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We consider the ground-state properties of the two-component spin-orbit-coupled ultracold bosons subject to
a rotationally symmetric in-plane gradient magnetic field. In the noninteracting case, the ground state supports
giant vortices carrying large angular momenta without rotating the trap. The vorticity is highly tunable by varying
the amplitudes and orientations of the magnetic field. Interactions drive the system from a giant-vortex state to
various configurations of vortex lattice states along a ring. Vortices exhibit ellipse-shaped envelopes with the
major and minor axes determined by the spin-orbit coupling and healing lengths, respectively. Phase diagrams
of vortex lattice configurations are constructed and their stabilities are analyzed.
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I. INTRODUCTION

Spin-orbit (SO) coupling plays an important role in con-
temporary condensed matter physics, which is linked with
many important effects ranging from atomic structures and
spintronics to topological insulators [1–3]. It also provides a
new opportunity to search for novel states with ultracold atom
gases which cannot be easily realized in condensed matter
systems. In the usual bosonic systems, the ground-state con-
densate wave functions are positive definite, which is known
as the “no-node” theorem [4,5]. However, the appearance of
SO coupling invalidates this theorem [6]. The ground-state
configurations of SO-coupled Bose-Einstein condensations
(BEC) have been extensively investigated and a rich structure
of exotic phases are obtained including the ferromagnetic and
spin spiral condensations [6–9], spin textures of the skyrmion
type [6,10–13], and quantum quasicrystals [14], etc. On the
experimental side, since the pioneering work in the NIST
group [15], it has received a great deal of attention, and
further progress has been achieved [16–20]. Searching for
novel quantum phases in this highly tunable system is still
an ongoing work, both theoretically and practically [21–28],
and has been reviewed in Refs. [29–33].

On the other hand, effective gradient magnetic fields have
been studied in various neutral atomic systems recently.
For instance, it has been shown in Refs. [34,35] that SO
coupling can be simulated by applying a sequence of gradient-
magnetic-field pulses without involving complex atom-laser
coupling. In optical lattices, theoretical and experimental
progress shows that SO coupling and spin Hall physics can be
implemented without spin-flip process by employing gradient
magnetic fields [36,37]. This represents the cornerstone of
exploring rich many-body physics using neutral ultracold
atoms. Additionally, introducing gradient magnetic fields has
also been employed to create various topological defects
including Dirac monopoles [38] and knot solitons [39]. It
would be very attractive to investigate the exotic physics by
combining both SO coupling and the gradient magnetic field
together in ultracold quantum gases.

In this work, we consider the SO-coupled BECs subject to
an in-plane gradient magnetic field in a two-dimensional (2D)
geometry. Our calculation shows that this system supports a
variety of interesting phases. The main features are summa-
rized as follows. First, the single-particle ground states exhibit
giant-vortex states carrying large angular momenta. It is very
different from the usual fast-rotating BEC system, in which the
giant-vortex state appears only as metastable states [40,41].
Second, increasing the interaction strength causes the phase
transition into the vortex lattice state along a ring plus a
giant core. The corresponding distribution in momentum
space changes from a symmetric structure at small interaction
strengths to an asymmetric one as the interaction becomes
strong. Finally, the size of a single vortex is determined by
two different length scales, namely, the SO coupling strength
together with the healing length. Therefore, the vortex exhibits
an ellipse-shaped envelope with the principle axes determined
by these two scales. This is different from the usual vortex in
rotating BECs [42–47], where an axially symmetric density
profile is always favored.

The rest of this article is organized as follows. In Sec. II,
the model Hamiltonian is introduced. The single-particle wave
functions are described in Sec. III. The phase transitions among
different vortex lattice configurations are investigated in
Sec. IV. The possible experimental realizations are discussed
in Sec. V. Conclusions are presented in Sec. VI.

II. THE MODEL HAMILTONIAN

We consider a quasi-2D SO-coupled BEC subject to
a spatially dependent magnetic field with the following
Hamiltonian as

H =
∫

d�r2ψ̂(�r)†
{ �p2

2M
+ �r (cos θ r̂ + sin θϕ̂) · �σ

+ 1

2
Mω2r2

}
ψ̂(�r) + Hsoc + Hint, (1)
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where r̂ = �r/r with �r = (x,y), �σ = (σx,σy) are the usual
Pauli matrices; M is the atom mass; ω is the trapping
frequency; � is the strength of the magnetic field; and θ

denotes the relative angle between the magnetic field and the
radial direction r̂ . Physically, this quasi-2D system can be
implemented by imposing a highly anisotropic harmonic trap
potential VH = 1

2M(ω2r2 + ω2
zz

2). When ωz � ω, atoms are
mostly confined in the xy plane, and the wave function along
the z axis is determined as a harmonic ground state with the
characteristic length az = √

�/(Mωz).
For simplicity, the SO coupling employed below has the

following symmetric form as

Hsoc =
∫

d�r2ψ̂(�r)†
[

λ

M
(pxσx + pyσy)

]
ψ̂(�r)

with λ as the SO coupling strength. We note that due to this
term the magnetic fields which couple to spin can be employed
as a useful method to control the orbit degree of freedom of
the cloud. The interaction energy is written as

Hint = g2D

2

∫
d�r2ψ̂(�r)†ψ̂(�r)†ψ̂(�r)ψ̂(�r). (2)

Here the contact interaction between atoms in bulk is g =
4π�

2as/M , where as is the scattering length. For the quasi-2D
geometry that we focus on, the effective interaction strength is
modified as g2D = g3D/(

√
2πaz).

III. SINGLE-PARTICLE PROPERTIES

The physics of Eq. (1) can be illustrated by considering the
single-particle properties first. After introducing the charac-
teristic length scale of the confining trap lT = √

�/Mω, the
dimensionless Hamiltonian is rewritten as

H0

�ω
=

∫
d �ρ2φ̂( �ρ)†

{
−

�∇2

2
+ βρ (cos θ r̂ + sin θϕ̂) · �σ

+α�k · �σ + 1

2
ρ2

}
φ̂( �ρ), (3)

where α = λ/(MωlT ) and β = �lT /(�ω) are the dimen-
sionless SOC and magnetic field strengths, respectively; the
normalized condensate wave function is defined as

φ( �ρ) = lT√
N

�(�r = lT �ρ),

with N being the total number of atoms;
Since the total angular momentum �jz = �lz + �

2 σz is
conserved for this typical Hamiltonian, we can use it to label
the single-particle states. If the magnetic field is along the
radial direction, i.e., θ = lπ , the Hamiltonian also supports a
generalized parity symmetry described by iσyPx , namely

[H0,iσyPx] = 0, (4)

with Px being the reflection operation about the y

axis satisfying Px : (x,y) → (−x,y). Therefore, for given
eigenstates φm = [f (ρ)eimϕ,g(ρ)ei(m+1)ϕ]T with jz = (m +
1/2), the above symmetry indicates that these two states
{φm,(iσyPx)φm} are degenerate for H0(θ = lπ ). This sym-
metry is broken when θ �= lπ .

Due to the coupling between the real space magnetic field
and momentum space SO coupling, the single-particle ground

states exhibit interesting properties at large values of α and
β. In momentum space, the low-energy state moves to a
circle with the radius determined by α. The momentum space
single-particle eigenstates break into two bands ψ±(�k) with the
corresponding eigenvalues E±

�k /(�ω) = 1
2 (|�k|2 ± 2α|�k|) and

eigenstates 1√
2
[1, ± eiθk ]T , respectively. For the lower band,

which we focus on, the spin orientation is 〈�σ 〉 = (− cos θ�k, −
sin θ�k), which is antiparallel to �k. On the other hand, in the real
space, for a large value of β, the potential energy in real space
is minimized around the circle with the radius r/ lT = β with
a spatially dependent spin polarization. Therefore, around this
space circle, the local wave vector at a position �r is aligned
along the direction of the local magnetic field to minimize
the energy. The projection of the local wave vector along the
tangent direction of the ring gives rise to the circulation, and
thus the ground state carries large angular momentum m, which
is estimated as

m 
 2πβ sin θ/(2π/α) = αβ sin θ. (5)

Therefore, by varying the angle θ , a series of ground states
are obtained with their angular momentum ranging from 0
to αβ � 1. This is very different from the usual method
to generate a giant vortex, where a fast-rotating trap is
needed [42].

For β � 1, the low-energy wave functions mainly dis-
tribute around the circle ρ = β. As shown in Appendix A,
the approximate wave functions for the lowest band (n = 1)
are written as

φn=1,jz
(ρ,ϕ) 
 1

2π
3
4 ρ

1
2

e− (ρ−β)2

2 eiρα cos θ

×
[

ei[mϕ− θ
2 ]

−ei[(m+1)ϕ+ θ
2 ]

]
, (6)

where ϕ is the azimuthal angle. The corresponding energy
dispersion is approximated as

En,jz
≈ n + 1 − α2 − β2

2
+ (jz − αβ sin θ )2

2(α2 cos2 θ + β2)
. (7)

For given values of α and β, En,jz
is minimized at jz 


αβ sin θ , which is consistent with the above discussion. In
the case of θ = lπ , two states with m = l and −(l + 1)
are degenerated due to the symmetry defined in Eq. (4).
Interestingly, Eq. (7) also indicates that for integer αβ sin θ =
l, an approximate degeneracy occurs for m = l and l − 1.

Figure 1 shows the single-particle dispersion of different
angular momentum eigenstates along with the radius β for
different values of θ . For θ = 0, the dispersions with different
jz never cross each other [Fig. 1(a)]. The values of jz for the
ground state are always jz = 1

2 or − 1
2 due to the symmetry

[Eq. (4)]. When θ = π/4 �= 0, the spectra cross at certain
parameter values, and the ground state can be degenerate
even without additional symmetries as shown in Fig. 1(b),
which is consistent with the above discussions. For β � 1,
the probability density of the ground-state single-particle
wave function mainly distributes around a ring with ρ =
β. Interestingly, the phase distribution exhibits the typical
Archimedean spirals with the equal-phase line satisfying
ρ ∼ mϕ (or ρ ∼ (m + 1)ϕ) (see Fig. 2 for details).

033603-2



In-PLANE GRADIENT-MAGNETIC-FIELD-INDUCED . . . PHYSICAL REVIEW A 91, 033603 (2015)

0 0.5 1 1.5 2
−52

−51.5

−51

−50.5

−50

−49.5

−49

−48.5

−48
E

/
(h̄

ω
)

0.6 0.8

−49.7

−49.6

−49.5

α = 10,
θ = 0

(a)

β

0 0.5 1 1.5 2
−52

−51.5

−51

−50.5

−50

−49.5

−49

−48.5

−48

E
/
(h̄

ω
)

0.6 0.7

−49.75

−49.7

−49.65

−49.6

α = 10,
θ = π/4

(b)

β

FIG. 1. The single-particle dispersion of the Hamiltonian Eq. (3)
with lower energy branch as a function of the reduced magnetic fields
β for fixed α = 10 and different values of θ = 0 (a) and 1

4 π (b). The
inset in panel (b) shows that the ground states crossing for certain
values of β at θ = π/4 �= 0, whereas there is no crossing in panel (a)
at θ = 0.

IV. PHASE TRANSITIONS INDUCED BY INTERACTION

In this section, we consider the interaction effect which
will couple single-particle eigenstates with different values of
jz. It is interesting to consider the possible vortex configura-

FIG. 2. (Color online) The density and phase profiles of the
single-particle ground states for fixed α = 6, β = 1, and different
θ = 1

40 π (a), 2
5 π (b). From left to right: the density and phase profiles

for spin-up and spin-down components, respectively.

FIG. 3. (Color online) The profiles of the condensate wave func-
tions of the spin-up component for α = 11, β = 6, and θ = π

2 . The
interaction parameters are g = 15 (a), 35 (b), 75 (c), and 100 (d),
respectively. We note that panels (c) and (d) exhibit similar profiles
but with different q. From top to bottom: the density and phase
profiles in real space, and the momentum distributions, which mainly
are located around the circle |k| = α.

tions in various parameter regimes, which have been widely
considered in the case of the fast-rotating BECs.

If the dimensionless interaction parameter g =
g2DN/(�ωl2

T ) is small, it is expected that the ground
state still remains in a giant-vortex state, which is similar to
the noninteracting case. The envelope of the variational wave
function is approximated as

φjz
(ρ,ϕ) ∼ 1

2π
3
4
√

σρ
e
− (ρ−β)2

2σ2 eiρα cos θ

[
ei[mϕ− θ

2 ]

−ei[(m+1)ϕ+ θ
2 ]

]

with σ being the radial width of the condensates. Around
a thin ring inside the cloud with the radius ρ, in order to
maintain the overall phase factor eimϕ , the magnitude of the
local momentum along the azimuth direction is determined
by kϕ = m/ρ. Depending on the width σ of the cloud, the
linewidth of kϕ is proportional to δkϕ = mσ/β2. In momentum
space, this leads to the expansion of the distribution around
the ring with |k| = α. The increasing of the kinetic energy
mainly comes from the term Êϕ = (jz/ρ − α sin θ )2/2, which
is estimated as 〈Êϕ〉jz

. Detailed derivation of various energy
contributions can be found in Appendix B.

Increasing the interaction strength g expands the cloud
and leads to larger width σ and δkϕ , which makes the
above variational state energetically unfavorable. In order to
minimize the total energy, the condensates tend to involve
additional vortices such that the local momentum mainly
distributes around the circle |k| = α with smaller δkϕ . Figs. 3
and 4 show the typical ground-state configurations for selected
parameters. The phase accumulations around the inward
and outward boundaries of the cloud are 2πm+ and 2πm−
respectively. Therefore, there are q = m+ − m− vortices
involved and distributed symmetrically inside the condensates.
Between two nearest vortices, the local wave function can be
approximately determined as a plane-wave state. Therefore,
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FIG. 4. (Color online) Ground-state profiles of the condensates
for α = 11, β = 6, θ = π/3 with different interactions g = 85 (a),
105 (b), 125 (c), and 145 (d). From top to bottom: density and phase
profiles of the spin-up component, and momentum distribution in the
lower band along the circle |k| = α. The orientation of the ellipse-
shaped vortices is determined by θ . See text for details.

their corresponding distribution in momentum space is also
composed of q peaks located symmetrically around the circle
|k| = α.

As further increase of the interaction strength, the con-
densates break into more pieces by involving more vortices.
The number of the vortices is qualitatively determined by the
competition of the azimuthal kinetic energy and the kinetic
energy introduced by the vortices. Specifically, if q vortices
locate in the middle of the cloud around the circle ρ0 
 β,
then for the inward part of the condensates with ρ < ρ0, the
mean value of the angular momentum can be approximated as
jz,− ≈ jz − q/2, while for the regime with ρ > ρ0, we have
jz,+ ≈ jz + q/2. The corresponding kinetic energy along the
azimuthal direction is modified as

〈Êϕ〉 = 〈Êϕ〉jz
+ q(q − 4σα sin θ/

√
π)

8(β2 + α2 cos2 θ )
. (8)

This indicates that to make the vortex-lattice state favorable,
we must have (q − 4σα sin θ/

√
π ) < 0. In the limit case with

θ = 0, this condition is always violated. Therefore, the ground
state remains an eigenstate of jz with jz = ± 1

2 even for large
interaction strengths.

We note the vortices display an ellipse-like shape with
two main axis, as shown in Fig. 5. The phase profile is
twisted, and the constant phase front exhibits a dislocation
around vortex cores. Along the direction of local wave vector
�k, the vortex density profile is determined by the length
scale 2πβ/q 
 2πm/(qα sin θ ). While perpendicular to the
direction of local �k, the vortex profile is dominated by the
healing length ξ due to interaction. Therefore, the vortex
density distribution is determined by two different length
scales in mutually orthogonal directions, which results in
ellipse-shaped vortices. Changing the interaction strength and
SO coupling alerts the ratio of the two length scales and thus
changes the eccentricity of the ellipses. Additionally, changing
the angle θ also changes the direction of local magnetic fields

FIG. 5. (Color online) Enlarged density and phase profiles
around single vortex. The two panels (a) and (b) are the corresponding
parts adapted from Figs. 3(c) and 4(d) respectively.

and thus modifies the orientation of the vortices, as shown in
Figs. 3 and 4.

On the other hand, the introduction of vortices leads to
the increase of kinetic energy along the radial direction due
to the presence of a domain wall between the two different
giant-vortex states around the circle ρ = β. This can be
estimated as 1

2
√

2πσξ
+ q2

8β2 tan2 θ
, where ξ = 1/(2

√
2gn0) is the

dimensionless healing length with n0 = |φ0|2 being the bulk
density of the clouds (see Appendix B for details). The total
energy changing due to the presence of the vortices can be
written as

�E = 1

2
√

2πσξ
+ q2

8β2 tan2 θ
+ q(q − 4σα sin θ/

√
π )

8(β2 + α2 cos2 θ )
.

(9)

Several interesting features can be extracted from Eq. (9).
For fixed parameters g, α, and β, there always exists a
critical θc such that �E = 0 is satisfied. When θ < θc, then
�E > 0, which indicates that a giant-vortex ground state is
always favored. As α increases, θc satisfying �E = 0 becomes
smaller. At θ > θc, the ground state exhibits a lattice-type
structure along the ring with a giant-vortex core. The values
of q are determined by minimizing �E with respect to g, α,
and β, respectively. Figure 6 shows θc as a function of SO
strength α at which the transition from a giant-vortex state to
a vortex-lattice state occurs. When α is small, a giant-vortex
state is favored for all values of θ . As α increases, θc drops
quickly initially and decreases much slower when α becomes
large, as shown in Fig. 6(a). In Fig. 6(b), it shows that as
increasing the interaction g, it is becomes easier to drive the
system into the vortex lattice state.

Figure 7 shows the phase diagram in the α-g plane for
a fixed β = 6 for different values of θ . For a fixed α and
at small values of g, the system remains a giant-vortex state
until g reaches its critical value gc. When g > gc, the system
enters into an intermediate regime in which vortices start to
enter into the condensates from boundaries. The momentum
distribution also breaks into several disconnected segments.
More single quantum vortices are generated in the condensates
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FIG. 6. (Color online) (a) Critical angle θc as a function of SO
coupling strength α for fixed values of β = 4 and g = 800. (b) θc

decreases as the increase of interaction parameter g for fixed α = 10,
6, and β = 4.

as the interaction strength further increases. The vortices
distribute symmetrically along the ring and separate the
condensates into pieces. Between two neighboring vortices,
the condensates are approximated by local plane-wave states.
The momentum distribution is composed of multiple peaks
symmetrically located around the circle |k| = α. Increasing
g also increases the number of the single quantum vortices
q inside the condensates and hence increases the number of
peaks in momentum space. For a smaller value θ = π/3, the
critical gc is increased, which means that stronger interactions
are needed to drive the system into the vortex-lattice states.
Interestingly, the intermediate regime is also greatly enlarged.
This is consistent with the limit case θ = 0, where the system
remains to be a giant-vortex state even in the case of large
interaction strength.

More ellipse-shaped vortices are formed as the interaction
strength further increases, which are self-organized into a
multiple-layered ring structure, as shown in Fig. 8. Around
each ring, vortices distributed symmetrically. The number of
the vortices between different layers can be distinct due to their
different radii. Therefore, the distribution in momentum space
becomes asymmetric and exhibits complex multiple-peak
structures around the circle |k| = α.

V. EXPERIMENTAL CONSIDERATION

The Hamiltonian, Eq. (1), considered above can be dynam-
ically generated on behalf of a series of gradient magnetic

70 80 90 100 110 120 130 140
8

9

10

11

12

13

g

α

11

12

13

14

GV

IM

(a)

20 40 60 80 100 120 140
7

8

9

10

11

12

g

α
9

10

11

12

13

IM

GV

(b)

FIG. 7. (Color online) Phase diagram in the α-g plane for β = 6
with different θ = π/3 (a) and π/2 (b). The number q means that
the condensates support a vortex-lattice-type ground state with q

momentum peaks along the circle |k| = α. The regime with shadow
in panel (b) indicates that the ground state shows a multilayer structure
with increasing interaction strength. Other phases are defined as
follows: GV (giant-vortex state) and IM (intermediate regime).

pulses [34,35]. Starting with the typical single-particle Hamil-
tonian Hs = p2

2M
+ 1

2Mω2r2, in the first time step, we employ

a pair of magnetic pulses U1 and U
†
1 , defined as

U1 = eiλ(xσx+yσy )/�, (10)

FIG. 8. (Color online) Density and momentum distributions
about the ground states of the condensates for θ = π/3 with g = 400
(a), 1000 (b), and θ = π/2 with g = 400 (c), 1000 (d). Other
parameters are the same as in Fig. 4. We note that since the two
spin components share almost the same profiles, only the densities of
the spin-up component are shown for simplicity.
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at time t = 2nτ , (2n + 1)τ respectively. Second, a typical
effective gradient coupling,

�[(x cos θ − y sin θ )σx + (y cos θ + x sin θ )σy], (11)

is applied during the whole time duration [(2n + 1)τ,2(n +
1)τ ]. Combining these two time steps, an effective dynamical
evolution U = e−iH0τ implements the desired dynamics. In
practice, the gradient magnetic pulse in the first cycle can be
simulated with quadrupole fields as �B = (x,y, − 2z). When
the condensates are strongly confined in the xy plane, the
influence of the nonzero gradient along the z axis can be
neglected. The effective gradient coupling in the second cycle
can be implemented with the help of atom-laser coupling.
For instance, a standard two-set Raman beams with blue
detuning [48] can realize an effective coupling

�[sin(�k1 · �r)σx + sin(�k2 · �r)σy], (12)

where the wave vectors �k1 and �k2 in the xy plane can
be chosen as �k1 = k(cos θ, − sin θ ) and �k2 = k(sin θ, cos θ ).
When 2π/k is much larger than the trap length lT , the required
effective coupling is approximately obtained. Finally, the
phases discussed in the context can be detected by monitoring
their corresponding density and momentum distributions using
the setup of time of flight.

VI. CONCLUDING REMARKS

To summarize, we have discussed the ground-state phase
diagram of SO-coupled BECs subject to gradient magnetic
fields. Theoretical and numerical analyses indicate that the
system supports various interesting vortex physics, including
the single-particle giant-vortex states with tunable vorticity,
multiple-layered vortex-lattice-ring states, and the ellipse-
shaped vortex profiles. Therefore, the combination of SO
coupling and the gradient magnetic fields provides a powerful
method to engineer various vortex states without rotating
the trap. We hope our work will stimulate further research
in searching for various novel states in SO-coupled bosons
subject to effective gradient magnetic fields.
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APPENDIX A: SINGLE-PARTICLE EIGENSTATES
FOR LARGE β

We start with the dimensionless Hamiltonian

H0

�ω
=

∫
d �ρ2φ̂( �ρ)†

{
−

�∇2

2
+ βρ(cos θ r̂ + sin θϕ̂) · �σ

+α�k · �σ + 1

2
ρ2

}
φ̂( �ρ). (A1)

Since the total angular momentum is conserved, the
single-particle eigenstates can be written as φm =
[f (ρ)eimϕ,g(ρ)ei(m+1)ϕ]T with jz = (m + 1/2). By substitut-
ing this wave function into their corresponding Schrödinger
equations, we obtain

{
p̂2

ρ

2
+ j 2

z

2ρ2
+ (ρσx − β)2

2
− α

[(
p̂ρ cos θ + jz

ρ
sin θ

)
σx

+
(

jz

ρ
cos θ − p̂ρ sin θ

)
σy

]
+jzσz

2ρ2

}[
f̃ (ρ)
g̃(ρ)

]
=E

[
f̃ (ρ)
g̃(ρ)

]
,

where f̃ (ρ) = f (ρ)eiθ/2, g̃(ρ) = g(ρ)e−iθ/2, and p̂ρ =
−i( ∂

∂ρ
+ 1

2ρ
) is the momentum operator along the radical

direction. For large β � 1, these functions mainly distribute
around the circle ρ = β in the plane, so we consider the
superposition F±(ρ) = 1

2 [f̃ (ρ) ± g̃(ρ)]), which satisfies the
following approximated equations as(

p̂2
ρ

2
∓ α cos θp̂ρ + j 2

z

2ρ2
∓ α sin θ

jz

ρ
+ ρ2

2
∓ βρ

)
F±(ρ)

±iα

(
p̂ρ sin θ − jz

ρ
cos θ

)
F∓(ρ) = Ejz

F±(ρ).

The above equation indicates that to minimize the ki-
netic energy, we need 〈 �pρ〉 
 α cos θ . Around ρ = β,
we have the approximated solutions as F±(ρ) ∼ Hn(ρ ±
β)e−(ρ±β)2/2e±iα cos θρ with Hn(r) as the usual nth Hermite
polynomial. Therefore, F+ is negligible since we always have
ρ > 0. The solution now can be written as f̃ (ρ) 
 g̃(ρ) ∝
Hn(ρ − β)e−(ρ−β)2/2eiα cos θρ . So we obtain the approximated
wave functions for the lowest band (n = 1) as

φn=1,jz

 1

2(π )
3
4 ρ

1
2

e− (ρ−β)2

2 eiρα cos θ

[
ei[mϕ− θ

2 ]

−ei[(m+1)ϕ+ θ
2 ]

]
. (A2)

The dispersion is estimated as [49]

En,jz
= n + 1 − α2 − β2

2
+ (jz − αβ sin θ )2

2(α2 cos2 θ + β2)
, (A3)

which is minimized when jz 
 αβ sin θ , so for the kinetic term
along the tangential direction Êϕ = ( jz

ρ
− α sin θ )2/2.

APPENDIX B: ENERGY ESTIMATION OF VORTEX
LATTICE STATES AROUND THE RING

For weak interaction, the condensates expands along the
radial direction as the parameter g is increased. When g is
large enough, to lower the kinetic energy, the system tends to
involve vortices located around a ring inside the condensates,
which separate the wave function into two parts. Inside the
vortex ring, the wave function for the spin-up component is
approximated as a giant vortex with the phase factor ei2πm−ϕ ,
while outside the ring, the mean angular momentum carried
by single particle is approximated as m+�. The difference q =
m+ − m− represents the vortex number inside the condensates.
Therefore the variational ground state can be approximated as
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follows:

φ(ρ,ϕ) =
{

φjz−q/2(ρ,ϕ) when ρ ∈ (0,β),
φjz+q/2(ρ,ϕ) when ρ ∈ (β,∞).

(B1)

We also assumes that around the circle ρ = β, vortices are
involved and self-organized to compensate for the phase
mismatch so that the whole wave function is well defined.
In the general case, we can write the variational wave function
as

φ(ρ,ϕ) = φ+(ρ)|m+〉 + φ−(ρ)|m+〉,
= h(ρ) [f+(ρ)|k+〉|m+〉 + f−(ρ)|k−〉|m−〉] , (B2)

where

h(ρ) =
(

1

π

) 1
4 1√

2π

1√
σ

e
− (ρ−β)2

2σ2 ,

f+(ρ) =
[

1

e
−

√
2(ρ−β)

ξ + 1

]1/2

, f−(ρ) =
[

1

e

√
2(ρ−β)

ξ + 1

]1/2

,

|k+〉 = eik+ρ

√
ρ

, |k−〉 = eik−ρ

√
ρ

,

|m+〉 = 1√
2

[
ei[m+ϕ− θ

2 ]

−ei[(m++1)ϕ+ θ
2 ]

]
,

|m−〉 = 1√
2

[
ei[m−ϕ− θ

2 ]

−ei[(m−+1)ϕ+ θ
2 ]

]
.

Here we have set m± = m ± q/2. The wave vectors are
chosen as k± = α cos θ ± q/(2β tan θ ) such that the local wave
vectors are parallel with the local effective magnetic fields. ξ

describes the width of the crossover regime of the two different
giant-vortex states, which is also equivalent to the healing
length. The above wave function contains enough parameters
for the following analysis.

The total variational energy of the system can be obtained
from

E = 〈Êρ〉 + 〈Êϕ〉 + Eint, (B3)

where 〈Ê〉 = ∫
dϕdρρφ†Êφ with Êρ = 1

2 [(p̂ρ − α cos θ )2 +
(ρ − β)2 − (α2 + β2)], and Eint = g

2

∫
dϕdρρ|φ†φ|2. By cal-

culating the energy difference of these two wave functions, we
can determined the ground-state configuration of the system
for giving parameters. For instance, the increase of the kinetic
energy around the tangential direction can be estimated as

〈Êϕ〉 − 〈Êϕ〉jz
=

〈
q2

8ρ2

〉
jz

+
〈
q(jz − α sin θρ)

2ρ2
(f 2

+ − f 2
−)

〉
jz

,

(B4)

where we use 〈〉jz
to denote the mean values over the trivial

variational function φjz
. Integrating the above formulas, we

arrive at the final energy difference as

�E = E − Ejz
= 1

4
√

2πσξ
+ q2

8β2 tan2 θ

+ q2 − 4qσα sin θ/
√

π

8(β2 + α2 cos2 θ )
+ gξ

2
√

2βπ2σ 2
, (B5)

where we have assumed β � σ � ξ to simplify the analysis.
Here the first two terms describes the energy increase induced
by the kinetic energy along the radial direction 〈Êρ〉. The
third term comes from the different 〈Êϕ〉 − 〈Êϕ〉jz

. And finally,
the last term denotes the additional interaction energy due
to the presence of the domains around the ring ρ ∼ β. For
small θ → 0, we always have �E > 0. Therefore, a giant
vortex ground state has lower energy. In the opposite case
with θ → π/2, �E is minimized when q 
 2ασ/

√
π . As the

increasing of interaction strength g, the condensate expands
with larger σ , which make vortex lattice state energetically
favorable. The width of the domain walls can be estimated by
minimizing �E with respect to ξ , which is determined by the
interaction strength as ξ =

√
π3/2βσ/2g. So we have the total

energy increase as

�E = 1

2
√

2πσξ
+ q2

8β2 tan2 θ
+ q2 − 4qσα sin θ/

√
π

8(β2 + α2 cos2 θ )
.

(B6)

The vortex profile can be obtained by considering the
variational wave functions around ρ = β. Specifically, for
θ = π/2, we have

φ(ρ = β,ϕ) 
 |φ0|
√

2 cos
(q

2
ϕ
)

ei(mϕ−π/4)

[
1

−ieiϕ

]
. (B7)

with |φ0| = h(β)√
2β

= [2π
3
4
√

σβ]−1 being the bulk wave function
away from the vortex cores. The position of vortex cores is
determined by cos( q

2 ϕ) = 0, which results in q independent so-
lutions ϕn = (2n + 1)π/q with n = 0,1, . . . ,q − 1. To obtain
the detailed structure of these vortices, we expand φ around
these cores as

φ(δρ,δϕ) 
 |φ0|ei(mϕ−π/4)

[
1

−ieiϕ

] (
f+ei

q

2 ϕ + f−e−i
q

2 ϕ
)


 |φ0|ei(mϕ−π/4)

[
1

−ieiϕ

]
(−1)ni

(
δρ

2ξ
+ i

βδϕ√
2β/q

)
(B8)

with δρ = ρ − β and δϕ = ϕ − ϕn. Therefore the two spin
components share the same density distributions, and vortex
profiles are determined by two independent length scales ξ

and 2πβ/q for the radial and tangential directions respec-
tively [50]. This results in an ellipse-like vortex shape, as
shown in Fig. 5.
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