model [61].

In summary, we have performed a systematic DQMC
simulation study of thermodynamic properties of the half-
filled SU(2N ) Hubbard model on a square lattice. Various
thermodynamic behaviors including the entropy-temperature
relation, the isoentropy curve, and the probability distribution
of the on-site occupation number have been simulated,
which demonstrate the Pomeranchuk effect is facilitated with

increasing fermion components. Based on the density and
spin energy scales, we have analyzed the thermodynamic
properties in weak and strong interaction regimes. In the weak
interaction regime, the physics is characterized by the Fermi
surface nesting, while in the strong interaction regime the
physics is mostly in the local moment picture. Additionally, in
our simulations the uniform spin susceptibilities and the AF
structure factors both exhibit qualitatively different behaviors
in weak and strong interaction regimes. Theoretical analysis as
well as DQMC simulations show that the interaction strength
separating weak and strong interaction regimes increases with
the number of fermion components.
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APPENDIX: AN EXACT HUBBARD-STRATONOVICH
DECOMPOSITION FOR SU(4) AND SU(6) HUBBARD

INTERACTIONS

For the SU(2) case, the HS transformation is usually
performed by using the discrete Ising fields [47,48]. However,
the decomposition in spin channel can not be easily generalized
to the SU(2N ) case due to the increase of spin components.
Instead, we choose an discrete HS decomposition in the density
channel at the price of involving complex numbers as used in
Ref. [62]. The HS transformation for a half-filled SU(2N )
Hubbard model reads:

e− �τU
2 (nj −N)2 = 1

4

∑
l=±1,±2

γj (l)eiηj (l)(nj −N), (A1)

where two sets of discrete HS fields γ and η are employed.
However, the HS decomposition with an error of order

(�τ )4 in Ref. [62] is not exact. In Ref. [55], a new HS
decomposition was proposed with a new set of parameters,
which is exact for the SU(4) and SU(6) Hubbard interactions.
The Ising fields are defined as follows

γ (±1) = −a(3 + a2) + d

d
;

γ (±2) = a(3 + a2) + d

d
;

η(±1) = ± cos−1

{
a + 2a3 + a5 + (a2 − 1)d

4

}
;

η(±2) = ± cos−1

{
a + 2a3 + a5 − (a2 − 1)d

4

}
,

where a = e−�τU/2, and d =
√

8 + a2(3 + a2)2.
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