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Quasiparticle interference �QPI� in spectroscopic imaging scanning tunneling microscopy provides a pow-
erful method to detect orbital band structures and orbital ordering patterns in transition-metal oxides. We use
the T-matrix formalism to calculate the QPI spectra for the unconventional metamagnetic system of Sr3Ru2O7

with a t2g-orbital band structure. A detailed tight-binding model is constructed accounting for features such as
spin-orbit coupling, bilayer splitting, and the staggered rotation of the RuO octahedra. The band parameters are
chosen by fitting the calculated Fermi surfaces with those measured in the angular-resolved photoemission
spectroscopy experiment. The calculated quasiparticle interference at zero magnetic field exhibits a hollow
squarelike feature arising from the nesting of the quasi-one-dimensional dxz and dyz orbital bands, in agreement
with recent measurements by Lee et al. �Nat. Phys. 5, 800 �2009��. Rotational symmetry breaking in the
nematic metamagnetic state also manifests in the quasiparticle interference spectra.
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I. INTRODUCTION

The physics of transition-metal oxides is characterized by
a rich interplay among the lattice, charge, spin, and orbital
degrees of freedom.1–4 Various exotic phenomena, such as
metal-insulator transitions and colossal magnetoresistance
occur in orbitally active compounds with partially filled d or
f shells. In the literature many Mott-insulating orbital sys-
tems �e.g., La1−xSrxMnO3, La4Ru2O10, LaTiO3, YTiO3, and
KCuF3� �Refs. 5–8� have been extensively studied, and both
orbital ordering and orbital excitations have been observed.
Significant developments in orbital physics have also been
made recently in cold atom optical lattice systems. In par-
ticular, strongly correlated p-orbital bands filled with both
bosons and fermions provides a new perspective on orbital
physics which has not yet been explored in the solid-state
context.9–15 In contrast, most p-orbital solid-state systems ex-
hibit only relatively weak correlations.

Metallic orbital systems, such as strontium ruthenates and
iron-pnictide superconductors, have received a great deal of
attention of late. Their Fermi surfaces are characterized by
hybridized t2g-orbital bands, i.e., the eigenorbital admixture
of the Bloch state varies around a connected region of the
Fermi surface. Orbital ordering in such systems corresponds
to a preferred occupation along particular directions on the
Fermi surface, and thus breaks the lattice point-group
symmetry.16–20 As a result, orbital ordering is equivalent to
the anisotropic Pomeranchuk instability of Fermi liquids.

Pomeranchuk instabilities are a large class of Fermi-
surface instabilities in the particle-hole channel with
non-s-wave symmetry, which can be decomposed into both
density- and spin-channel instabilities. The density-channel
instabilities often result in uniform but anisotropic �nematic�
electron liquid states.21–35 These instabilities have been stud-
ied in the context of doped Mott insulators,36 high-Tc
materials,30,36 and quantum-Hall systems with nearly half-
filled Landau levels.37,38 The spin channel Pomeranchuk in-
stabilities are a form of “unconventional magnetism” analo-
gous to unconventional superconductivity.21,31,32,39–44 The
instabilities result in new phases of matter, dubbed � and �,

which, respectively, are counterparts to the B �isotropic� and
A �anisotropic� phases of 3He.41,42 Systematic studies of the
ground-state properties and collective excitations in both the
� and � phases have been performed in Refs. 41 and 42.

The t2g-orbital system of the bilayer ruthenate Sr3Ru2O7
exhibits an unconventional anisotropic �nematic� metamag-
netic state,45–47 which has aroused much attention.29,32,48–55

Sr3Ru2O7 is a metallic itinerant system with RuO2 �ab�
planes. It is paramagnetic at zero magnetic field and below 1
K develops two consecutive metamagnetic transitions in an
external magnetic field B perpendicular to the ab plane at 7.8
and 8.1 T. Between two metamagnetic transitions, the resis-
tivity measurements show a strong spontaneous in-plane an-
isotropy along the a and b axes, with no noticeable lattice
distortions. This feature, which is presumed to be of elec-
tronic order, may be interpreted as due to nematicity result-
ing from an anisotropic distortion of the Fermi surface of the
majority-spin polarized by the external magnetic field.46 Es-
sentially this reflects a mixture of the d-wave Pomeranchuk
instabilities in both density and spin channels. Recently, dif-
ferent microscopic theories have been constructed based on
the quasi-one-dimensional �1D� bands of dxz and dyz by two
of us19 and also by Raghu et al.,20 and based on the two-
dimensional �2D� band of dxy by Puetter et al.55 In our
theory, the unconventional �nematic� magnetic ordering was
interpreted as orbital ordering among the dxz and dyz orbitals.

Unlike charge and spin, orbital ordering is often difficult
to measure particularly in metallic systems. Recently, the
technique of spectroscopic imaging scanning tunneling mi-
croscopy �SI-STM� has been applied to the active d-orbital
systems of Sr3Ru2O7 �Ref. 56� and Ca�Fe1−xCox�2As2.57 The
SI-STM quasiparticle interference �QPI� analysis is an im-
portant tool to study competing orders in strongly correlated
systems,58–60 and has recently been applied to analyze the
orbital band structure and orbital ordering in such systems.
The QPI pattern in Sr3Ru2O7 exhibits characteristic square
boxlike features,56 and that of Ca�Fe1−xCox�2As2 exhibits
strong twofold anisotropy.57 In both cases, the QPI spectra
are associated with the quasi-one-dimensional dxz and dyz
bands.
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In a previous paper,61 two of us performed a theoretical
analysis showing that QPI provides a sensitive method to
detect orbital degree of freedom and orbital ordering in the
quasi-1D dxz and dyz bands. The T matrix acquires
momentum-dependent form factors which extinguish certain
QPI wave vectors and result in crossed stripe features in the
Fourier-transformed STM images. The orbital ordering is re-
flected in the nematic distortion of the stripe QPI patterns.
These results are in qualitative agreement with recent
experiments.56,57

In this paper, we perform a detailed theoretical study of
the QPI spectra in Sr3Ru2O7 based on its t2g-band structure.
Various realistic features are taken into account to construct
the tight-binding model, including the bilayer structure, the
staggered rotation of the RuO octahedra, and the on-site
spin-orbit coupling. In addition, in order to account for the
fact that STM is a surface sensitive probe, a potential bias is
added between the top and bottom layers. Our calculation
clearly shows the square boxlike feature arising from the QPI
in the dxz and dyz bands, which agrees well with the experi-
mental data in Ref. 56. Furthermore, we predict a reduction
in the fourfold rotational �C4� symmetry to twofold �C2� in
the unconventional �nematic� metamagnetic states.

This paper is organized as follows. In Sec. II, we con-
struct a detailed tight-binding model to describe the bilayer
t2g-band structures. We choose the model parameters so as to
fit the experimentally measured Fermi surface from angular-
resolved photoemission spectroscopy �ARPES�. In Sec. III,
we present the T-matrix method for the QPI spectra for the
multiorbital band systems. The fact that the experimentally
measured QPI is predominantly due to the top layer is care-
fully taken into account. In Sec. IV, we show the calculated
QPI patterns and a comparison with experiments. Predictions
are then made for the QPI pattern in the presence of the
nematic orbital ordering. Conclusions are given in Sec. VI.

II. TIGHT-BINDING MODEL FOR THE BILAYER
t2g-ORBITAL BAND

The bilayer ruthenate compound Sr3Ru2O7 has a quasi-
two-dimensional layered structure. Its band structure in the
vicinity of the Fermi level is dominated by the t2g orbitals on
the Ru sites, and is complicated by the on-site spin-orbit
coupling and the staggered rotation pattern of the RuO octa-
hedra. In this section, we derive the form of the tight-binding
model based on symmetry considerations.

The lattice structure of one layer of Sr3Ru2O7 is plotted in
Fig. 1, showing the rotation of the octahedra oxygens with
opposite directions between neighboring Ru sites. Neutron-
diffraction measurement62 indicated that the rotation direc-
tions are reversed on the top and bottom layers. This stag-
gered rotation pattern leads to not only a unit-cell doubling
but also additional hoppings which are absent in a perfect
square lattice, and it is crucial to take this detail into account
in constructing a realistic tight-binding model. To make the
discussion simple, we divide the hopping terms into four
parts: the in-plane hoppings existing without rotations
H1

INTRA, the in-plane hoppings induced by the rotations
H2

INTRA, the interlayer hoppings existing without the rotations

H1
INTER, and finally the interlayer hoppings induced by the

rotations H2
INTER.

A. Uniform hopping terms without RuO octehedron rotation

The Hamiltonian for H1
INTRA has been presented in Refs.

20 and 55. Following Ref. 55, H1
INTRA reads

H1
INTRA = �

r�,s,a
�− t1�ds,a

xz†�r� + x̂�ds,a
xz �r�� + ds,a

yz†�r� + ŷ�ds,a
yz �r���

− t2�ds,a
yz†�r� + x̂�ds,a

yz �r�� + ds,a
xz†�r� + ŷ�ds,a

xz �r���

− t3�ds,a
xy†�r� + x̂�ds,a

xy �r�� + ds,a
xy†�r� + ŷ�ds,a

xy �r���

− t4�ds,a
xy†�r� + x̂ + ŷ�ds,a

xy �r�� + ds,a
xy†�r� + x̂ − ŷ�ds,a

xy �r���

− t5�ds,a
xy†�r� + 2x̂�ds,a

xy �r�� + ds,a
xy†�r� + 2ŷ�ds,a

xy �r���

− t6�ds,a
yz†�r� + x̂ − ŷ�ds,a

xz �r�� − ds,a
yz†�r� + x̂ + ŷ�ds,a

xz �r����

+ H.c. − Vxyds,a
xy†�r��ds,a

xy �r�� + 2��
r�

L� �r�� · S��r�� , �1�

which includes longitudinal �t1� and transverse �t2� hopping
for the dxz and dyz orbitals, respectively, as well as are
nearest-neighbor �t3�, next-nearest-neighbor �t4�, and next-
next-nearest-neighbor �t5� hopping for the dxy orbital. The
summation indices r�, s, and a refer to the position of Ru
sites, the spin, and the layer indices. While symmetry forbids
nearest-neighbor hopping between different t2g orbitals in a
perfect square lattice, due to the rotation of the oxygen oc-
tahedra, we include a term describing hopping between dxz
and dyz orbitals on next-nearest-neighbor sites �t6�. In each
layer, the Ru sites r� lie on a square lattice; we set the lattice
constant to unity throughout.

We assume �t3�	�t1�� �t2�, in accordance with the 2D na-
ture of dxy and quasi-1D nature of dyz and dxz orbitals. While

FIG. 1. �Color online� The lattice structure in a single layer of
Sr3Ru2O7. The small yellow circle represents the octahedra oxygen
which rotate about 6.8° �the angle in the plot is a little exaggerated�
with respect to the z axis on the Ru sites. The red curves show the
orientations of the Ru dxy orbitals. Because the direction of the
rotation is opposite for nearest-neighbor Ru sites, two types of the
sublattice are identified as A �blue dot� and B �white dot�. The
direction of rotation is also opposite from bottom to top layers,
leading to the switch of the sublattices A and B in different layers.
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the hopping integral t2 arises from the direct overlap of the
Wannier wave functions for the t2g bands, the major contri-
butions to t1 and t3 are from the hopping through the oxygen
2p orbitals. The corresponding hopping processes are
sketched in Fig. 2. The signs of nearest-neighbor hopping
integrals t1 and t3 can be obtained from the second-order
perturbation theory,

− t1 =
tpd�− tpd�
Ed − Ep

� 0, �2�

where tpd is defined as the hopping integral between the ru-
thenium dxz orbital at position r� and the oxygen pz orbital at
position r�+ 1

2 x̂, which is identical to that between the Ru dyz

orbital at r� and the O pz orbital at r�+ 1
2 x̂. To get t3, replace the

dxz or dyz orbital with the dxy orbital. The sign follows from
the fact that Ed−Ep�0. As for t2, since is results from a
direct overlap, as shown in Fig. 2�b�, we have t2�0. Their
magnitudes are estimated as t1	 t3	300 meV and t2 / t1
	0.1 from a fitting of local-density approximation �LDA�
calculations on Sr2RuO4.63,64 For the long distance hoppings
t4,5 whose magnitudes are smaller, their values are put by
hand for later convenience. The on-site potential for the dxy
orbital Vxy is introduced to take into account the splitting of
the dyz and dxz states relative to the dxy states which was
found in LDA calculations.65 We take Vxy / t1=0.3.

The last term in H1
INTRA describes the on-site spin-orbit

coupling, the energy scale of which is estimated in Ref. 66 to
be �=90 meV, based on a first-principles study of Sr2RuO4.
This term couples the dxy and dxz,yz orbitals. Truncated in the
three-dimensional subspace of t2g orbitals spanned by
�dyz ,dxz ,dxy�, the matrix form of the L� operators reads

Lx = 
0 0 0

0 0 i

0 − i 0
�, Ly = 
0 0 − i

0 0 0

i 0 0
�, Lz = 
 0 i 0

− i 0 0

0 0 0
� .

�3�

It is important to note that, unlike the usual angular momen-
tum operators, the truncated matrices satisfy a different com-
mutation relation, i.e.,

�Li,Lj� = − i�ijkLk. �4�

The Hamiltonian, Eq. �1�, is expressed in momentum
space as

H1
INTRA = �

k�,a

�	s,a
† �k��Âs�k��	s,a�k�� + H.c.� , �5�

where 	s,a�k�� is defined as a three-component spinor as
	�k��= �ds,a

yz �k�� ,ds,a
xz �k�� ,d−s,a

xy �k���T and ds,a
� �k�� annihilates an

electron with orbital � and spin polarization s at momentum
k� in the top �a= t� or bottom �a=b� layer. The matrix kernel

Âs�k�� in Eq. �5� is

Âs�k�� = 
 �k�
yz

�k�
off + is� − s�

�k�
off − is� �k�

xz
i�

− s� − i� �k�
xy � , �6�

where the dispersions for the dyz, dxz, and dxy bands are

�k�
yz = − 2t2 cos kx − 2t1 cos ky ,

�k�
xz = − 2t1 cos kx − 2t2 cos ky ,

�k�
xy = − 2t3�cos kx + cos ky� − 4t4 cos kx cos ky

− 2t5�cos 2kx + cos 2ky� − Vxy , �7�

and

�k�
off = − 4t6 sin kx sin ky . �8�

As for H1
INTER, since the wave function of the dxy orbital

lies largely within the ab plane, its interlayer hopping is as-
sumed negligible in comparison to that for the dxz and dyz
orbitals. This leads to

H1
INTER = − t� �

�=xz,yz
�
k�,s

�ds,t
�†�k��ds,b

� �k�� + H.c.� . �9�

B. Staggered intraplane hopping induced by staggered
rotation of RuO octehedron

In this section, we study the additional intraplane hop-
pings induced by the staggered rotation of the octahedron
oxygen. The leading effect of this rotation is to enable hop-
ping between different orbitals on nearest-neighbor sites. A
spin-dependent hopping between dxy band due to the spin-
orbit coupling has been discussed in Ref. 67. In the follow-
ing, we neglect the weak breaking of reflection symmetry of

FIG. 2. �Color online� Hopping processes for �a� t1 and t3 �b� t2.
For each i , j ,k, it can be x̂ , ŷ , ẑ, but i� j�k. �a� The hopping pro-
cesses described by t1 and t3 are assisted by the p orbital of oxygen.
�b� The hopping process described by t2 is through the direct over-
lap between two identical orbitals on the nearest-neighbor Ru sites
without going through the oxygen, thus it is much weaker than t1

and t3.

QUASIPARTICLE INTERFERENCE IN THE… PHYSICAL REVIEW B 81, 184403 �2010�

184403-3



each ab plane due to the bilayer structure. Since dyz and dxz
are odd and dxy is even under this reflection z→−z, the in-
terorbital hoppings between dyz �or dxz� and dxy are still zero
under this assumption. Therefore we only need to consider
the hopping between dyz and dxz orbitals. In the following,
we will show that this interorbital hopping has staggered
signs in the real space, which causes a unit-cell doubling as
seen in LDA calculations65 and ARPES experiment.52

We start with the hopping along the x̂ direction with spin
s and in the layer a, and consider the hopping between dyz

and dxz orbitals illustrated in Fig. 3�a� as

− tINT�ds,a
yz†�r��ds,a

xz �r� − x̂� + H.c.� . �10�

This lattice structure has an inversion symmetry I with re-
spect to site r� and under such an inversion the orbitals trans-
form as,

Ids,a
xz �r� 
 x̂�I = ds,a

xz �r� � x̂� ,

Ids,a
xz �r��I = ds,a

xz �r�� �11�

with corresponding relations holding for the ds,a
yz orbital.

Therefore we have

Ids,a
yz†�r��ds,a

xz �r� − x̂�I = ds,a
yz†�r��ds,a

xz �r� + x̂� . �12�

The crystal also exhibits a reflection symmetry with respect
to the yz planes containing the oxygen sites. Let us define J
as the reflection operation with respect to the yz plane con-
taining the oxygen site between r� and r�+ x̂. Under the opera-
tion of J,

Jds,a
xz �r��J = − ds,a

xz �r� + x̂� ,

Jds,a
yz �r��J = + ds,a

yz �r� + x̂� . �13�

Thus,

Jds,a
yz†�r��ds,a

xz �r� + x̂�J = − ds,a
yz†�r� + x̂�ds,a

xz �r�� . �14�

Combining Eqs. �12� and �14� leads to

JIds,a
yz†�r��ds,a

xz �r� − x̂�IJ = − ds,a
yz†�r� + x̂�ds,a

xz �r�� , �15�

which means that this hopping is staggered.

Note that the above discussion is generally valid regard-
less of the intermediate state of the hopping process. The
intermediate state, however, is important to give the second-
order perturbation expression for tINT as

tr�r��
�� = − �

m

�r�,��HRuO�m�m�HRuO�r��,�
Ed − Em

, �16�

where � ,�=xz ,yz. HRuO describes the hopping between the
t2g orbital on Ru sites and the 2p orbitals on neighboring O
sites. �m denotes an oxygen 2p orbital, which is an interme-
diate state for the Ru-Ru hopping processes. Because of the
reflection symmetry with respect to the xy plane and the fact
that dyz and dxz are odd under this reflection, �r� ,��HRuO�m is
nonzero only if the intermediate state is also odd under this
reflection. As a result, �m can be only �pz. However, in
order to determine the sign and the magnitude of tINT, a
detailed knowledge of the pseudopotentials for the Hamil-
tonian HRuO is required, which is beyond the scope of this
paper. Nevertheless, since this term is expected to be small
and its main consequence is to provide the necessary cou-
pling between k� and k� +Q� , where Q� = �� ,��, we can treat it
as a fitting parameter.

Similar reasoning can be applied for the hybridized hop-
ping between dxz and dyz orbitals along the ŷ direction, which
is also staggered. Furthermore, the C4 symmetry around each
Ru site relates the staggered hoppings along the x̂ and ŷ
directions. Putting all the above together, we arrive at the
staggered in-plane hopping contribution to the Hamiltonian

H2
INTRA = − tINT �

r�,s,a,̂

�− �aeiQ� ·r��ds,a
yz†�r��ds,a

xz �r� + ̂�

− ds,a
xz†�r��ds,a

yz �r� + ̂�� + H.c., �17�

where ̂ ranges over x̂ and ŷ, �−1�a= �1 for top and bottom
layers, respectively, and where in our convention eiQ� ·r�= �1
for r� in the A �B� sublattice. Note that there is only a single
independent parameter tINT to characterize this in-plane stag-
gered hopping.

It is straightforward to transform Eq. �17� into momentum
space as

H2
INTRA = − 2tINT �

k�,s,a

��− �a�cos kx + cos ky��ds,a
yz†�k� + Q� �ds,a

xz �k��

− ds,a
xz†�k� + Q� �ds,a

yz �k��� + H.c., �18�

where the prime on the sum indicates that k� is restricted to
only half of the Brillouin zone.

C. Interlayer staggered hopping

In this section, we study the additional hybridized inter-
layer hopping between different orbitals, i.e., the H2

INTER

term. This contribution arises because the rotation patterns of
the RuO octahedra in the two layers are opposite to each
other. Because the dxy and dxz/yz orbitals have different azi-
muthal quantum number of orbital angular momentum, they
do not mix, even in the presence of the RuO octahedra rota-
tion. The leading order interlayer hybridization therefore oc-

FIG. 3. �Color online� The Wannier wave functions of the dyz

and dxz with the lattice distortion. The blue and white dots denote
sublattices A �with x+y odd� and B �with x+y even�, and the gray
dots denote the oxygen. The sign indicates the sign of the wave
function in the positive z plane and the wave functions in the nega-
tive z plane have opposite signs.
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curs between dxz and dyz orbitals and the hybridization
Hamiltonian is

H2
INTER = − �

r�
eiQ� ·r��tbt

�1�ds,t
yz†�r��ds,b

xz �r�� + tbt
�2�ds,t

xz†�r��ds,b
yz �r��� + H.c.

�19�

Next we use the second-order perturbation theory to de-
rive the staggered interlayer hopping integrals. We consider
two hopping processes: �1� hopping from dxz orbital at sub-
lattice A on the bottom layer to dyz orbital at sublattice B on
the top layer and �2� hopping from dyz orbital at sublattice A
on the bottom layer to dxz orbital at sublattice B on the top
layer. The hopping integrals for these two processes can be
written as

tbt
�1� = − �

m

�r�,yz,b�HRuO�m�m�HRuO�r�,xz, t
Ed − Em

,

tbt
�2� = − �

m

�r�,xz,b�HRuO�m�m�HRuO�r�,yz, t
Ed − Em

, �20�

where i belongs to sublattice A in the bottom layer and sub-
lattice B in the top layer by our convention. Because the dxz
and dyz are odd under the rotation of 90° with respect to the
z axis despite of the O-octahedral rotation, their overlaps
with pz are zero. Therefore these two processes can only go
through px and py orbitals of the oxygen between the layers.
Figure 4 presents the views of wave functions from the top
view. It should be noted that for the top layer, the compo-
nents of the wave functions having largest overlap with the
oxygen p orbitals are the one in the negative z so that there is
an additional minus sign in addition to those plotted in the
Fig. 3. Unlike the case of tINT, because the Ru atoms on the
top and bottom layers and the oxygen between them are
colinear, the signs of tbt

1,2 can be determined from the geom-
etry shown in Fig. 4. We can then obtain

�r�,xz,b�HRuO�px,0 · �px,0�HRuO�r�,yz, t � 0,

�r�,xz,b�HRuO�py,0 · �py,0�HRuO�r�,yz, t � 0,

�r�,yz,b�HRuO�px,0 · �px,0�HRuO�r�,xz, t � 0,

�r�,yz,b�HRuO�py,0 · �py,0�HRuO�r�,xz, t � 0,

where �px ,0 is the oxygen 2px orbital with planar position r�
situated midway between the top �t� and bottom �b� ruthe-
nium sites. Together with Ed−Ep�0, we conclude that tbt

�1�

=−tbt
�2�� tINT

� �0. It can also be easily generalized that if r�
belongs sublattice B �A� in the bottom �top� layer, we have
obtain the same result except an opposite sign.

Now we transform into momentum space, after which the
H2

INTER term reads

H2
INTER = − tINT

� �
k�

��ds,t
yz†�k� + Q� �ds,b

xz �k�� − ds,t
xz†�k� + Q� �ds,b

yz �k��

+ ds,b
xz†�k� + Q� �ds,t

yz�k�� − ds,b
yz†�k� + Q� �ds,t

xz�k��� + H.c.

�21�

D. Fermi surfaces

Adding up the contributions from Eqs. �5�, �9�, �18�, and
�21� leads to the tight-binding model

H0 = H1
INTRA + H1

INTER + H2
INTRA + H2

INTER

=�
k�

��k�,s
† Hk��k�,s, �22�

where

Hk� =

L̂s

+�k�� − Ĝ†�k�� B̂1
† B̂2

†

− Ĝ�k�� L̂s
+�k� + Q� � B̂2

† B̂1
†

B̂1 B̂2 L̂s
−�k�� Ĝ†�k��

B̂2 B̂1 Ĝ�k�� L̂s
−�k� + Q� �

� �23�

and

�k�,s
† = �	s,t

† �k��,	s,t
† �k� + Q� �,	s,b

† �k��,	s,b
† �k� + Q� �� �24�

with 	s,a
† �k��= �ds,a

yz†�k�� ,ds,a
xz†�k�� ,d−s,a

xy† �k��� as before �see Eq.

�5��. The matrix kernels L̂s
a�k��, Ĝ�k��, B̂1, and B̂2 in Eq. �23�

are defined as

L̂s
a�k�� = Âs�k�� − �� −

1

2
�− 1�aVbias�Î , �25�

Ĝ�k�� = 
 0 − 2tINT��k�� 0

2tINT��k�� 0 0

0 0 0
� �26�

and

FIG. 4. �Color online� The wave functions viewed from the top
of the material. The dashed line represents the wave function of the
d orbitals on the top layer and the solid line for those on the bottom
layer. The smaller figures represent the p orbital of the oxygen
between layers with the red lobe having positive sign and the white
lobe having negative sign. Note that the signs of the d orbitals
indicates those of the wave functions closest to the oxygen. �a� dxz

at bottom layer and dyz at top layer and �b� dyz at bottom layer and
dxz at top layer.
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B̂1 = 
− t� 0 0

0 − t� 0

0 0 0
�, B̂2 = 
 0 tINT

� 0

− tINT
� 0 0

0 0 0
� , �27�

where ��k��=cos kx+cos ky, � is the chemical potential, and
Vbias is the difference of on-site potential in the top and bot-
tom RuO layers. The Vbias term induces more splitting of
bonding and antibonding solutions between layers, as will be
discussed in the following sections.

For Vbias=0, H0 can be reduced to two independent parts
classified by the bonding and antibonding solutions with re-
spect to the layers. To see this, first we perform a gauge
transformation in H0, sending ds,b

yz,xz�k� +Q� �→−ds,b
yz,xz�k� +Q� �.

Then we introduce kz=0,� to perform a Fourier transform
on the layer index. We have

H0�Vbias = 0� = h0�kz = 0� + h0�kz = �� �28�

with h0�kz� defined as

h0�kz� = �
k�

��k�,s,kz

† �ĥ0s�k�,kz� ĝ†�k�,kz�

ĝ�k�,kz� ĥ0s�k� + Q� ,kz�
��k�,s,kz

.

�29�

In Eq. �29�, ĥ0s, ĝ�k� ,kz�, and �k�,s,kz

† are defined as

ĥ0s�k�,kz� = Âs�k�� + B̂1 cos kz,

ĝ�k�,kz� = Ĝ�k�� − 2B̂2 cos kz �30�

and

�k�,s,kz

† = �dk�,s,kz

yz† ,dk�,s,kz

xz† ,dk�,−s,kz

xy† ,dk�+Q� ,s,kz

yz† ,dk�+Q� ,s,kz

xz† ,dk�+Q� ,−s,kz

xy† � .

�31�

The Fermi surface for Vbias=0 is plotted in Fig. 5�a�. It
consists of many disconnected sheets. Since kz is a good
quantum number, the individual Fermi surfaces of the bond-

FIG. 5. �Color online� The Fermi surfaces using the bilayer tight-binding model with the parameters: t1=0.5, t2=0.05, t3=0.5, t4=0.1,
t5=−0.03, t6=0.05, t�=0.3, tINT= tINT

� =0.05, �=0.1, Vxy =0.15, and �=0.47 for �a� Vbias=0, �b� Vbias=0.1, �c� Vbias=0.2, and �d� Vbias

=0.3. The thick dashed lines mark the boundary of half Brillouin zone due to the unit cell doubling induced by the rotation of octahedra
oxygen. �a� For Vbias=0, the Fermi surfaces of the bonding �kz=0, black solid lines� and the antibonding bands �kz=�, red dashed lines�
could cross since kz is a good quantum number. �b� As Vbias is turned on, the crossings of the Fermi surfaces with different kz are avoided.
�c� The optimized Fermi surfaces are obtained with Vbias=0.2. Fermi surface sheets of �1, �2, �1, �2, �3, and � are marked. The �1,2 sheets
have dominant 2D dxy orbital character while the �1,2 sheets are mostly formed by quasi-1D dyz,xz orbitals. The �3 sheets are not seen in the
ARPES measurements. �d� For Vbias=0.3, the Fermi sheets of �2 disappear.
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ing and antibonding bands could cross; this in fact makes it
easier to analyze how the Fermi surfaces are formed due to
hybridization among the t2g bands. It has been illustrated in
Ref. 68 that the Fermi surface of Sr3Ru2O7 can be schemati-
cally understood from that of Sr2RuO4. In Sr2RuO4, the hy-
bridizations of the t2g bands result in three eigenbands: � and
� bands with mostly quasi-1D dyz and dxz characters, and �
band with dominant dxy character. For Vbias=0, we can begin
from two copies of the Fermi surfaces of Sr2RuO4 since the
bilayer splitting doubles for each band. From our calcula-
tions, three bonding bands ��e, �e, and �e� and three anti-
bonding bands ��o, �o, and �o� are clearly identified, as
shown in Fig. 6. Finally, due to the unit-cell doubling in-
duced by the rotated oxygen octahedra, the Brillouin zone is
backfolded from the corners with respect to the dashed lines.
As a result, each of the six bands will have an identical
partner appearing at positions connected by the wave vector
Q� = �� ,��, producing the Fermi surfaces plotted in Fig. 5�a�.

When Vbias�0, the crossings of the Fermi surfaces be-
tween bond and antibonding bands can be avoided because
the Vbias term breaks the bilayer symmetry. To match the
observed ARPES results,52 it is crucial to avoid these cross-
ings in order to obtain the correct shapes of the Fermi-
surface sheets. This suggests that a finite Vbias is a necessary
aspect of any realistic model. Figures 5�b�–5�d� show the
Fermi surfaces with several different value of Vbias, and it can
be seen that the crossings of the Fermi surfaces are all
avoided when Vbias�0. Figure 5�c� shows the Fermi surface
with optimized parameters fit to the ARPES experiment.52

The agreement with experiment appears satisfactory. The
Fermi surfaces of �1, �2, �1, �2, and � identified from the
ARPES are clearly reproduced with the correct shapes.
Moreover, the average filling per Ru atom with these opti-
mized parameters is 4.05, which is also consistent with the
valence charge of Ru atoms in Sr3Ru2O7.

One major discrepancy is the appearance of additional
electron Fermi pockets, �3, enclosed by the � bands as

shown in Fig. 5�c�. While the LDA calculation also showed
the existence of �3 pockets, ARPES did not observe them.
We suspect that this band might be too small to be resolved
in the spectral weight measured by ARPES, and other mea-
surements such as quantum oscillations might be more sen-
sitive to this band.

III. T-MATRIX FORMALISM FOR THE MULTIBAND
SYSTEMS

QPI imaging has been studied using a T-matrix formalism
for various systems including the high-Tc cuprates,58,60

multiband systems with quasi-1D d bands,61 iron-pnictide
superconductors,69 and topological insulators Bi2Te3,70,71 etc.
The scattering mechanism for the quasiparticles is usually
taken to be elastic impurities and is modeled by a local varia-
tion in the orbital energies. Because the impurities are intro-
duced mainly on the surface of the material,56 we consider a
single impurity at r�=0 on the top layer only. Assuming that
the impurity has the same effect for all orbitals, the impurity
potential is modeled by

HIMP = V0�
�

ds,t
�†�r� = 0�ds,t

� �r� = 0� , �32�

where the orbital label � runs over all three possibilities xy,
yz, and xz. In Fourier space, then,

HIMP =
V0

N
�

k�,k��,�

�ds,t
�†�k��ds,t

� �k��� =
1

N
�

k�,k��,s

��k�,s
† V̂�k��s, �33�

where

V̂ = �V0M̂ O

O O
�, M̂ = � Î Î

Î Î
� �34�

with Î the 3�3 identity matrix, O is a 6�6 matrix of zeroes,
and where �k�,s

† is defined in Eq. �24�.
Extending the standard T-matrix formalism to multiband

systems,61 we have that the Green’s function satisfies the
following matrix equation with dimension 12�12,

Ĝ�k�,p� ,�� = Ĝ0�k��k�,p� + Ĝ0�k��T̂�k�,p� ,��Ĝ0�p�� , �35�

where Ĝ0�k�� is the unperturbed Green’s function defined as

Ĝ0�k�� = �� + i� − Ĥ0�k���−1 �36�

and T̂�k� , p� ,�� is the T matrix, which satisfies

T̂�k�,p� ,�� = V̂�k�,p�� +
1

N
�
k��

�V̂�k�,k���Ĝ0�k���T̂�k��,p� ,�� .

�37�

Note that the momenta k� and p� are both restricted the half

Brillouin zone. Since V̂ is momentum independent, the T
matrix is also momentum independent which can be easily
evaluated as

FIG. 6. �Color online� The analysis of the Fermi surface forma-
tion for Vbias=0. Two copies of the Fermi surfaces of Sr2RuO4 are
labeled as �e, �e, �e for bonding and �o, �o, �o for antibonding
bands. The backfolding of the Brillouin zone from the corners pro-
duces identical partners for each band appearing at positions con-
nected by the wave vector Q� = �� ,�� �the dotted arrow�, leading to
the Fermi surfaces plotted in Fig. 5�a�.
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T̂��� = � Î − V̂� 1

N
�
k��

�Ĝ0�k�����−1

V̂ . �38�

The local density of states �LDOS� on the layer a for orbital
�, spin s at position r�, and sample bias voltage V, �s,a

� �r� ,E
=eV� can be evaluated by

�s,a
� �r�,E� =

1

N
�
k�,p�

�ei�p�−k��·r��Gs,a
� �k�,p� ,E� + Gs,a

� �k� + Q� ,p� + Q� ,E��

+ ei�p�−k�−Q� �·r��Gs,a
� �k� + Q� ,p� ,E� + Gs,a

� �k�,p� + Q� ,E�� ,

�39�

where Gs,a
� �k� ,k�� ,��=�dtei�t�Ttdk�,s,a

� �t�dk��,s,a
�† �0� can be read

off from Eq. �35�. Generally speaking, the differential con-
ductance dI /dV measured by the STM is proportional to the
LDOS. However, special care must be taken in order to ac-
count for certain experimental details, as we will discuss in
the following section.

IV. RESULTS

A. General discussions

First, it is important to mention that because experimen-
tally the tip of the STM is much closer to the top layer, it
predominantly measures the LDOS on the top layer. Second,
because the wave functions for different orbitals could have
different overlaps with the STM tip, the tunneling matrix
elements may be orbital dependent. Therefore, the simplest
model to relate the conductance dI /dV and the correspond-
ing LDOS can be written as

dI

dV
�r�,E� � ��r�,E� � �

�,s
C��s,t

� �r�,E� . �40�

Finally, the QPI imaging can be obtained by performing the
Fourier transformation of ��r� ,E�, viz.,

��q� ,E� =
1

N
�

r�
e−iq� ·r���r�,E� . �41�

In this paper, we plot ���q� ,E�� only for q� �0 since we are
interested only in the change in the local density of states due
to the impurity. A 101�101 square lattice is used in the
wave-vector summations and a broadening factor �=0.02
�i.e., an imaginary part to the energy� is introduced by hand.

We first compute the QPI imaging at zero sample bias
voltage �E=0�. Figure 7�a� shows the QPI imaging due to
impurity scattering from all three t2g bands. The plot exhibits
several features which can be understood as follows. Since
the contributions to the LDOS from different t2g bands can
be computed independently as seen in Eq. �39�, we also com-
pute separately the QPI imaging for the 2D dxy band �Fig.
7�b�� and for the quasi-1D dyz and dxz bands �Fig. 7�c�� for
comparison. The strong features seen in Fig. 7�b� come from
the scatterings within and between �1,2 pockets �the red solid
lines in Fig. 8�. This is to be expected since both pockets
have dominant dxy orbital character. As for Fig. 7�c�, the
signature stripelike patterns of the quasi-1D bands61 can

clearly be seen, and we find that the dominant features
largely come from the �2 band scatterings, as indicated in
Fig. 8. The reason why the �2 band scatterings are much
more prominent than the �1 band scatterings is that the �2
��1� band is mostly composed of the antibonding �bonding�
solution with respect to the layers with more �less� weights
on the top layer. Since we only compute the LDOS on the
top layer, the �2 band scatterings are much more important
than the �1 band scatterings.

Another general feature present in Figs. 7, 10, and 11 is
that while the Fermi surfaces without a nematic order have
not only the C4 symmetry but also inversion symmetries with
respect to kx and ky axes, the QPI patterns do not have the
inversion symmetries with respect to qx and qy axes. The
reason for this discrepancy is delicate and we will explain in
the following. As can be seen in Fig. 1, the inversion sym-
metry is defined only as the inversion axis chosen to pass
through the oxygen sites. Since we have the degree of free-
dom to choose the inversion axis as computing the Fermi
surfaces, Bloch theorem ensures that the system has the in-
version symmetry. However, when computing QPI patterns,
we have to put an impurity on one Ru site. As a result, we
can only choose the inversion axis passing through this im-
purity at Ru site, which explicitly breaks the inversion sym-

FIG. 7. �Color online� QPI imaging at zero sample bias voltage
�E=0� contributed from scatterings �a� within all t2g bands, �b�
within 2D band dxy, and �c� within two quasi-1D bands dyz and dxz.
The scattering potential is introduced only for top and bottom layers
with V0=1.0, reflecting the fact that the impurities are usually in the
top layer. Only the LDOS on the top layer are calculated. �b� The
strong features are due to the scatterings between the small hole
pockets �2 and the parts of �1 marked by the solid lines in Fig. 8. A
representative strongest wave vector q�1 is also indicated. �c� The
strongest wave vectors q�2−4 can be understood by scatterings indi-
cated in Fig. 8. The stripelike features enclosed by the ovals �both
black and yellow� result from the flat parts of the �1,2 bands, which
are the signatures of the quasi-1D bands.
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metries. This explains why the QPI patterns do not have the
inversion symmetries as the Fermi surfaces do.

It can be seen that Fig. 7�c� alone captures the main fea-
tures of the experimental results of Ref. 56, suggesting that
the contribution from the 2D dxy band is essentially invisible
in SI-STM experiment. The missing of dxy band scatterings
in the experiment can be explained by appealing to the afore-
mentioned orbital dependence of the STM tunneling matrix
elements. Because the surface of the material is usually
cleaved such that the outermost layer is the oxygen layer,
there is an oxygen atom lying above each uppermost Ru
atom. As a result, the tunneling matrix element will be
mostly determined by the wave function overlaps between
the p orbitals of the oxygen atom and the d orbitals of the Ru
atom. As illustrated in Fig. 9, the wave function overlaps of
the dyz �dxz� orbital with the py �px� are large while none of
the p orbitals has finite overlaps with dxy orbital, leading to
Cxy �Cyz=Cxz. Moreover, the tunneling matrix elements also
depend on the in-plane momentum k�. It has been shown
theoretically that the tunneling matrix elements have impor-
tant effects in the tunneling spectra.57,72–74 These matrix ele-
ments are significantly suppressed at large in-plane
momentum,72 and recent STM experiments on graphene74

and iron-pnictide superconductors57 have demonstrated this
suppression. Since the �1,2 sheets are located around mo-
menta much larger than those of �1,2, their contributions
could be further suppressed by this effect. Based on the
above discussion, we will henceforth set Cyz=Cxz=1 and
Cxy =0.

B. QPI imaging at energy below the Fermi energy

Since the experiments were done at negative sample bias
voltage,56 we compute the QPI imaging for several negative

values of E. Figure 10 present the QPI imaging for E=0,
−0.03,−0.06,−0.1, and the main features of the stripelike
patterns remain unchanged. This is also consistent with the
experiments showing that the QPI imaging are similar for
sample bias voltage down to E=−12 meV and the reason is
that the Fermi surfaces of �1,2 do not change very much
throughout this range of energy.

C. QPI imaging for impurities at different layers

The above calculations were all performed assuming that
the scattering impurity is located on the top layer only. How-

FIG. 8. �Color online� The scattering processes related to stron-
gest features in Fig. 7. The scatterings within and between the parts
of Fermi surfaces marked by the red solid lines, which are mostly
from �1 and �2 pockets, contribute the dominant features in the QPI
image of 2D band dxy shown in Fig. 7�b�. A representative strongest
wave vector q�1 shown in Fig. 7�b� is plotted. As for the QPI image
of quasi-1D bands dyz,xz shown in Fig. 7�c�, the dominant scatter-
ings related to strongest wave vectors q�2−4 occur mostly within �1

band, as indicated by the arrows.

FIG. 9. �Color online� Schematic illustration of the wave-
function overlap related to the tunneling matrix element for STM
tip. The tunneling of electrons from the STM tip to the d orbitals of
the Ru atoms must go through the oxygen atoms �white dots�. �a�
For diz orbitals �i=x ,y�, the tunneling matrix element is large with
the help of the pi orbital of the oxygen atoms. �b� For dxy, all p
orbitals of the oxygen atoms have zero wave function overlaps with
it, leading to much weaker tunneling matrix element compared to
dyz,xz orbital.

FIG. 10. �Color online� QPI imaging at �a� E=0, �b� E=−0.03,
�c� E=−0.06, and �d� E=−0.1. The main features are similar be-
cause the Fermi surfaces of �1,2 are relatively insensitive to E
throughout this energy range.
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ever, QPI from impurity scattering in the second layer may
also be detectable in experiments. Since the measurements of
the conductance dI /dV are more likely an average of both
cases, it is reasonable to expect

dI

dV
�r�,E� � �1 − x��TOP�r�,E� + x�BOTTOM�r�,E� , �42�

where �TOP�r� ,E� is the LDOS of quasi-1D bands with impu-
rity on the top layer and �BOTTOM�r� ,E� is that with impurity
on the bottom layer. We can then obtain the QPI imaging by
performing a Fourier transformation on Eq. �42� as a func-
tion of x. The results are presented in Fig. 11 for x
=0.25,0.5,0.75,1. We find that x=0.25 best reproduces the
experimental data of Ref. 56.

V. IMPLICATION OF ORBITAL ORDERING FROM QPI
IMAGING

Two of us19 have proposed that the nematic order ob-
served in this material results from an orbital ordering in the
quasi-1D bands enhanced by the orbital hybridizations. The
charge and spin nematic order parameters nc, nsp can be ex-
pressed as

nc =
1

2
��nxz − �nyz�, nc = ��Sxz

z  − �Syz
z � . �43�

The mechanism of the nematic order under the magnetic
field is that the majority-spin band is pushed closer to the van
Hove singularity, which triggers the nematic distortion in the
majority-spin Fermi surfaces. The mean-field theory19 with a
microscopic model of quasi-1D bands also reproduced this
feature, leading to nc=nsp. To calculate the QPI imaging with
a nematic order, we introduce two new terms into the Hamil-
tonian,

Hnematic = N�
r�,a

�d↑,a
yz†�r��d↑,a

yz �r�� − d↑,a
xz†�r��d↑,a

xz �r��� ,

HZeeman = − �BB �
r�,a,�

�d↑,a
�† �r��d↑,a

� �r�� − d↓,a
�† �r��d↓,a

� �r��� ,

where N=nc+nsp measures the strengths of the nematic dis-
tortion in the majority-spin Fermi surfaces. Figure 12 shows
the QPI imaging at E=0 with N / t1=0.1 and �BB / t1=0.06.
As expected, a stripelike pattern breaking the C4 symmetry
down to C2 symmetry is observed.

We propose that this result could be used to resolve the
controversy on which band is responsible for the nematic
order. If the nematic order occurs mostly in the dxy band and
the quasi-1D bands do not exhibit orbital ordering, the QPI
imaging from the experiments should have a C4 symmetry
even within the range of the nematic order because the SI-
STM is not sensitive to the dxy band. Conversely, if the or-
bital ordering in the quasi-1D bands is responsible for the
nematic phase, the SI-STM will see the imaging with only
C2 symmetry, as shown in Fig. 12.

VI. CONCLUSIONS

In this paper, we have constructed a bilayer tight-binding
model with three t2g orbitals for the Sr3Ru2O7, with careful
attention paid to details of the lattice structure. We found that
the rotations of the in-plane octahedra oxygen induce new
hoppings between quasi-1D dyz and dxz bands with staggered
signs in the hopping integrals, which in turn lead to a unit-
cell doubling consistent with what is observed in both
ARPES experiment52 and LDA calculations.52,65 This mecha-
nism for unit-cell doubling is distinct from that in the model
used by Puetter et al.,55 in which a staggered on-site potential
is introduced to distinguish the sublattices. Furthermore, we
have also computed the quasiparticle interferences in the
spectroscopic imaging STM based on a multiband T-matrix
approach within this tight-binding model. Due to the effects
of tunneling matrix elements, we find that the QPI imaging
measured by Lee et al.56 are dominated by the scatterings in
the quasi-1D dxz and dyz bands, and the contribution from the

FIG. 11. �Color online� QPI imaging evaluated from Eq. �42� for
�a� x=0.25, �b� x=0.5, �c� x=0.75, and �d� x=1. The QPI imaging
in �a� fits the experimental result the best.

FIG. 12. �Color online� QPI imaging with nematic order. N / t1

=0.1 and �BB / t1=0.06 is chosen. The breaking of the C4 symmetry
to C2 symmetry is clearly seen.
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2D dxy band is largely suppressed. We have further consid-
ered the possibility of impurities residing on either top or
bottom layers and a linear combination of these two cases
leads to the best fit with the experiments.

We have also calculated the QPI imaging for the system
with a orbital ordering in the quasi-1D bands in a magnetic
field, and we propose that this could be a realistic way to
distinguish which band is responsible for the nematic order.
We predict that if the dxy band is the dominant band for the
nematic phase and no orbital ordering in quasi-1D bands is
present, the QPI imaging will still preserve the C4 symmetry
even within the nematic phase because the SI-STM could not
detect the change in the dxy band. On the other hand, if the
orbital ordering in quasi-1D bands is responsible, a breaking
of the C4 symmetry down to C2 should be observed in the
QPI imaging as the system enters the nematic phase.

One remarkable aspect in our tight-binding model is the
introduction of Vbias, the difference in on-site potential for
the top and bottom layers. It has been shown here that the
crossings of the Fermi surfaces with different “layer parities”
cannot be avoided without a Vbias term. In order to reproduce
the Fermi-surface sheets mapped out from the ARPES ex-

periments, especially for �2, a nonzero Vbias is essential.
Physically since the ARPES still measures mostly the elec-
tronic properties near the surface, it is reasonable to expect
that the surface work function could produce a sizable Vbias
to be seen in the ARPES. Furthermore, the fact that STM,
another surface sensitive probe, detected only the �2 band
scatterings also supports the existence of a nonzero Vbias. On
the other hand, Vbias vanishes inside the bulk, and thus the
bulk Fermi surfaces would have different shapes and vol-
umes from those obtained by ARPES.52 This issue is impor-
tant when comparing the Fermi surfaces measured in ARPES
with those measured in quantum oscillations experiments
since the former is a surface measurement while the latter is
a bulk one.
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