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Spin-orbit coupling is a important focus of condensed matter physics as well as electron-phonon
interaction. Traditionally spin-orbit coupling is regarded as a single-body effect arising from relativity,
and electron-phonon interaction is often considered spin-independent. In this Letter, we bridge spin-
orbit coupling and electron-phonon interaction, and propose a novel mechanism to dynamically
generate spin-orbit coupling. Based on symmetry analysis, a spin-dependent electron-phonon coupling
model is constructed, and is solved by sign-problem-free quantum Monte Carlo simulations. The phase
diagram versus phonon frequency ω and coupling constant λ is fully investigated. The spin-orbit
coupling emerges as an order in the ground state for any λ in the adiabatic limit, accompanied by a
breathing mode of lattice distortion and a staggered loop spin current. This phase dominates in the entire
range of ω with λ < λ∞, a critical value in the ω → ∞ limit. At λ > λ∞, the emergent spin-orbit coupling
is suppressed as increasing ω, and a phase transition occurs leading to charge-density-wave ordering
degenerate with superconductivity. Our work opens up the possibility of hidden spin-orbit coupling in
materials where it is otherwise forbidden by lattice symmetry and paves the way to explore possible
materials for spintronics.
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Introduction—Spin-orbit coupling (SOC), typically
originated from relativistic physics [1], plays an essential
role in spintronics [2,3]. It has also brought novel quantum
states of matter including topological insulators [4–8] and
chiral magnets [9,10]. In solid systems, the manifestation
of SOC usually requires spatial asymmetry. When a bond
does not possess an inversion center, the hopping term
across it includes a spin-current term whose spin orienta-
tion is determined by the Dzyaloshinskii-Moriya (DM)
vector [11,12]. Similarly, both the Dresselhaus [13] and
Rashba [14] SOCs require a noncentrosymmetric crystal-
line structure. In these cases, the resultant SOC is a single
body effect. On the other hand, SOC could be generated
as an order parameter spontaneously by electron-electron
interaction based on Fermi liquid instabilities proposed
by one of the authors and his collaborators [15,16].
This mechanism also yields novel types of SOCs that
break time-reversal symmetry beyond the conventional

relativistic mechanism, characterized by spin-group sym-
metries and phenomena reminiscent of the so-called alter-
magnetism observed in solid state materials [17,18].
Electron-phonon interaction (EPI) is an important inter-

action in condensed matter systems, which could induce
spontaneous lattice distortions. For example, in quasi one-
dimensional (1D) systems like polyacetylene, the longi-
tudinal phonons couple to the real part of hopping integrals.
Spontaneous dimerization, i.e., the bond-wave instability,
occurs as described by the Su-Schrieffer-Heeger (SSH)
model [19]. This model has been recently generalized to
two dimensions (2D) to study the competition between the
bond-wave and other quantum phases such as antiferro-
magnetism and superconductivity [20–23]. Nevertheless,
this kind of electron-phonon interaction is typically spin
independent.
In this Letter, we generalize the SSH-type Hamiltonian

by coupling phonons to the imaginary part of hopping
integrals. Due to time-reversal symmetry, the coupling form
should be like a vibrating spin current along the bond. This
type of spin-dependent electron-phonon interaction can
induce a new kind of symmetry-breaking phase with a
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spontaneous generation of SOC.We consider the case at half-
filling in a square lattice with each bond coupled to
an optical phonon mode characterized by the phonon
frequency ω and the EPI constant λ. The sign-problem-free
projective quantum Monte Carlo (PQMC) method is
employed to yield the ground-state phase diagram shown
in Fig. 1. In the adiabatic limit, i.e., ω → 0, the system
spontaneously develops the spin-flux state (SFS) in which a
staggered loop spin current circulating around each pla-
quette. This phase has also been known as spin nematic state
[24,25]. In the anti-adiabatic limit (ω → ∞), the SFS still
exists below a critical EPI constant λ∞, above which the
system enters the fully gapped phase featuring degenerate
charge-density-wave (CDW) and superconductivity (SC)
as protected by the pesuod-spin SU(2) symmetry. Our work
here for the first time in a numerical exact way investigates
the spontaneous generation of SOC as the consequence of
spin-dependent EPI.
Model Hamiltonian—We first consider a single bond

and give the form of spin-dependent EPI. As illustrated in
Fig. 2(a), when the anion sits at the bond center of two
transition metal cations, due to the inversion symmetry the

electron hopping between two cation sites is spin inde-
pendent, which reads Hel¼−t

P
σðc†1σc2σþc†2σc1σÞ, where

t is the real part of the electron hopping integral. If the
anion’s displacement is perpendicular to the bond, it breaks
the inversion symmetry which results in the DM vector
for spin-dependent hoppings. Since the residual reflection
symmetry with respect to the cation-anion plane, the DM
vector is perpendicular to this plane set as the z direction
[12,26]. The resultant spin-dependent EPI term, to the first
order of the anion displacement X̂⊥, takes the form of

Hep ¼ gX̂⊥Jz12; ð1Þ

where Jz12¼J12;↑−J12;↓ with J12;σ ¼ −iðc†1σc2σ − c†2σc1σÞ;
the coupling strength g is set to be real and positive. For a
microscopic derivation of Eq. (1), please refer to Sec. I of
Supplemental Material (SM) [27].
Next we construct a tight-binding model of spin-1=2

electrons on the half-filled L × L square lattice as sketched
in Fig. 2(b). The spin-dependent EPI of Eq. (1) and the
phonon dynamics on each bond are included. The total
Hamiltonian reads H ¼ Hep þHph defined as

Hep ¼ −t
X

hiji;σ

�
c†iσcjσ þ c†jσciσ

�
þ
X

hiji
gX̂ijJ

z
ij

Hph ¼
X

hiji

P̂2
ij

2M
þ 1

2
KX̂2

ij: ð2Þ

TheHph-term describes phonon dynamics of anions, where
X̂ij and P̂ij are conjugate displacement and momentum,
andM denotes the effective mass and K the effective spring
constant. The phonon is assumed to be the Einstein type
with a single frequency given by ω ¼ ffiffiffiffiffiffiffiffiffiffiffi

K=M
p

. The phonon
displacements are restricted to be in plane for simplicity.
Throughout this work, a dimensionless EPI constant is
defined as λ ¼ g=

ffiffiffiffiffiffi
tK

p
. We set t ¼ 1 as energy unit and

K ¼ 1 by appropriately rescaling X̂ij. The convention of
the positive directions of phonon displacement and spin
current is illustrated in Fig. 2(b).
The above spin-dependent EPI describes a dynamic spin-

orbit coupling generated by the optical phonons. If hX⊥i
vanishes, the SOC coupling on average disappears at the
single particle level. On the other hand, if spontaneous
symmetry breaking occurs with nonvanishing hX⊥i, SOC
will emerge as a consequence of long-range ordering.
Equation (2) breaks the spin SU(2) symmetry but maintains
the rotational symmetry around the z axis. Please note
that Jij;σ should be viewed as a “canonical” version rather
than the physical spin current. The physical version J̃ij;σ
satisfying the continuity equation is defined in Eq. (5) later.
The Hamiltonian of Eq. (2) also possesses the pseudo-

spin SU(2) symmetry generated by η ¼ 1
2

P
i c̃

†
i σc̃i with

FIG. 1. Phase diagram of the spin-dependent EPI model versus
coupling constant λ and phonon frequency ω. Red dotted line
marks the critical strength λ∞ at ω ¼ ∞. The two insets illustrate
the SFS with loop spin current and degenerate CDW/SC order
(represented by the CDW pattern).

FIG. 2. (a) A two site case to illustrate how the perpendicular
displacement of a middle anion can induce SOC effect, with two
transition metal cations M1, M2 (gray), and the anion (blue)
between them. (b) Square lattice with bond oscillators. Blue and
red arrows indicate the positive direction of bond phonon
operator X̂ and spin current operator Jz, respectively.

PHYSICAL REVIEW LETTERS 135, 026505 (2025)

026505-2



c̃†i ¼ ½c†i;↑; ð−1Þici;↓� [34]. The diagonal component of the
SU(2) generators is the total particle number up to a linear
relation ηz ¼ 1

2

P
iσðc†i;σci;σ − 1=2Þ, and its off-diagonal

components can be reorganized as the η-pairing operators,

ηþ ¼
X

i

ð−1Þic†i;↑c†i;↓; η− ¼ ðηþÞ†: ð3Þ

The pseduospin SU(2) unifies the CDW order
1=L2

P
i;σð−1Þihc†iσciσi and the onsite SC order

1=L2
P

ihc†i↑c†i↓i [35]. Moreover, the Hamiltonian is invari-

ant under time reversal T̂ ¼ iσyK̂ with K̂ the complex
conjugation. Due to the Kramers degeneracy, this model is
free of sign problem [36] and thus can be studied by
projective quantumMonte Carlo method with high numeri-
cal accuracy.
Adiabatic and antiadiabatic limits—Phonons with finite

frequency mediate a retarded electron-electron interaction.
Before performing QMC simulations, we first investigate
the ground state properties in the adiabatic limit, i.e.,
ω → 0ðM → ∞Þ, where phonon dynamics is classical,
and in the anti-adiabatic limit, i.e., ω → ∞ðM → 0Þ,
where the effective interaction between electrons become
instantaneous.
In the adiabatic limit, the phonon displacements

X ¼ fXijg can be treated as classical variables with static
values. Since the Fermi surface is perfectly nested with the
wave vector Q ¼ ðπ; πÞ, it is natural to expect that a
staggered distortion is favored. In Figs. 3(a)–3(c), we
demonstrate several possible configurations. Among them,
the breathing mode yields the lowest energy for all λ
considered, and the energy difference associated with these
modes are shown in Fig. 4(a). See SM Sec. III [27] for
detailed calculations.
The ground state with the breathing mode is denoted as

the spin flux state (SFS). The lattice distortion induces a
staggered SOC with the strength gjXj plotted in Fig. 4(b).
The effective SOC generates Dirac points at ðπ=2;�π=2Þ
in momentum space, which lowers the density of states
and saves the energy. This SOC pattern corresponds to
a staggered spin-flux in each plaquette as illustrated in

Fig. 3(d). The effective hopping integral writes as
tij;σ ¼ −jtijjeiθij;σ , where θij;↑ ¼ −θij;↓. Therefore, an
electron hopping around a plaquette acquires a spin-
dependent phase Φσ satisfying Φ↑ ¼ −Φ↓, where
Φσ ¼

P
i;j∈□

θij;σðmod πÞ. The time reversal symmetry
is preserved since spin up and down currents flow in
opposite directions. As a comparison, the tilting mode in
Fig. 4(b) bears no net flux in any plaquette and thus is
equivalent to a trivial case up to a gauge transformation,
which, hence, cannot open a gap to lower the energy.
In the antiadiabatic limit, the phonon degrees of freedom

can be integrated out to obtain an instantaneous two-body
interaction for electrons as (see SM Sec. IV [27] for
deviation)

Heff
int ¼ −

V
2

X

hiji

�
Jzij;↑ − Jzij;↓

�
2

¼ 2V
X

hiji

�
ηi · ηj þ SziS

z
j − Sxi S

x
j − Syi S

y
j

�
; ð4Þ

where ηi ¼ 1
2
c̃†i σc̃i and Si ¼ ðSxi ; Syi ; Szi Þ ¼ 1

2
c†i σci are local

pseudospin and spin operators; V ¼ g2=K is the strength of
phonon-induced electron-electron interaction, playing the
role of antiferromagneticlike pseudospin exchange inter-
action. As discussed in Ref. [35], this induces a CDWorder
degenerate with the on-site SC order. By the self-consistent
mean-field calculation, the energies versus λ for the two
types of ground state candidates, SFS and CDW/SC, are
compared as shown in Fig. 4(c). The crossing at λMF

∞ ≈ 1.1
indicates a first order phase transition from SFS to CDW/
SC in the infinite frequency limit.
PQMC results—For a general phonon frequency ω,

we resort to PQMC, which has been shown to yield
accurate results for problems of EPI [21,22]. In order to
identify the long-range ordering of the ground state, the
structure factor SðQÞ≡ 1=L4

P
eiQ·rijhÔðriÞÔðrjÞi is cal-

culated for a local observable ÔðrÞ. The nonvanishing
value of SðQÞ at L → ∞ indicates a long range order. The
structure factors of the bare spin current operator JzxðyÞðrÞ

FIG. 3. Typical lattice distortion patterns fXijg with Q ¼ ðπ; πÞ.
(a) Breathing mode: Xi;iþx̂ ¼ −Xi;iþŷ ≠ 0. (b) Tilting mode:
Xi;iþx̂ ¼ Xi;iþŷ ≠ 0. (c) Unidirectional mode for x-directional
bonds only. (d) The loop spin-current of SFS state. Spin-up and
down electrons feel opposite staggered flux around each plaquette,
and that for spin-up electrons is marked by ⊙ or ⊗, respectively.

FIG. 4. Variational calculations for ω ¼ 0 in (a),(b) and the
mean field calculations for ω ¼ ∞ in (c). (a) Energy per site for
the three phonon configurations in Fig. 3. (b) The strength of
emergent SOC gjXj versus EPI constant λ in log-log plot.
(c) Comparison of the mean field energy per site between two
ordered phase in the ω ¼ ∞ limit.
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and phonon displacement X̂xðyÞðrÞ are used to identify the

SFS order, where ÔxðyÞ means the observable is defined
along xðyÞ-directional bonds. In the following, we focus on
the ordering momentum Q ¼ ðπ; πÞ (for SFS or CDW) or
(0,0) (for SC). The phase boundary between SFS and
CDW/SC is determined by finite-size scaling extrapolation
to the thermodynamic limit.
The PQMC simulations are performed for system sizes

up to L ¼ 14. To reduce finite size effect, all quantities are
averaged over twisted boundary conditions (See SM.
Sec. III [27] for details). The structure factors SJz� and
SX� defined for observables Jz� ¼ Jzx � Jzy and X� ¼ Xx �
Xy with varying ω are presented in Figs. 5(a) and 5(b),
respectively, at the fixed parameter value of λ ¼ 1. For
small values of ω, SJz− extrapolates to finite values,
indicating the formation of long range SFS order. Instead,
for large values of ω, SJz− approaches zero, indicating
vanishing SFS order. The transition occurs at a critical
frequency taking the value of ωc=t ≈ 3.0 at λ ¼ 1, as shown
in the insets of Fig. 5. The structure factor SX−

exhibits
similar behaviors to SJz− , i.e., yielding the transition
frequency ωc=t ≈ 3.0 in consistency with that from SJz− .
In the above finite scaling extrapolations, the hypothesis
of SðLÞ ∼ aþ b=Lþ c=L2 is used. As a comparison, the
results of SJzþðSXþÞ with system size of L ¼ 14 are also
shown, which are small for all frequencies and thus rule out
both the tilting mode and the unidirectional mode. In
addition, we have also checked these structure factors
at wave vectors of (0,0) and ðπ; 0Þ, and no instabilities
are found.
We examine whether there exists physical circulating

spin current around each plaquette. Due to hXiji ≠ 0, the

physical spin current operator on bond hi; ji should be
defined as

J̃ij;σ ¼ −iðtþ iszgX̂ijÞc†i;σcj;σ þ H:c:; ð5Þ

where sz ¼ �1 for spin up/down. Structure factor of J̃z− is
measured and shown in SM Sec. V [27]. Although it is
suppressed compared to that of Jz−, they are at the same
order and behave similarly around the transition frequency
ωc, confirming that the SFS phase indeed features a loop
spin-current order.
To determine the nature of the phase at ω > ωc, we have

measured structure factors of multiple possible orders
including CDW, onsite SC, antiferromagnetism, and ferro-
magnetism along three spatial directions. Only CDW and
SC are found exhibiting long range ordering at ω > ωc.
The extrapolated values of structure factors are presented in
SM Sec. V [27], showing the degeneracy governed by the
pseudospin SU(2) symmetry.
The phase diagram of Fig. 1 based on the PQMC

simulations is the main result of this work, in which
calculations of the critical frequency ωcðλÞ are placed
together. Its behavior shows that as increasing λ or ω,
the SFS phase is suppressed and the CDW/SC order wins.
Intriguingly, ωcðλÞ diverges as λ reduces to a critical
value λ∞, below which only the SFS order exists in the
entire frequency range. The value of λ∞ is determined
by examining the effective Hamiltonian Eq. (4) in the
anti-adiabtic limit, which can also be simulated by the
sign-problem free PQMC after a Hubbard-Stratonovich
transformation.
The results in Fig. 6 show that at ω → ∞ the transition

between these orders occurs at λ∞ ≈ 0.64 (see SM Sec. V
[27] for finite-size data). The existence of λ∞ also quali-
tatively agrees with the mean-field calculation for Eq. (4)
with an overestimated value of λMF

∞ ≈ 1.1.

FIG. 6. Extrapolation results of SFS and CDW/SC structure
factors using data obtained on system size L ¼ 6 ∼ 16 with
ω ¼ ∞. At λ∞ ≈ 0.64, the crossing of two orders occurs near
zero, signifying a phase transition between SFS and CDW/SC
orders in the anti-adiabatic limit.

FIG. 5. Results of the structure factors of Jz� and in (a) and X�
in (b) at Q ¼ ðπ; πÞ with varying ω and fixed λ ¼ 1. Open (full)
symbols are used for SJz−ðSX−

Þ and SJzþðSXþÞ. Both SJz− and SX−

develop a finite value below a critical ωc=t ≈ 3.0, indicating the
onset of the SFS order, while SJzþ and SXþ (only values at
L ¼ 14 are plotted) are nearly zero, indicating the negative
correlation of observables along x- and y-directional bonds and
ruling out the unidirectional mode. The insets show the
extrapolation results when ω is close ωc.
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Conclusion and discussion—In this article, we have
proposed a spin-dependent electron-phonon interaction
and investigated its effects on a 2D square lattice at zero
temperature by PQMC simulations. In the SFS phase, a
breathing mode of lattice distortions forms due to insta-
bility induced by the spin-dependent EPI. Consequently a
spontaneous SOC effect emerges, giving rise to a staggered
spin-opposite flux pattern and circulating spin current in
each plaquette. It is found that SFS phase persists for all
phonon frequencies when λ < λ∞.
Finally, some remarks are given. It is worth noticing that

our theory provides a simplest model to demonstrate a
mechanism of phonon-assisted dynamic generation of
SOC. In 1D, the interaction in Eq. (1) cannot open a
gap and thus the static phonon-induced SOC is not
favorable. In our 2D model, the anion vibrations are
constrained within the plane and the motion along z-axis
is neglected, which otherwise can induce dynamic DM
vector along x and y-directions. Actually, the staggered
displacements of O2− anions along the z axis are observed
in the buckled low-temperature orthorhombic (LTO) phase
of undoped La2−xBaxCuO4 [37–39]. More generally, this
bond configuration supporting spin-dependent EPI can be
realized in many perovskite-like materials such as cuprates,
ruthenates and nickelates. It would be interesting to
experimentally look into these materials for the spin-
flux-induced instability and the dynamically generated
SOC. In our minimal model, the resultant d-wave gap in
SFS phase can be directly measured by angular resolved
photo-emission spectroscopy, and the accompanying lattice
distortions by diffuse x-ray scattering.
Recently, local inversion-symmetry-breaking lattice dis-

tortions have been observed in bulk Bismuthates, such
as Ba1−xKxBiO3 (BKBO) and Ba1−xPbxBiO3 (BPBO)
[40,41]. Our theory provides an alternative point of view
to study the emergence SOC in these materials, which may
have potential applications in spintronics. It was proposed
that the so-called hidden SOC [42] could arise in these
globally centrosymmetric structures and the large spin-orbit
torque with the help of such SOC is also detected [41]. Our
study sheds light on the possibility of spin manipulation in
centrosymmetric materials, which meets the need of pros-
pering application of spintronic devices.
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