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Rényi entanglement entropy is widely used to study quantum entanglement properties in strongly correlated
systems, and its analytic continuation as the Rényi index n → 1 is often believed to yield von Neumann
entanglement entropy. However, earlier theoretical analysis indicated that this process exhibits a singularity for
the colored Motzkin spin chain problem, leading to different system size l scaling behaviors of ∼√

l and ∼ ln l
for the von Neumann and Rényi entropies, respectively. Our analytical and numerical calculations confirm this
transition, which can be explained by the exponentially increasing density of states in the entanglement spectrum
we extract numerically. Moreover, disorder operators can be measured easily in numerics and experiments and
always have area-law or volume-law scaling similar to entanglement entropies. We further explored disorder
operators under various symmetries of such a system. Both analytical and numerical results demonstrate that
the scaling behaviors of disorder operators also follow ln l as the leading term, matching that of Rényi entropy.
Moreover, we find that the coefficient of the term ln l is a universal constant shared by both the Rényi entropy
and disorder operators and propose that it can probe the underlying constraint physics of Motzkin walks.

DOI: 10.1103/wffk-7ycs

I. INTRODUCTION

In recent years, the interflow and mutual learning between
condensed matter and quantum information have inspired
increasingly fruitful research [1–3]. In the field of quantum
information, the entanglement entropy (EE) plays a key role
in measuring information and chaos [4,5]. As one of the ba-
sic properties of quantum mechanics, quantum entanglement
itself is difficult to measure. Moreover, the introduction of
EE in condensed matter physics has revealed rich physics,
such as topological entanglement entropy and long-range en-
tanglement in highly entangled matter [6,7]. One important
topic in condensed matter physics is using EE to probe the
intrinsic physics of many-body systems [6–10]. Among many
intriguing features, EE offers a direct connection between the
conformal field theory (CFT) and categorical description of
the problems beyond traditional observables [11–25].

Unlike in few-body systems, the scaling behaviors of EE
in quantum many-body systems reveal universal properties,
such as the central charge [11,26–28], number of Goldstone
modes [29–32], and quantum dimension of topological order
[6,7,33,34]. Within the framework of CFT [15,35–38], the
EE with corner cuts in two-dimensional quantum systems
usually obeys the area law s = al + b ln l + δ, where l is the
length of the entangled boundary, b is related to the angles of
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the corners, and a is generally thought to be UV dependent.
Meanwhile, the coefficients b and δ are usually employed
to extract universal information and detect novel phases and
criticalities [2].

The von Neumann (vN) EE svN
A = −Tr(ρA ln ρA) (ρA is

the reduced density matrix) as the generalization of Shannon
entropy in quantum mechanics is widely used to study the
above questions [39–42]. However, due to the difficulty in
the calculation of vN EE, Rényi EE is much more commonly
used in both field theory and numerical calculations. The
definition of Rényi EE is s(n)

A = 1
1−n ln[Tr(ρn

A)], where n is
the Rényi index. Formally, Rényi EE will become vN EE as
n → 1. Although the Rényi EE loses certain properties, such
as additivity and subadditivity [43–47], it is strongly believed
to yield the same scaling behaviors as the vN EE, e.g., the area
and volume laws. It was generally believed in the past that all
the coefficients of vN EE for each O(l ) scaling term can be
obtained via the analytic continuation of n → 1 [26,48,49].
For numerous examples, including both theoretical and nu-
merical results, this common belief has been massively
tested [50,51].

However, the colored Motzkin spin chain was found to be
a counterexample [52–54]. There is a singularity in the limit
of Rényi index n → 1, in which the coefficient of the leading
term ln l will be divergent. It actually indicates that an extra
term,

√
l , becomes the leading term in the vN EE. This result

provides a counterexample of the analytic continuation from
Rényi to von Neumann EE, which cautions that people should
be careful when studying EE.
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On the other hand, the disorder operator (DO) is a non-
local observable similar to the EE which has been proposed
to extract the high-form symmetry and CFT information of
quantum many-body systems [23,55–57]. It has been suc-
cessfully used to detect high-form symmetry breaking at the
Ising transition [22]. The current central charges in CFT can
be captured by the DO at phase transitions of the O(2) and
O(3) universal classes in (2+1) dimensions [58,59]. DOs
have also been designed in fermionic systems to explore the
universal features of Fermi liquids, Luttinger liquids, and
quantum critical points in fermionic systems [60–62]. The DO
satisfies universal scaling behaviors similar to those in EE,
where the logarithmic term usually reflects general features
of CFT. Moreover, based on its definition, the expectation
value of twisting the symmetry within the subsystem region
is straightforward to measure numerically and is more easily
measured in experiments than EE [60].

In this article, we systematically study the scaling behav-
iors of the vN and Rényi EEs of a one-dimensional (1D)
colored Motzkin spin chain with different spins S both ana-
lytically and numerically. The scaling behaviors of DOs for
the Motzkin spin chain are also investigated and are found to
be similar to those of the Rényi EE. The numerical data are
available from Ref. [63]. Moreover, we find that the coeffi-
cient of the logarithmic term is universal for any spin value,
regardless of the DO or Rényi EE.

This paper is organized as follows: In Sec. II, the back-
ground of the Motzkin chain is presented. In Sec. III, the
analytic solution of EE is given, encompassing an analysis of
Rényi EE to facilitate further discussion. In Sec. IV, we intro-
duce the algorithm for Monte Carlo simulations and provide a
detailed discussion of the numerical results for entanglement
entropies. In Sec. V, we focus on the disorder operators of
the Motzkin chain, exploring both analytical and numerical
perspectives, and reveal that these disorder operators lead by
3
2 ln l . The summary and conclusion are presented in Sec. VI.

II. BACKGROUND OF MOTZKIN CHAINS

In this section, we review the concept of the Motzkin chain,
which is a 1D spin chain inspired by the Motzkin path from
combinatorial mathematics [64,65].

The Motzkin walk or Motzkin path is a kind of non-
negative lattice path defined as follows. Random walks
starting from the point (0,0) and ending at (2l, 0) on a two-
dimensional x-y plane, as shown in Fig. 1, consist of three
types of steps: upward steps �, downward steps �, and
horizontal steps , represented as vectors (1,1), (1,−1),
and (1,0), respectively. Then Motzkin walks are those random
walks that do not cross below the x axis (y = 0). Bravyi et al.
[66] introduced a frustrated-free spin-1 chain model whose
unique ground state is the equal-weight superposition of all
Motzkin walk states, achieved by mapping the spin Sz states
{↑, 0,↓} to the steps {�, , �}, respectively. Movassagh
and Shor [52] then generalized this model into an S-color
Motzkin model, where the upward or downward steps are col-
ored using S different colors. This model can be translated to a
spin-S quantum chain. An example of the two-color Motzkin
walk is shown in Fig. 1. For a 1D S-color Motzkin model
of size 2l , the Hamiltonian is constructed by local projection

FIG. 1. Example of a two-color Motzkin walk (colored path).
The walk starts and ends on the x axis and cannot cross below it.
It can be mapped to an Sz configuration of a spin-2 chain (shown
below the x axis). The pink upward and downward steps are mapped
to Sz = ±1, the blue steps are mapped to Sz = ±2, and the black
horizontal steps are mapped to Sz = 0.

operators in the following form:

H = �boundary +
2l−1∑
j=1

�cross
j, j+1 +

2l−1∑
j=1

�
exchange
j, j+1 , (1)

with

�boundary =
S∑

k=1

(|↓k〉1,1 〈↓k| + |↑k〉2l,2l 〈↑k|),

�cross
j, j+1 =

S∑
k 	=k′

|↑k↓k′ 〉 j, j+1 〈↑k↓k′ | ,

�
exchange
j, j+1 =

S∑
k=1

|Dk〉 j, j+1 〈Dk| + |U k〉 j, j+1 〈U k|

+ |V k〉 j, j+1 〈V k| , (2)

where the superscript k indicates colors, i.e., ↑k stands for
the Sz = k state and ↓k stands for the Sz = −k state. The
boundary term �boundary ensures that the first and last steps
do not pass below the x axis. The cross term �cross keeps
the correct order of different color pairs. As a counterexam-
ple, ↑k↑k′↓k↓k′

is not allowed if k 	= k′. The exchange term
�exchange contains states |Dk〉 =

√
2

2 (|↓k 0〉 − |0 ↓k〉), |U k〉 =√
2

2 (|↑k 0〉 − |0 ↑k〉), and |V k〉 =
√

2
2 (|↑k↓k〉 − |00〉), which

leads to the step exchange of

(3)

Notice that there is no such step exchange as

�� ↔ . (4)

This property ensures that the walk height remains non-
negative.

The ground state of the Hamiltonian (1) is the superposi-
tion of all the Motzkin walk configurations |Mi〉 [66],

|G〉 = 1√
N

N∑
i

|Mi〉 , (5)

where N is the number of all the Motzkin walks allowed.
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III. THE EE OF COLORED MOTZKIN CHAINS

The EE between two subsystems obtained by cutting the
Motzkin chain at the midpoint is analytically studied in this
section. It is worth noting that similar results were studied
in Refs. [52,53]; i.e., the vN EE and Rényi EE of colored
Motzkin chains exhibit different scalings. In order for this
article to be easily readable and self-contained, we present the
calculation of the Rényi EE here. In addition, our analytical
method is different from those in the literature.

Consider an S-color Motzkin chain with a size of 2l . The
vN EE of half cutting takes the form [52]

svN = a
√

l + b ln l + const, (6)

with

a = 2

√
2
√

S

(2
√

S + 1)π
ln S, b = 1

2
. (7)

The Rényi EE (n > 1) is [53]

s(n) = b ln l + const, (8)

with

b = 3

2

(
1 + 1

n − 1

)
. (9)

The vN and Rényi EEs exhibit different scaling behaviors.
For comparison, when S = 1 (the colorless case), the lead-
ing terms of both the vN EE and Rényi EE are 1

2 ln l . As a
notation, “ln” in this article stands for the natural logarithm.

For the completeness of the article and convenience in fur-
ther analyses, we provide the derivation of the Rényi EE s(n).
The analysis below elucidates the emergence of a singularity
at n → 1, where the vN and Rényi EEs exhibit distinct scaling
regimes governed by discontinuous analytic continuations.

A. Analytical calculation of Rényi EE

Given the ground state wave function of Eq. (5), the re-
duced density matrix’s eigenvalues under half cutting are [52]

λm � S−m

T

m2

l
e− 1

2 (2+ 1√
S

) m2

l , (10)

where the index m takes integer values from 0 to l , cor-
responding to the midpoint height of a Motzkin walk. The
degeneracy of the eigenvalue λm is Sm; thus, we define
�m = Smλm. And λm reaches its maximum at an intermediate
value of m. Additionally, T is a normalization factor that
ensures

∑
m Smλm = 1.

The nth Rényi EE is then given by

s(n) = 1

1 − n
ln

l∑
m=0

Smλn
m

= 1

1 − n
ln

l∑
m=0

S(1−n)m

T n

m2n

ln
e− n

2 (2+ 1√
S

) m2

l . (11)

Setting ξ = m/
√

l and using the integral approximation to
Eq. (11), the Rényi EE (n > 1) is expressed as

s(n) � 1

2
ln l + 1

1 − n
ln

{
T̃ −n

∫ √
l

0
dξ ξ 2n

× exp

[
−n

2

(
2 + 1√

S

)
ξ 2 − (n − 1) ln (S)

√
l ξ

]}
,

(12)

where

T̃ = T√
l

�
∫ √

l

0
dξξ 2 exp

[
−1

2

(
2 + 1√

S

)
ξ 2

]
. (13)

For the case with n > 1, the Rényi EE can be simplified to

s(n) = 1

2
ln l − n

1 − n
ln T̃ + R, (14)

where

R = 1

1 − n
ln

∫ √
l

0
dξ ξ 2n exp

[
− n

2

(
2 + 1√

S

)
ξ 2

− (n − 1) ln (S)
√

l ξ

]
. (15)

For convenience, the following functions are defined:
Functions p1 and p2 are defined as

p1(n, S) = n

2

(
2 + 1√

S

)
,

p2(n, S) = (n − 1) ln (S). (16)

The function Fα is defined as

Fα (p1, p2, l ) =
∫ √

l

0
dξξα exp [−p1ξ

2 − p2

√
l ξ ]. (17)

Consequently, in the large-l limit, R in Eq. (15) is
expressed as

R = 1

1 − n
ln F2n. (18)

The positive function Fα has the limit of liml→∞ Fα → 0.
Additionally, we can easily establish the following relations
for the large-l limit:

d

dl
Fα = − p2

2
√

l
Fα+1, (19)

(α + 1)Fα = p2

√
lFα+1 + 2p1Fα+2. (20)

Because Fα and f are positive and p2 is also positive for the
condition n, S > 1, the following limit can be proved accord-
ing to Eq. (20):

lim
l→∞

Fα

Fα+1
> lim

l→∞
p2

√
l

α + 1
= +∞. (21)

Thus, for large enough l we have the relation

Fα � p2

√
l

α + 1
Fα+1. (22)
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B. The scaling form of Rényi EE

Now we analyze the scaling of Rényi EE in Eq. (14). The
first term contributes a logarithmic scaling obviously. The
second term contributes a constant because T̃ has an upper
bound in the limit l → ∞, which is

lim
l→∞

T̃ =
√

π

2

(
2 + 1√

S

)− 3
2

. (23)

Then only the third term, R, needs to be calculated.
Using L’Hôpital’s rule and Eqs. (19), (20), and (21), we

have

lim
l→∞

R

ln(l )
= 2n + 1

2n − 2
lim

l→∞
p2

√
lF2n+1

p2

√
lF2n+1 + p1F2n+2

= 2n + 1

2n − 2
. (24)

This indicates that the scaling of R is given by

R = 2n + 1

2n − 2
ln l + C, (25)

where

C = lim
l→∞

(
R − 2n + 1

2n − 2
ln l

)

= 1

1 − n
lim

l→∞
ln

(
l

2n+1
2 F2n

)
. (26)

According to Eq. (22), the limit of the term in the logarithm
function is

lim
l→∞

l
2n+1

2 F2n = 
(2n + 1)

p2n
2

lim
l→∞

√
lF0 = 
(2n + 1)

p2n+1
2

, (27)

where 
 is the gamma function. Then C is a constant in the
large-l limit:

C = 1

1 − n
ln

(

(2n + 1)

p2n+1
2

)
. (28)

In short, by substituting Eqs. (23), (25), and (28) into
Eq. (14), the expression of Rényi EE (for n > 1 and S > 1)
in the large-l limit becomes [53]

s(n) = 3

2

(
1 + 1

n − 1

)
ln l + δ, (29)

where the constant δ is

δ = 1

(n − 1)

{
n

2
ln

π

2
− 3n

2
ln

(
2 + 1√

S

)

− ln 
(2n + 1) + (2n + 1) ln [(n − 1) ln S]

}
. (30)

By comparing Eq. (29) with the scaling form of EE in CFT,
we propose that the coefficient of 3/2 in the logarithmic term
of the Rényi EE is universal for arbitrary S, while the constant
term δ is complex and nonuniversal.

IV. NUMERICAL RESULT OF EE

Monte Carlo (MC) simulations have been widely used to
calculate Rényi EE in quantum many-body systems in re-
cent years [24,25,32,67–75]. In this section, we use the MC
method to estimate the scaling behaviors of the vN and Rényi
EEs in the Motzkin chain.

Our simulation is based on the SWAP operator method. For
pure states that can be written as the product states of two
subsystems A and B, the SWAPA operator is defined as

SWAPA(|A1〉 ⊗ |B1〉)(|A2〉 ⊗ |B2〉)

= (|A2〉 ⊗ |B1〉)(|A1〉 ⊗ |B2〉). (31)

The ground state expectation value of the SWAPA operator is
the second-order Rényi EE [67,72,76],

s(2)
A = − ln Tr

(
ρ2

A

) = − ln 〈SWAPA〉, (32)

where 〈· · ·〉 indicates the expectation value with respect to the
replica ground state,

|G〉2 ≡ |G〉 ⊗ |G〉 . (33)

Based on properties of the ground states of the colored
Motzkin chain, our algorithm can be simplified, and then its
accuracy significantly improved. The details of the algorithm
are provided below.

A. The Monte Carlo algorithm

The MC algorithm used to estimate the EE is presented
below. The ground state given in Eq. (5) is positive definite;
hence, the expectation value of the SWAPA operator in Eq. (32)
can be written as

〈SWAPA〉 =
∑
i1,i2

1

N
〈G|2 SWAPA |Mi1〉 ⊗ |Mi2〉 . (34)

Based on this formula, it is straightforward to set up a MC
algorithm to calculate the second-order Rényi EE s(2). One
can simulate two replicas of configurations Mi1 and Mi2 with
equal weights and measure the value of the estimator

〈G|2 SWAP |Mi1〉 ⊗ |Mi2〉 . (35)

However, the symmetries of the colored Motzkin chain
ground state allow us to further simplify the algorithm, so
that only one replica needs to be sampled. In this work, we
consider a Motzkin chain of size 2l and study the EE of the
subsystem by cutting at the midpoint. The length of subsystem
A is constrained to l throughout the discussion below.

The swappability of Motzkin walks can be defined as
follows. Exchanging half of the path of walks M1 and M2

generates two new walks denoted as M̃1 and M̃2. We assert
that M1 is swappable with M2 if M̃1 also qualifies as a Motzkin
walk. It is easy to identify the following properties of the
Motzkin walk swappability: (1) If M1 is swappable with M2,
then M2 is also swappable with M1. (2) If M1 is swappable
with M2 and M2 is swappable with M3, it follows that M1

is swappable with M3. Consequently, we can conclude that
the measurement variable in Eq. (35) has only two possible
values: It takes a value of 1 if Mi1 and Mi2 are swappable;
otherwise, it takes a value of zero.

Colored Motzkin walks can then be categorized into
classes cm based on their swappability—walks within each
class cm are swappable with each other. In this context, m
represents the height at the midpoint, which corresponds
to the number of unpaired steps in half of the Motzkin
walks. Notably, there are Sm equivalent classes, for which
the only distinction is the color permutation of the unpaired
steps. Therefore, we define the superclasses Cm, which con-
tain the Sm equivalent classes cm. The relationship between
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the size of the superclass Cm, represented as Nm, and the size
of the class cm, represented as nm, can be succinctly expressed
by Nm = Smnm. With this understanding, we can simulate the
distribution of Cm, and the expectation value 〈SWAPl〉 can be
estimated using the frequency �m of each superclass Cm. Then
the second-order Rényi EE is given by

s(2) = − ln 〈SWAPA〉 = − ln
∑

m

S−m�2
m. (36)

For the colorless case, the Monte Carlo procedure directly
samples the Motzkin configurations by repeatedly applying
the Hamiltonian term �exchange to the Motzkin configura-
tions. Specifically, at each step, a bond is randomly selected,
and one of the operators |D〉 〈D|, |U 〉 〈U |, or |V 〉 〈V | is
applied to it. Once the initial state is a Motzkin state, the
updated states generated by �exchange remain within the set
of Motzkin states, and all Motzkin states are sampled with
equal weight. As the projection operators �boundary and �cross

are designed to project out non-Motzkin states, they are not
required during the update process. The frequency �m of
configurations, with m being the midpoint height, is recorded
as the measurement. For the colored case, sampling of spin-1
configurations can still be performed by identifying the differ-
ent colors. However, the update rule for the exchange ↑↓↔ 00
must be modified using a Metropolis algorithm to ensure that
the population ratio of ↑↓ to 00 remains equal to S.

To calculate the Rényi EE of other Rényi indices, generally,
we need to generalize the SWAP operator, and n replicas need
to be sampled. However, our algorithm can be directly gener-
alized to simulate the Rényi EE of any Rényi index n, where
n could be any positive real number and is not constrained to
be an integer, using the following formula:

s(n) = 1

1 − n
ln

l∑
m=0

S−m(n−1)�n
m. (37)

Additionally, this algorithm can be employed to determine the
vN EE, which is given by

svN = −
l∑

m=0

�m ln (S−m�m). (38)

B. Results of the EE from MC

The vN and Rényi EEs computed using the MC method
are presented in this section. Figure 2 shows a comparison of
our numerical results and the analytical results in Eqs. (6) and
(8), demonstrating good agreement. The ratios converge to 1
as increasing 2l , the system size.

The MC data of the Motzkin chain are analyzed using a
fitting process. We fit the data using the form a

√
l + b ln l + δ,

where a could be zero or not. Here, l represents the size of
the subsystem, which is determined by making a cut at the
midpoint of a chain with a size of 2l . The results of coefficient
a are presented in Fig. 3. For the vN EE, which is indicated
by the point at n = 1, the numerical results closely align with
the analytical predictions in Eq. (7). Furthermore, our findings
indicate that the square-root term tends to diminish as n in-
creases, consistent with the previous analysis in Eq. (29) that
the Rényi EE does not include a

√
l term. Figure 4 presents

the results for coefficients b and δ, agreeing with analytical

FIG. 2. The ratio of the EE results based on MC simulations and
analytical calculations. The MC data are simulated on a two-color
(S = 2) Motzkin chain of size 2l , and the EEs are calculated on
the subsystem by cutting at the midpoint. As the subsystem size l
increases, the ratio tends to be 1, showing that the numerical and
analytical results agree well for large system sizes.

calculations. Due to the finite-size effect, the fitted values of
a, b, and δ deviate from theoretical predictions when n > 1.
This effect arises from the competition between (n − 1) and√

l . Consequently, the discrepancy between numerical and
theoretical results becomes more pronounced for smaller n.
The finite-size effect will be discussed in detail below.

We observe that there is an EE singularity of the Rényi
index at n = 1, as indicated by both analytical and numerical
results. The transition from a ln l scaling to a

√
l scaling is

FIG. 3. The value of the coefficient of the
√

l term a in EE for
a two-color (S = 2) Motzkin chain. The MC data are sampled on
system sizes from 80 to 1260 sites. The fitting results are illustrated
as blue dots (for Rényi EE) and open circles (for vN EE) with error
bars, which are fitted with the form a

√
l + b ln l + δ, where l is the

subsystem size. The theoretical prediction for vN EE is shown as a
green star. The vN EE has a finite value of a, which agrees with the
theoretical prediction. The nonzero value of a for Rényi EE is caused
by the finite-size effect.
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FIG. 4. The coefficient values in the scaling form of vN and
Rényi EEs for the two-color Motzkin chain. The MC data are sam-
pled on system sizes from 80 to 1260 sites for the both plots. The
EE data are fitted by the form b ln l + δ, represented by the blue dots
(for Rényi EE) and open circles (for vN EE) with error bars. vN EE
data are also fitted by the form a

√
l + b ln l + δ, represented by the

orange diamonds. The analytical results are also shown. (a) The value
of b, the coefficient of the ln l term. (b) The value of the constant
term δ.

governed by the second term in the expansion of the Rényi
EE, as outlined in Eq. (12):

1

1 − n
ln F2n(p1, p2, l )T̃ −n

= 1

1 − n
ln F2n(p1, p2, l )F−n

2 (p1, 0, l ). (39)

The exact value of F2n(p1, p2, l )F−n
2 (p1, 0, l ) can be de-

termined in specific values of n and S. For the colorless
(S = 1) Motzkin chain, p2 = 0. It can be proved that
F2n(p1, p2, l )F−n

2 (p1, 0, l ) > 1 and has an upper bound in the
large-l limit; thus, Eq. (39) contributes a constant term to
the scaling of EE. For the case with S > 1, however, the value
of F2n(p1, p2, l )F−n

2 (p1, 0, l ) can be determined for specific
values of (n − 1)

√
l in the large-l limit. It can be summarized

as

F2n(p1, p2, l )F−n
2 (p1, 0, l ) =

{
0, (n − 1)

√
l → +∞,

1, (n − 1)
√

l → 0+.

(40)

When analyzing the scaling of the Rényi entanglement en-
tropy, we consider the limit (n − 1)

√
l → ∞. Following

the discussion in the previous section, this leads to the first
case in Eq. (40). For the vN EE, however, we must first take
the limit n → 1, in which case (n − 1)

√
l is always treated as

zero. From the definition in Eq. (17), limn→1 F2n(p1, p2, l ) →
F2(p1, 0, l ), resulting in the second case in Eq. (40). These two
distinct cases demonstrate that the limits l → ∞ and n → 1
do not commute in the calculation of the EE. Furthermore,
the condition in Eq. (40) determines whether the EE scales
as

√
l or ln l . Equation (40) also accounts for the significant

finite-size effects observed for small Rényi indices, as shown
in Fig. 4. Since the theoretical result for the Rényi EE in
Eq. (29) is valid only in the limit (n − 1)

√
l → ∞, numerical

results for smaller Rényi indices exhibit larger deviations from
Eq. (29).

As n → 1 (the vN EE) is the EE singularity of an infi-
nite Motzkin spin chain, the finite-size modification becomes
significantly large near n = 1. This finite-size effect is domi-
nated by the term 1

(n−1)
√

l
, which accounts for the considerable

difference observed between the analytical results and the
numerical results shown in Fig. 4 as n approaches 1.

From the perspective of the entanglement spectrum, the
distinct scaling behavior of the vN EE compared to the Rényi
EE originates from the abundance of highly excited levels.
The EE can be interpreted as the thermal entropy of an
entanglement Hamiltonian HE = − ln ρA, where ρA denotes
the reduced density matrix. The entanglement spectrum εi

corresponds to the eigenvalues of the entanglement Hamil-
tonian [25,77,78]. By definition, εi = − ln λi, where λi are
the eigenvalues of ρA. For any Rényi index n > 1, the Rényi
EE exhibits identical scaling, including s(∞), which is de-
termined exclusively by the largest eigenvalues [79]. Since
s(n) = 1

1−n ln
∑

i e−nεi , smaller values of n lead to greater con-
tributions from higher levels of the entanglement spectrum.
The exponentially large population of these highly excited
levels, illustrated in Fig. 5, ultimately results in the vN EE
exhibiting a stronger scaling behavior than the Rényi EE.

V. DISORDER OPERATOR

The disorder operator [14,17,56,80–86] is a nonlocal op-
erator capable of detecting higher-form symmetries, which
are often challenging to measure using local operators. For
a system with global symmetry, the DO is defined as the
symmetry operator that acts on a specific subsystem. Recent
research [18,19,22,58,60,87] has demonstrated that the DO
exhibits universal scaling behavior in various quantum sys-
tems. Typically, the scaling behavior of the negative logarithm
of the DO is similar to the scaling behavior of EE, which
captures the essential information from CFT.

The Hamiltonian and the ground state of the colored
Motzkin chain possess multiple symmetries [54]. First, the
colored Motzkin chain has continuous U (1) symmetry char-
acterized by the charge Qz = ∑2l

j Sz
j , where 2l is the system

size. Consequently, we define the DO as

X z(θ ) =
l∏
j

eiθSz
j , (41)
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7.8×10
31

7.6×10
31

7.4×10
31

4.0×10
30

2.0×10
30

0.0

FIG. 5. The density of states in the entanglement spectrum, ob-
tained with the reduced density matrix of a spin-2 Motzkin chain
of size 1070. The horizontal axis − ln λ is the eigenvalue of the
entanglement Hamiltonian (λ is the eigenvalue of the reduced density
matrix ρA); the vertical axis is the density of states nλ in a small
window of − ln λ, with natural and logarithmic scales used in (a) and
(b), respectively.

which acts solely on half of the chain, which is obtained by
cutting at the midpoint. λm in Eq. (10) is the possibility to get
a height m at the midpoint when we identify different colors.
Each of the m unpaired steps can be colored from 1 to S. Thus,
the average of the DO is given by

〈X z(θ )〉 =
l∑

m=0

λm

(
S∑

k=1

eikθ

)m

. (42)

For large l , by substituting Eq. (10) into Eq. (42), setting
ξ = m√

l
, and utilizing the integral approximation, we arrive at

the following expression for the DO:

〈X z(θ )〉 = 1

T̃

∫ ∞

0
dξξ 2e−p1(1,S)ξ 2

[
sin

(
Sθ
2

)
S sin θ

2

]√
lξ

ei S+1
2 θ

√
lξ ,

(43)

where T̃ is defined in Eq. (23) and p1 is defined in Eq. (16).
We define the following functions:

χα (θ ; S, l ) =
∫ ∞

0
dξξαe−p1(1,S)ξ 2

ey(θ ;S)ξ
√

l , (44)

y(θ ; S) = ln

[
sin

(
Sθ
2

)
S sin θ

2

]
+ i

S + 1

2
θ. (45)

Then the DO can be expressed as 〈X z(θ )〉 = χ2/T̃ . It is easy
to prove the following relations:

d

dl
χα = y

2
√

l
χα+1, (46)

(α + 1)χα = −
√

lyχα+1 + 2p1χα+2. (47)

Based on Eq. (46), we have

χα+2 = 2

y2

d

dl
χα + 4l

y2

d2

dl2
χα. (48)

Substituting Eqs. (46) and (48) into Eq. (47) yields

(α + 1)χα =
(

4p1

y2
− 2l

)
d

dl
χα + 8p1l

y2

d2

dl2
χα. (49)

Now we look at Eq. (47). There are two possibilities for
the large l scaling of χα: (1) χα and

√
lχα+1 have the same

scaling order while χα+2 has a smaller order of l; (2)
√

lχα+1

and χα+2 have the same scaling order while χα has a smaller
order of l . Other cases are impossible, which can be seen by
writing down the recurrence relation of χα+1, χα+2, and χα+3.
Then we have the following arguments for the two cases.

For the first case, χα+1 ∼ χα/
√

l . Substituting it into
Eq. (46), we have

d

dl
χα ∼ y

l
χα. (50)

Thus, we can suppose that the scaling form of χα is

χα ∼ lλ, (51)

and the value of λ can be determined by substituting Eq. (51)
into Eq. (49):

(α + 1)lλ = −2λlλ + 8p1

y2
λ(λ + 1)lλ−1, (52)

which yields λ = −(α + 1)/2. Thus, the scaling form of χα is
χα ∼ l− α+1

2 .
For the second case, χα+1 ∼ √

lχα . Substituting it into
Eq. (46), we have

d

dl
χα ∼ yχα. (53)

So we can suppose that the leading term of the scaling form
of χα is

χα ∼ eβl lλ. (54)

The values of β and λ can be determined by substituting
Eq. (54) into Eq. (49):

(α + 1)lλ =
(

−2β + 8p1

y2
β2

)
lλ+1

+
(

4p1

y2
β − 2λ + 16p1

y2
βλ

)
lλ, (55)

which yields

β = y2

4p1
,

λ = α

2
. (56)
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Thus, we have χα ∼ e
y2

4p1
l l

α
2 .

It is noteworthy that the DO is defined as an overlap of two
states, which should have an upper bound. Thus, we can rule
out the unphysical second case. Additionally, the numerical
calculation of the integral in Eq. (44) and MC results in the
following also support the first case. Under the conditions of
the first case, we calculate the limit of the DO when l → ∞
using Eqs. (46) and (47),

lim
l→∞

− ln | 〈X z(θ )〉 |
ln l

= − lim
l→∞

l d
dl χ2

χ2

= lim
l→∞

−l 1
2
√

l
yχ3

−
√

l
3 yχ3 + 2p1(1, S)χ4

= 3

2
.

(57)

Therefore, the scaling behavior of the negative logarithm of
the DO is expressed as

− ln | 〈 X z(θ )〉| = 3
2 ln l + const. (58)

Note that the result holds for both the colorless and colored
cases. The universal coefficient of the log term is 3

2 , the same
as for the Rényi EE.

We calculate the DO numerically by using MC simu-
lations, and the results for the cases with S = 1, 2, 3 are
presented in Fig. 6. Figure 6 shows that the logarithmic scaling
agrees well with the analytic result in Eq. (58).

The results presented in Eq. (58) hold true in the large-
l limit. Since l is always paired with θ in Eq. (44), there
is competition between small θ values and large l values.
This competition leads to significant finite-size effects in the
region of small θ . Our simulation also verifies this compe-
tition between θ and l . The DOs are fitted using the function
b ln l + const based on the data for various segments of system
sizes. The fitted results for b are shown in Fig. 7(a) for various
θ values using different system size segments. Figure 7(a)
reveals that for small θ , a significant deviation of b from
3/2 occurs due to finite-size effects. However, this deviation
decreases as the system size increases. This trend can be
clearly observed by examining the fit results for a fixed θ0 as
the system size l increases, as presented in Fig. 7(b). Although
the deviation initially grows with increasing l , the value of b
ultimately converges to the analytical result of 3/2.

In addition to the U (1) symmetry above, the ground state
of the Motzkin chain exhibits an additional U (1) symme-
try characterized by the charge Qc = ∑2l

j

∑S
k (|↑k〉 j 〈↑k| −

|↓k〉 j 〈↓k|). Then the associated DO is

〈X c(θ )〉 =
〈

l∏
j

e
∑S

k iθ(|↑k〉 j〈↑k |−|↓k〉 j〈↓k |)
〉

= 1

T

l∑
m=0

m2

l
e−p1(1,S) m2

l eikmθ . (59)

Based on a calculation similar to that for 〈X z〉 above, in the
limit of l → ∞, the negative logarithm of 〈X c〉 also has the
ln l scaling behavior,

− ln | 〈 X c(θ )〉| = 3
2 ln l + const. (60)

ln
ln

ln

FIG. 6. The negative logarithmic DO under U (1) symmetry with
charge Qz. The MC data are sampled on system sizes ranging from 80
to 1260 sites. The horizontal axis is the subsystem size l , determined
by cutting at the midpoint of the chain. (a) Colorless Motzkin chain.
(b) Two-color Motzkin chain. (c) Three-color Motzkin chain.

The numerical results are illustrated in Fig. 8.
The model also has a permutation symmetry with regard to

different colors. For instance, as shown in Fig. 1, it remains a
Motzkin walk even after the blue and pink steps are swapped.
We introduce a DO of X p that permutes colors within the
subsystems. It can be proved that the expectation value of this
DO equals λ0 as outlined in Eq. (10), which can be estimated
in the limit of large l as [52,54]

〈X p〉 = λ0

= l2

(2
√

S + 1)
2l

T

⎛
⎝ l/2∑

i=0

Si l!

(i + 1)!i!(l − 2i)!

⎞
⎠

2

= l2(
2
√

S + 1
)2l

T

(
2F1

(
− l

2
,

1

2
− l

2
, 2, 4S

))2

= l3/2

(
2F1

(
−l,

3

2
, 3,

4
√

S

2
√

S + 1

))2

, (61)
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FIG. 7. The value of the coefficient b is obtained by fitting the
data of − ln | 〈X z(θ )〉 | to the form b ln l + const, where the system
under consideration is a two-color Motzkin chain. (a) The horizontal
axis represents the phase θ associated with the U (1) symmetry. The
curves are obtained from fits over various system size ranges: L1

spans from 80 to 310 sites, L2 spans from 310 to 530 sites, and L3

spans from 1030 to 1260 sites. The coefficient b approaches a value
of 3/2 as the system size increases. A notable finite-size effect arises
due to the competition between θ and l , particularly in the small-θ
region. This finite-size effect becomes less prominent as the system
size l increases, as demonstrated in (b), which displays the fit results
at θ0 = π/8. In (b), the horizontal axis l denotes the system size,
where the value at each l is obtained by fitting data from system
sizes ranging from l to l + 160 sites.

where we used the relation T = √
lT̃ ∼ √

l obtained from
Eqs. (13) and (23). Here, 2F1 represents the Gauss hyper-
geometric function, and the transformation relation between
hypergeometric functions is utilized. In the large-l limit, the
asymptotic form is [88]

lim
l→∞ 2F1

(
−l,

3

2
, 3,

4
√

S

2
√

S + 1

)

= 
(3)


(3/2)

(
(l + 1)

4
√

S

2
√

S + 1

)−3/2

. (62)

Substituting it into Eq. (61), the negative logarithmic DO also
exhibits logarithmic scaling:

− ln | 〈X p〉 | = 3
2 ln l + const. (63)

We simulate this DO using the MC method. The results also
support these findings and are presented in Fig. 8(b).

ln
ln

FIG. 8. The negative logarithms of DOs. The system is a two-
color Motzkin chain, and the MC data are sampled on system sizes
ranging from 80 to 1260 sites. The horizontal axis is the subsystem
size l , obtained by cutting at the midpoint of the chain. (a) The DO
of U (1) symmetry with charge Qc. (b) The DO of the permutation
symmetry. The results in (a) and (b) support the universal coefficient
of ln l term having a value of 3/2.

VI. SUMMARY AND DISCUSSION

It has generally been believed that the von Neumann
entanglement entropy can be obtained through the analytic
continuation of the Rényi index from Rényi entropy. However,
the colored Motzkin chain serves as a counterexample, as the
expression for the leading term of the Rényi entanglement en-
tropy diverges at n = 1 and an extra leading term is needed for
correction. We investigated the scaling behaviors of entangle-
ment entropies theoretically and numerically to demonstrate
the failure of analytic continuation. Mathematically, this sin-
gularity occurs because the limits l → ∞ and n → 1 cannot
commute in the derivation procedures for the von Neumann
and Rényi entanglement entropies, respectively. On the other
hand, it can also be understood by the exponentially increas-
ing density of states in its entanglement spectrum.

We also explored the scaling of the logarithms of disor-
der operators under different symmetries in colored Motzkin
chains analytically and numerically. The analytic analysis pre-
dicts that all the logarithms of disorder operators exhibit the
same scaling as Rényi entanglement entropy. Our numerical
simulations also confirm these analytic calculations. The scal-
ing of the Rényi entanglement entropy and the logarithms of
the disorder operators point out that the coefficient of the ln l
term is a universal fingerprint of the physics of Motzkin walks.
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Although the entanglement entropy is difficult to measure
in experiments, even in a small system [89,90], the disor-
der operator is an observable that can easily be extracted,
particularly in cold atom platforms. We propose probing the
constrained physics of Motzkin systems intrinsically via dis-
order operators in experiment.
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