
July 4, 2022 11:20 ws-rv187x260mm Book Title CNY100-025 page 413

© 2022 World Scientific Publishing Company
https://doi.org/10.1142/9789811264153 0025

The Symmetry Principle in Condensed Matter Physics (I)

Congjun Wu (吴从军)

Department of Physics, School of Science, Westlake University,
Hangzhou 310024, Zhejiang, China

Institute for Theoretical Sciences, Westlake University,
Hangzhou 310024, Zhejiang, China

Key Laboratory for Quantum Materials of Zhejiang Province, School of Science,
Westlake University, Hangzhou 310024, China

Institute of Natural Sciences, Westlake Institute for Advanced Study,
Hangzhou 310024, Zhejiang, China

wucongjun@westlake.edu.cn

Symmetry distills the simplicity of natural laws from the complexity of physical
phenomena. The symmetry principle is of vital importance in various aspects of
modern physics, including analyzing atomic spectra, determining fundamental in-
teractions in the Standard Model, and unifying physics at different energy scales. In
this chapter, novel applications of this principle are reviewed in condensed matter
physics and cold atom physics for exploring new states of matter.

First, the concept of space-time group generalizes crystalline space group
symmetries to their dynamic counterparts, including nonsymmorphic space-time
symmetries (e.g. time-screw rotation, time-glide reflection, and time-shift rotary re-
flection). It includes and goes beyond the Floquet theory framework, and applies to
a large class of dynamic systems such as laser-driven solid crystals, dynamic pho-
tonic crystals, and optical lattices, etc. Second, the perspective of high symmetries
(e.g. SU(N) and Sp(N)) bridges large-spin cold fermion systems with high energy
physics. For example, a generic SO(5), or, isomorphically Sp(4) symmetry is proved
in spin- 3

2
systems. Moreover, an exact SO(7) symmetry is identified, which exhibits

an extraordinarily unifying power. Its χ-pairing operator extends Yang’s η-pairing
to a high-rank Lie algebra, integrating 21 orders in both particle-hole and particle-
particle channels into a unified framework. Such systems also exhibit multi-fermion
orderings, including quartetting superfluidity (charge 4e) and quartet density wave,
which are α-particle-like, or, baryon-like orderings. The resonant quantum plaque-
tte states of SU(4) antiferromagnetism are described by a high-order gauge theory.
A quantum phase transition occurs from the Slater region to the Mott region in the
SU(6) Hubbard model. A tendency of convergence of itineracy and locality is re-
vealed in 1D SU(N) systems as N goes large. Third, a new mechanism is presented
to generate spin-orbit coupling based on “spin-from-isospin” via many-body Fermi
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surface instabilities of the Pomeranchuk type. In contrast, the conventional wis-
dom views spin-orbit coupling as a single-body relativistic effect. This mechanism
generalizes itinerant ferromagnetism to the unconventional symmetry versions (e.g.
p-wave), which can also be viewed as magnetic multipolar orderings in momentum
space.

1. Introduction

I feel honored to contribute to this Festschrift for the Yang Centenary. Profes-

sor C. N. Yang is the role model for Chinese physicists of my generation. Through-

out our careers, we have been inspired by his milestone contributions to theoretical

physics, including parity violation in the weak interaction,
1
Yang-Mills gauge the-

ory,
2
Yang-Baxter equation,

3
and monopole gauge theories,

4,5
etc. Among these

masterpieces, the symmetry principle is a threading theme, which is also a distinct

style of his research.

I learned to appreciate the symmetry principle under the guidance of my Ph.D.

advisor Professor Shoucheng Zhang, who himself was deeply influenced by Profes-

sor Yang. Symmetries and their applications in condensed matter physics and cold

atom physics are my major research directions. Hence, I shall review progresses

along this line for this Festschrift.

1.1. General backgrounds

The appreciation of symmetry at a fundamental level has a long history. The ancient

Greeks proved the existence of only five types of convex regular polyhedra (the

Platonic solids): tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

They hypothesized that these regular polyhedra correspond to the classic elements of

water, earth, fire, air, and ether, respectively.
6
Galileo’s relativity principle implies

the homogeneity of space and time (translational symmetry), the isotropy of space

(rotational symmetry), and the equivalence of all the inertial reference frames.
7

Einstein’s relativity is a profound victory of the symmetry principle: The Lorentz

symmetry is viewed as a fundamental symmetry of space-time, which is not only

a property of Maxwell’s equations but also the primary constraint to all physical

laws.
7

In high energy physics, Yang stated, “Symmetry dictates interaction”, i.e.,

interactions among fundamental particles in the Standard Model are determined by

their fundamental gauge symmetries.
8

The first application of the symmetry principle in physics actually started in the

field of condensed matter. Soon after the establishment of group theory by Galois

and Cauchy in the 1830s–1840s, it was applied to analyze crystalline symmetries.

In the 1890s, Schönflies and Fedorov completed the construction of the 230 space

groups.
9
Each space group corresponds to one type of crystalline structure in three

dimensions (3D), which is a subgroup symmetry of 3D flat space containing a discrete

translational group as its normal subgroup.
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In the 1880s, the concept of group was generalized to continuous groups, i.e.,

Lie groups, by Sophus Lie, and then calculus and differential equations entered the

study of symmetry.
10

Lie group and its generators Lie algebra became the main tools

to analyze symmetries. Noether proved that each continuous symmetry gives rise

to a local conservation law: Momentum conservation arises from the translational

symmetry; angular momentum conservation arises from the rotational symmetry,
11

etc.

The application of group theory in quantum physics was pioneered by Wigner
12

and Weyl.
13

Because of the linear nature of quantum mechanics, the eigenstates

of a time-independent Hamiltonian form irreducible representations of its symme-

try group G. Its generators commute with the Hamiltonian, and thus are conserved

quantities. This principle is extremely successful in classifying the atomic and molec-

ular optical spectra and explaining selection rules for optical transitions.

Two remarkable examples of hidden symmetries of simple systems are the hy-

drogen atom
14

and the harmonic oscillator.
15

The N -dimensional hydrogen atom

possesses the SO(N +1) symmetry due to the conserved Runge-Lentz vectors. Clas-

sically, the Runge-Lentz vector specifies the orientation of the elliptical orbit. The

N -dimensional harmonic oscillator possesses the SU(N) symmetry which transforms

among the complex space spanned by the complex combination of coordinate and

momentum ai = 1√
2
(xi + ipi).

One central theme in modern physics is the unification by the symmetry princi-

ple. Electricity and magnetism are unified by the Lorentz group. The interaction

between matter and the electromagnetic field is described by the U(1) gauge theory.

In particle physics, the electromagnetic and weak interactions are unified by the

SUL(2) ⊗ U(1) gauge theory as the electroweak interaction, where L refers to left-

handed leptons and quarks.
16–18

The quantum chromodynamics is described by the

SU(3) color gauge theory, and quarks of three colors (R, G, B) form the fundamental

representation of the SU(3) group. Mesons are quark-antiquark bound states and

baryons are three-quark bound states, both of which are color singlets. In addition,

baryons and mesons can be classified as multiplets of the approximate SU(3) flavor

symmetry.
19

Spontaneous symmetry breaking is a crucially important concept, which was

first proposed by L. Landau for constructing a general framework of phase transi-

tions.
20–22

Most second-order phase transitions are related to certain kinds of sym-

metry breaking of order parameters (the matter fields). For instance, the magnetic

phase transition breaks time-reversal and rotational symmetries; the charge-density-

wave breaks translational symmetry; superfluidity breaks the U(1) symmetry. If a

continuous global symmetry G is spontaneously broken, the transverse fluctuations

of order parameters are gapless, which are the Goldstone modes as reminiscences of

the original symmetry before its breaking.
23

The Goldstone manifold is represented

as the coset of G/H, where H represents the residual subgroup symmetry after

symmetry breaking.
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Even more profound physics occurs when a gauge symmetry is spontaneously bro-

ken. For example, superconductivity is a consequence of the U(1) gauge symmetry

breaking.
24,25

The electromagnetic properties of superconductors are characterized

by the London equation j = −ρsA, where ρs is the superfluid density, giving rise

to the celebrated Meissner effect. This is is due to the Anderson-Higgs mechanism

that the gauge boson (photon) becomes massive and acquires its longitudinal com-

ponent by absorbing the Goldstone mode of phase fluctuations. Consequently, the

electromagnetic field can only enter the superconductor surface at the penetration

depth λ with the relation of ρs = c/(4πλ2).
The Anderson-Higgs mechanism is essential in high energy physics.

19
The gauge

bosons become massive, once the corresponding gauge symmetries are broken. This

cures the apparent discrepancy between the short-range weak and strong interac-

tions and the massless Yang-Mills gauge fields.
2

This was the major obstacle to

applying the Yang-Mills theory as the paradigm for formulating fundamental inter-

actions. Furthermore, the Higgs field generates masses for fermions of quarks and

leptons as shown in the Glashow-Weinberg-Salam theory, which unifies the weak

and electromagnetic interactions into the electroweak interaction.
16–18

In the context of condensed matter physics, the symmetry principle is employed

to unify seemingly unrelated phenomena. For example, Yang’s pseudo-spin SU(2)

symmetry based on the η-pairing unifies the charge-density-wave ordering and super-

conductivity.
26–28

Its extension to the SO(5) theory of high Tc superconductivity by

Zhang views antiferromagnetism and d-wave superconductivity on the equal footing

as different components of a 5-vector.
29,30

The sharp resonance modes of neutron

scattering spectroscopy could be interpreted as the pseudo-Goldstone excitations in

the superconducting ground state towards the direction of antiferromagnetism.
29,31

Some new applications of the symmetry principle in condensed matter and ultra-

cold atom physics will be reviewed below focusing on exploring novel states of

matter. The motivation and outline of the main results for each topic are briefly

explained below.

1.2. Space-time group for dynamic systems

A solid state physics textbook typically starts with crystalline symmetries, which

are classified according to the 230 space groups, and then proceeds with the Bloch

theorem setting up the framework of electron’s quantum behavior in solids.
32

Space

group symmetries include the discrete translational symmetry of the underlying

Bravais lattice, and point group symmetries (e.g. rotation, reflection, and rotary

reflection). Space group possesses nonsymmorphic symmetries, which means that

under such operations there are no fixed points, including screw rotation and glide

reflection. Screw rotation is the symmetry of a screw: A rotation is insufficient

to maintain a screw invariant which needs to be followed by a certain translation
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along the rotation axis. Glide reflection is a symmetry of a row of footprints, i.e., a

reflection followed by a translation of half a period.
9

Symmetry literally means “balanced proportions”, and thus is commonly viewed

as a static concept. However, time dynamics is an important topic in various subjects

of physics. The recent experimental progresses, such as the pump-prob measure-

ments
33,34

and shaken cold-atom optical lattice experiments,
35,36

have stimulated

the study of dynamically driven systems.

A natural question is how to analyze symmetries of dynamic systems? Systems

under periodical driving are often denoted as the Floquet ones. In such systems,

time translational symmetry is violated while a discrete version still exists, which is

the counterpart of the discrete spatial translational symmetry in crystals. However,

within the Floquet framework, temporal symmetry is decoupled from the spatial

one.
37–48

Just like that a 3D crystal is typically not the direct-product between a 2D crys-

tal in the ab-plane with a 1D crystal along the c-axis, a dynamic crystalline system

is not just the direct-product between a static crystal with a Floquet periodicity.

We construct the symmetry group of dynamic systems and dub it space-time group,

which is a dynamic extension of the crystalline space group.
49

The Bloch theorem

is also generalized accordingly. This concept applies to a large class of dynamic sys-

tems beyond the Floquet framework, including laser-driven solid crystals, dynamic

photonic crystals, and optical lattices, etc.

There exist nonsymmorphic versions of space-time symmetries as depicted in

Fig. 1.
49

(Please do not confuse them with Lorentz symmetries.) For example, a

see-saw is invariant by a reflection followed by a time-shift of half a period, and this

symmetry is dubbed time-glide reflection (Fig. 1(a)). A clock does not exhibit the

rotation symmetry but a rotation combined with a suitable time-translation leaves

it invariant, and this symmetry is dubbed time-screw rotation (Fig. 1(b)). These

are actually symmetries of their world lines in analogy to screw rotation and glide

reflection of space group. Another space-time nonsymmorphic symmetry, 3D rotary-

reflection followed by a time-translation, does not have a space group counterpart

(Fig. 1(c)).

A complete classification in 1+1D gives rise to 13 space-time groups in contrast

to the 17 wallpaper space groups for the 2D static crystals, and in 2+1D we have

found 275 space-time groups.
49

Space-time group symmetries also protect spectral

degeneracies.

Time-screw rotation and time-glide reflection symmetries were also proposed by

Morimote et al. independently for studying novel topological band structures in

driven systems,
50

but the concept of “space-time group” was not proposed there.

R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

of
 th

is
 P

D
F 

is
 n

ot
 p

er
m

itt
ed

.



June 27, 2022 17:38 ws-rv187x260mm Book Title CNY100-025 page 418

418 Congjun Wu

b)

a)

c)

Fig. 1. Time sequence configurations for three representative space-time nonsymmorphic sym-
metries. (a) Time-glide reflection symmetry. A see-saw is invariant by a reflection followed by a
time-shift of half a period. (b) Time-screw rotation symmetry. A clock is invariant by a rotation
followed by a fractional time translation. (c) Time-shift rotary reflection symmetry, i.e., rotary
reflection followed by a fractional time translation. Time-glide reflection and time-screw rotation
are analogies of glide reflection and screw rotation of space group symmetries, respectively, while
time-shift rotary reflection has no counterpart in 3D space group operations.

1.3. High symmetry perspective to large-spin cold fermion systems

High symmetries (e.g. SU(N) and Sp(N)) are essential in high energy physics, nev-

ertheless, their applications in condensed matter physics are often to provide the

mathematical tool of the large-N expansion to handle strong correlations.
52–55

On

the other hand, cold atom physics has become a new frontier of condensed matter

physics for creating novel quantum states of matter, particularly those uneasy to

access in solids.

Many fermionic atoms possess large-hyperfine-spins. We have been working on

exploring new states of large-spin fermions from the new perspective of high symme-

tries of SU(N) and Sp(N) since 2003.
56–63

It works as a guiding principle to explore

beautiful many-body physics, providing a natural connection between cold atom

physics and high energy physics. It is amazing to see that physics at dramatically

different energy scales is deeply related. Systematic studies have been performed in

exploring high symmetry effects, including the unification of competing orders,
56,58

novel quantum magnetism,
60,62

and non-Abelian topological defects.
61

High-symmetry cold fermions have attracted considerable attentions from various

research groups in the cold atom community.
64–76

This direction has also become an

active experiment focus: Takahashi’s group realized the SU(6) symmetric alkaline-

earth fermions of
173

Yb.
77–80

Fallani’s group studied the 1D systems of
173

Yb with
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tunable component numbers.
81

The 10-component
87
Sr systems (F = I = 9

2
) have

been studied by Killian’s group,
82,83

Sengstock’s group,
84,85

and Ye’s group,
86–88

etc. For non-technical introductions to the experimental progress, please refer to

Refs. 89 and 90.

A fundamental difference exists between large-spin cold fermion systems and

large-spin solid state systems as shown in Fig. 2.
89

In solids, quantum magnetic

fluctuations are suppressed in the large-S limit: Hund’s rule coupling aligns spins

of several electrons into a large spin, however, the intersite coupling is dominated

by the exchange of a single pair of electrons, hence, spin fluctuations scale as 1/S
as S goes large. In contrast, this restriction does not occur in cold atom systems

because each large-hyperfine-spin fermion moves as an entire object. The exchange

of a single pair of atoms completely flips the spin configuration. The large number

of spin components actually enhanced quantum fluctuations. and they are actually

even stronger than the spin-1
2
case. Hence, the large-spin physics of ultracold atoms

is governed by the large-N physics of a high symmetry group where N = 2S + 1.

An exact and generic hidden Sp(4), isomorphically SO(5), symmetry is proved

for hyperfine-spin-3
2
alkali and alkaline fermions without fine-tuning.

56,58,59,61
The

candidate atoms for realizations include
132

Cs,
9
Be,

135
Ba,

137
Ba, and

201
Hg. Yang’s

η-pairing pseudospin SU(2) symmetry can be generalized to the spin-3/2 Hubbard

model defined on a bipartite lattice.
56,59

Such a system could exhibit an SO(7)

Fig. 2. Superexchange processes in (a) large-spin solid state systems and (b) large hyperfinespin
cold fermion systems. In solids, quantum magnetic fluctuations are suppressed by the large-S effect;
while quantum fluctuations are enhanced by the large number of spin componentsN = 2S+1. Hence,
the appropriate viewpoint for large-spin fermions is the large-N physics of a high symmetry group
rather than the large-S physics of the SU(2) group. This feature bridges high energy physics and
ultracold atom physics in spite of hugely different energy scales. From Ref. 51.
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symmetry which unifies the singlet superconductivity and the spin-quadruple

density-wave order with the 7-vector representation. The adjoint representation of

SO(7) can unify the quintet superconductivity, spin and spin-octupole density-wave

order, and charge-density-wave, which are in total 21-dimensional.

The large-spin fermions also exhibit similar physics to that in quantum chromo-

dynamics — the multi-particle clustering orderings. With attractive interactions,

Pauli’s exclusion principle allows N -fermions to form an SU(N) singlet state, a

“baryon-like” multiple-fermion instability.
58,69,91,92

For the super-exchange physics

in the Mott-insulating states, if each site is in the fundamental representation, it

also needs N sites to form an SU(N) singlet.
57,60

How interaction effects scale with the component number N is also an interest-

ing question. For the SU(N) Hubbard models, systematic quantum Monte Carlo

(QMC) simulations free of the sign problem have been performed for the 2D square

lattice,
93,94

the square lattice with flux,
95

and the honeycomb lattice,
96

and also in

1D.
97

1.4. Unconventional magnetism and spontaneous spin-orbit

ordering

Spin-orbit coupling plays an important role in the research focus of topological states

of matter. Conventionally, it is viewed as a single-particle property inherited from

the relativistic Dirac equation, not directly related to many-body physics.
32

We

have explored another possibility — the spontaneous generation of spin-orbit cou-

pling as a many-body effect based on Fermi surface instabilities of the Pomeranchuk

type.
98

This mechanism is essentially itinerant magnetic phase transitions with un-

conventional symmetries (e.g. p-wave), which is also magnetic multipolar orderings

in momentum space.
99,100

In ferromagnetic metals, the rotational symmetry is broken in the spin channel.

However, spin polarizes along the same direction around Fermi surfaces independent

of the direction of momentum, hence, the orbital rotational symmetry is unbroken

as shown in Fig. 3(A). This is similar to conventional s-wave superconductors whose

gap function phase keeps constant over the Fermi surface. Therefore ferromagnetism

can be viewed as the “s-wave” magnetism.

As for superconductivity (fermion pairing superfluidity), there exist unconven-

tional pairing structures, including the d-wave high Tc cuprates
101

and the p-wave

superfluid
3
He.

102
In analogy to unconventional superconductivity, we have gen-

eralized ferromagnetism to cases of unconventional symmetries, in which spin no

longer polarizes along a unique direction but varies with momentum. These uncon-

ventional magnetic states have close connections to many directions in condensed

matter physics, including unconventional superconductivity,
103

spin-orbit coupling

and spintronics, and electron liquid crystal states in strongly correlated systems.
104
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s

A: ferromagnet (s−wave) 

s
δk

f1kδ

f2

β− α−B: p−wave       phase C: p−wave       phase

Fig. 3. Fermi surface configurations of the ferromagnetic phase (A) and the unconventional mag-
netic phases in the p-wave channel (the isotropic β-phase (B) and the anisotropic α-phase (C)).
The ferromagnetic state can be viewed as an s-wave type magnetism since it does not break the
orbital rotational symmetry. The p-wave itinerant magnetism exhibits dipolar magnetic ordering
over the Fermi surface. The β-phase breaks the relative spin-orbit symmetry spontaneously, which
is a particle-hole analogy to the superfluid

3
He-B phase. The anisotropic α-phase is the analogy of

the superfluid
3
He-A phase. From Ref. 100.

The unconventional magnetism includes both isotropic and anisotropic cases, as

shown in Figs. 3(B) and 3(C), respectively. They are dubbed the β and α-phases

analogues to the superfluid
3
He B and A-phases, respectively. The isotropic β-phases

still exhibit circular, or, spherical Fermi surfaces developing nontrivial spin-texture

configurations in momentum space, providing a mechanism for dynamic generation

of spin-orbit coupling independent of relativity. The anisotropic α-phases are elec-

tron liquid crystal states with spin degree of freedom, exhibiting anisotropic Fermi

surface distortions. Both types of phases arise from the Pomeranchuk instability

of Fermi surfaces in the spin channel, which include ferromagnetism as a special

example.

The symmetry breaking pattern of the isotropic β-phase is subtle, which breaks

the relative spin-orbit symmetry.
102

In non-relativistic physics, spin is an internal

degree of freedom, i.e., the spin rotational symmetry SOS(3) is independent of the

orbital SOL(3). The β-phase is invariant only if rotations in the two channels are

performed exactly in the same way. In contrast, if there exists a difference between

two rotations, i.e., the relative spin-orbit rotation, the system indeed changes. This

symmetry breaking pattern is denoted as [SOL(3) ⊗ SOS(3)]/SOL+S(3). In other

words, the total angular momentum J = L+S in the β-phase is conserved, but L−S
is not.

The concept of relative spin-orbit symmetry breaking was first introduced by

Leggett
102

in the context of superfluid
3
He-B phase, whose Cooper pairing has a

p-wave and spin-triplet like structure, i.e. L = S = 1. The pair wavefunction in the

R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

of
 th

is
 P

D
F 

is
 n

ot
 p

er
m

itt
ed

.



June 27, 2022 17:38 ws-rv187x260mm Book Title CNY100-025 page 422

422 Congjun Wu

B-phase is

Ψpair(r12) = ∑
i=x,y,z

fpi(r12)χi, (1)

where fpi(r12) describes the radial wavefunction with the orbital symmetry of pi(i =
x, y, z), and χx = 1√

2
(∣ ↑↑⟩ + ∣ ↓↓⟩), χy = 1√

2i
(∣ ↑↑⟩ − ∣ ↓↓⟩), and χz = 1√

2
(∣ ↑↓⟩ + ∣ ↓↑⟩).

The total angular momentum J = L+S of Cooper pairs is zero, and thus the pairing

is isotropic. Hence, the β-phase is the particle-hole channel analogy to the
3
He-B

phase.

In Sec. 4, we shall review how spin-orbit coupling can be dynamically generated

without relativity but from phase transitions, in a similar way to ferromagnetism.

We have also extended the Fermi-liquid theory to systems with spin-orbit coupling.

1.5. Outline

The remaining part of this chapter is organized as follows: The concept of space-

time group for dynamic systems is reviewed in Sec. 2; the high symmetry perspective

of ultracold fermion physics is reviewed in Sec. 3; unconventional magnetism and

spontaneous spin-orbit symmetry breaking is reviewed in Sec. 4. Conclusions are

presented in Sec. 5.

2. Space-time Group for Dynamic Systems

The fundamental concept of crystal and band theory based on the Bloch theorem

lay the foundation of condensed matter physics.
32

In recent years, the study of dy-

namic systems such as the “pump-prob” systems becomes a new focus direction.
33,34

The simplest dynamic systems exhibit space-time periodicity, and a natural question

is how to classify their symmetries by extending the static crystalline symmetries.

There existed previously the framework of Floquet systems, i.e., systems under peri-

odical driving. However, in such a framework, the spatial and temporal symmetries

are decoupled, hence, it cannot be the generic case.
37–48

We construct a new framework, dubbed space-time group, to describe the gen-

eral intertwined space-time periodicities in D+1 dimensions, which include both the

static crystal and the Floquet crystal as special cases.
49

Compared to previously

known space- and magnetic groups, space-time group is augmented by “time-screw”

rotation, “time-glide” reflection, and “time-shift” rotary-reflection, involving frac-

tional translations along the time direction. We have classified that there are 13

space-time groups in 1+1D and 275 space-time groups in 2+1D.

2.1. Space-time unit cell and momentum-frequency Brillouin zone

Let us begin with a simplest example of space-time crystalline symmetry. Consider

a 1 + 1 D system, whose time-dependent potential is the superposition of two plane

R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

of
 th

is
 P

D
F 

is
 n

ot
 p

er
m

itt
ed

.



June 15, 2022 11:12 ws-rv187x260mm Book Title CNY100-025 page 423

The Symmetry Principle in Condensed Matter Physics (I) 423

Fig. 4. The simplest space-time crystal in 1+1 D. In the general case, the space-time unit cell is a
parallelogram which cannot be decomposed into a direct product between space and time domains.
It exhibits neither translational nor time-translational symmetries, but does possess the combined
space-time translation symmetries.

waves as plotted in Fig. 4,

V (x, t) = V1 cos(k1x − ω1t) + V2 cos(k2x − ω2t). (2)

The wavevectors k1,2 and frequencies ω1,2 are supposed to be incommensurate. If

we fix a spatial position, say x = 0, and look at the time-dependence of V (0, t), there
is no temporal periodicity. For Floquet problems, the time-evolution operator U (T )
of one period is often used to map them into time-independent problems. Clearly,

here this method generally does not apply. Similarly, if we take a snapshot at a

fixed time, say t = 0, V (x, 0) has no spatial periodicity either. Hence, the ordinary

Bloch theorem cannot straightforwardly be applied here.

The periodicity only appears when we extend to space-time. The unit cell is a

space-time parallelogram, not a direct product between space and time domains.

The unit vectors a1, a2 are space-time coupled,

a1 =
⎛⎜⎝

2πω2

k1ω2−k2ω1

2πk2
k1ω2−k2ω1

⎞⎟⎠ , a2 =
⎛⎜⎝

2πω1

k1ω2−k2ω1

2πk1
k1ω2−k2ω1

⎞⎟⎠ , (3)

which define space-time coupled translation symmetries. For the general case, a

potential V (r, t) exhibiting the intertwined discrete D + 1 dimensional space-time

translational symmetry satisfies

V (r, t) = V (r + u
i
, t + τ

i), i = 1, 2, ..., D + 1, (4)

where (ui
, τ

i) = a
i
is the primitive basis vector of the space-time lattice.

We move to the reciprocal space and define reciprocal lattice vectors, which can

be done in a similar way to solid state physics. The reciprocal lattice is spanned by
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the momentum-energy basis vectors b
i = (Gi

,Ω
i) defined through

b
i ⋅ aj =

D

∑
m=1

G
i
mu

j
m − Ω

i
τ
j = 2πδ

ij
. (5)

This minus sign is due to quantum mechanics phase convention. The D + 1 di-

mensional momentum-energy Brillouin zone may not be a direct product between

a momentum volume and frequency domain either. The reciprocal lattice vectors

contain both momentum and frequency components.

We emphasize that the above framework is already beyond that of Floquet. Flo-

quet systems only have one fundamental frequency, while, in our case each reciprocal

lattice vector has an independent frequency. The D+1 dimensional space-time crys-

tals can exhibit at most D + 1 incommensurate frequencies. Hence, they are related

to certain types of quasi-crystals.

2.2. The generalized Bloch-Floquet theorem

For dynamic crystal systems with space-time periodicity, the Bloch and Floquet the-

orems should be treated at equal footing. Below they are combined and generalized.

Consider the time-dependent Schrödinger equation ih̵∂tψ(r, t) = H(r, t)ψ(r, t).
Its solutions are denoted by the good quantum number of the (lattice) momentum-

energy vector κ = (k, ω), which is defined modulate the reciprocal lattice vectors.

The Floquet-Bloch state labeled by κ takes the form of

ψκ,m(r, t) = e
i(k⋅r−ωt)

um(r, t), (6)

where m marks different states sharing the common κ. um(r, t) is periodical in the

space-time unit cell, which is expanded as Fourier series only involving momentum-

energy reciprocal lattice vector as

um(r, t) = ∑
b

cm,be
i(G⋅r−Ωt)

(7)

with b = (G,Ω) taking all the momentum-energy reciprocal lattice vectors. The

spectra ωm can be solved through the secular equation,

∑
b′
{[ε0(k +G) − Ω]δb,b′ + Vb−b′}cm,b′ = ωmcm,b, (8)

where ε0(k) is the free dispersion, and Vb is the momentum-energy Fourier compo-

nent of the space-time lattice potential V (r, t).
The above procedure is very similar to the plane-wave expansion method of the

band theory in D-dimensions, in which the static lattice potential only has Fourier

components in momentum space. The difference is that the effective dimensions

become D+1, since the reciprocal lattice vectors lie in the momentum-energy space

for space-time crystals. Nevertheless, the Hilbert space of physical states remains the

R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

of
 th

is
 P

D
F 

is
 n

ot
 p

er
m

itt
ed

.



June 15, 2022 11:12 ws-rv187x260mm Book Title CNY100-025 page 425

The Symmetry Principle in Condensed Matter Physics (I) 425

same regardless of whether the potential is time-independent or not. To reconcile

this discrepancy, we notice the gauge-like redundancy in the formalism based on

and Eqs. (6) and (8). The solutions in the sector labeled by κ and those by κ + b

are redundant since the same state in Eq. (6) can also be expressed as ψκ,m(r, t) =
e
i[(k+G)⋅r−(ω+Ω)t]

um′(r, t) with um′(r, t) = um(r, t)e−i(G⋅r−Ωt)
.

The dispersion based on Eq. (8) is generally multiple-valued, represented by

a D-dimensional surface in the momentum-energy Brillouin zone which is a D+1

dimensional torus. In the static case, the band dispersion only winds around the

momentum direction. In space-time crystals, the winding patterns are richer.

Let us take the 1+1D case as a simple example. The dispersion relation ω(k)
forms closed loops in the 2D toroidal momentum-energy Brillouin zone, each of

which is characterized by a pair of winding numbers w = (w1, w2) with w1,2 integers.

In general, nearly all patterns w = (w1, w2) are possible except for one constraint

explained as follows. Consider a weak lattice potential such that it can be treated

as a perturbation. The free dispersion curve ε(k) is folded into the momentum-

energy Brillouin zone with crossings. Two states at a crossing point are connected

by a reciprocal vector b before folding. The crossing is lifted if the momentum-

energy Fourier component of Vb is nonzero. The total number of states at each

k is independent of the potential strength, hence crossing can only be split along

the ω-direction by opening a gap of 2∣Vb∣, and dω/dk is always finite. Hence, the

contractible loops with the winding numbers (0, 0) are unallowed.

Nevertheless, the winding number pattern could be constrained by spectral de-

generacies protected by symmetries. For example, consider a magnetic group trans-

formation applied to a 1+1 D space-time crystal, whose unit cell is a direct product

between spatial and temporal periods a and T , respectively. Define the glide time-

reversal operation gt(x, t) = (x + a
2
,−t). It operates on the Hamiltonian as

g
−1
t H(x, t)gt = H

∗ (x +
a

2
,−t) . (9)

The corresponding transformation Mgt on the Bloch-Floquet wavefunction ψκ(x, t)
of Eq. (6) is anti-unitary defined as

Mgtψκ = ψ
∗
κ (g−1t (x, t)) . (10)

Consider two special lines of the momentum-energy Brillouin zone with κx = 0 and

κx = π/a. M
2
gt = 1 for states with κx = 0, but it becomes a Kramers symmetry

M
2
gt = −1 for those of κx = π/a,

M
2
gtψκ = ψκ(x − a, t) = e

−iκxaψκ = −ψκ. (11)

Then the crossing at κx = π/a cannot be avoided. Hence, the dispersion curve must

wind along the momentum direction even times, while its windings along the energy

direction cancel. The winding number is constrained to w = (2n, 0).
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2.3. Definition of space-time group

Now we are ready to formally define space-time group in analogous to space group

describing the static crystalline symmetry. It is the discrete subgroup between the

direct product of the Euclidean group of D spatial dimensions and that along the

time-direction ED⊗E1. In general, space-time group cannot be factorized as a direct

product between space and temporal subgroup groups.

In terms of coordinates, a space-time group operation Γ is defined as

Γ(r, t) = (Rr + u, st + τ ), (12)

where R here is a point-group operation, including rotation, reflection, rotary reflec-

tion. u is a translation. If u is not a symmetry by itself, then it is non-symmorphic.

Combining R and u, they span space-groups. Further including s = −1, they span

magnetic space-groups, which are used to describe the symmetry properties of mag-

netic systems. The last term of τ is time translation. Combining all the point group

operations, time-reversal, spatial and temporal translations, the algebra is closed.

This new symmetry group is dubbed space-time group.

If the time translation τ itself is not a symmetry, it should be combined with

spatial transformations to form space-time nonsymmorphic symmetries as shown in

Fig. 1. In 1+1 D, the only available operation to combine is spatial reflection. This

is the dynamic symmetry of a see-saw [Fig. 1(a)]. A see-saw does not possess a static

reflection symmetry, but it is invariant by performing reflection and time translation

at half a period. This symmetry is the analogy of the glide-reflection symmetry of

space group, dubbed time-glide reflection symmetry. In 2+1D, a new possibility

is to combine τ with spatial rotation to form time-screw rotation, which can be

intuitively understood as the dynamic symmetry of a clock [Fig. 1(b)]. Consider a

simplified clock with only one pointer rotating. It does not exhibit the rotational

symmetry due to the pointer, but a rotation combined with time translation can

leave the clock invariant. This is the analogy of screw rotation of space group,

dubbed “time-screw” rotation.

There also exist new possibilities that nonsymmorphic space-time symmetries

have no analogies in static space groups. In 3+1D, a fractional time translation τ

can be combined with the rotary reflection operation R, dubbed time-shift rotary

reflection with an example depicted in Fig. 1(c). (Rotary reflection R is a rotation

followed by a reflection whose detR = −1 with eigenvalues {−1, e±iθ} and θ ≠ 0.)

Another possibility is a space-time translation (u, τ ) followed by a point group op-

eration R. In other words, it is nonsymmorphic space group operation followed by

a fractional time translation τ .

Naturally, quantum mechanical wavefunctions can be employed to span repre-

sentations of space-time group. A special care needs to be taken is that the repre-

sentation is anti-unitary when s = −1, i.e., time-reversal is involved. The operation
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of Γ on the Hamiltonian is defined as

Γ
−1
H(r, t)Γ = { H(Γ(r, t)) for s = 1,

H
∗(Γ(r, t)) for s = −1.

(13)

Correspondingly, the transformation MΓ on the Bloch-Floquet wavefunctions

ψκ(r, t) is
MΓψκ = { ψκ(Γ−1(r, t)) for s = 1,

ψ
∗
κ(Γ−1(r, t)) for s = −1.

(14)

2.4. Classifications of space-time group

The 2D space groups are particularly intuitive with a popular name of wallpaper

groups. There exist 17 wallpaper groups corresponding to different types of planar

patterns. Actually, all these patterns have been already used for ornaments since

ancient times.
6

We classify space-time crystals based on their space-time group symmetry struc-

tures. A natural starting point is to classify 1+1D space-time groups, which is an

analogous problem to the 2D wallpaper groups. Due to the non-equivalence between

spatial and temporal directions of the non-relativistic Schödinger equations, we can-

not really rotate space and time into each other. Hence, only the 2-fold space-time

rotation is allowed, i.e. (x → −x, t → −t) and 3, 4, 6-fold rotations are not, which

eliminates quite a few possibilities. On the other hand, the non-equivalence between

space and time also brings richness. Spatial reflection mx and time-reversal mt are

of a different nature. The former is a unitary operation, and the latter is anti-

unitary. Similarly, as for two glide operations, a time-glide with a spatial reflection

gx is different from a space-glide with a time-reversal gt.

Taking the above considerations into account, in total there are 13 types of space-

time crystals as shown in Fig. 5. It is obvious that only two space-time crystal sys-

tems are allowed in 1+1D — oblique and orthorhombic. No square and hexagonal

space-time crystals exist. Considering the Bravais lattices, the oblique case is mon-

oclinic, and the orthorhombic case has two possibilities: the primitive one and the

centered one. The oblique Bravais lattice generates 2 types of space-time crystals,

the orthorhombic one generate 8, and the centered orthorhombic one generates 3, as

shown in Figs. 5(a–c), respectively. For the centered orthorhombic lattices, actually

their primitive cells are space-time rhombohedral. To explicitly demonstrate the full

symmetries, two unit cells are plotted Fig. 5(c). There are 5 space-time groups that

are non-symmorphic, and all of them belong to the orthorhombic Bravais lattice.

And the rest 8 are symmorphic.

As a concrete example, look at a crystal configuration depicted in Fig. 5(b), the

Pgx one. This is the symmetry group of an array of see-saws, which is actually

non-symmorphic. Such a system does have a Floquet period, but it is insufficient

to show its complete space-time symmetries. In contrast, the space-time group goes
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Fig. 5. Crystal configurations of 13 space-time groups in 1+1D. The solid oval marks the 2-fold
space-time axis, and the parallelogram means the 2-fold axis without reflection symmetries. The
thick solid and dashed lines represent reflection and glide-reflection axes, respectively. Configura-
tions of triangles and the diamond denote the local symmetries under reflections. (a) The oblique
Bravais lattice. Two space-time crystals with (P1) and without (P2) 2-fold axes in this crystal
system. They generally do not possess a Floquet period, but exhibit space-time mixed transla-
tion symmetries. (b) The primitive orthorhombic Bravais lattice with 8 space-time crystals. They
are denoted as Pmx, Pmt, P2mxmt Pgx, Pgt, P2gxgt, P2mxgt, and P2gxmt according to their
reflection and glide reflection symmetries. (c) The centered orthorhombic Bravais lattice with 2
space-time crystals denoted as Cmx, Cmt, C2mxmt. Two unit cells are plotted to show crystalline
symmetries in this class. Among 13 space-time crystals in 1+1D, 5 of them (Pgx, Pgt, P2gxgt,
P2mxgt, and P2gxmt) are non-symmorphic, and the other 8 are symmorphic. From Ref. 49.

inside the Floquet period and extracts all the space-time symmetries. In the case

of Pgx, it shows the symmetry between the first and second halves of the Floquet

period.

The classifications of the space-time groups in higher dimensions are generally

complicated. The simple method of enumeration is cumbersome. We have classified
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2+1D space-time groups based on the method of group cohomology, and the details

will be presented elsewhere. This is an analogous problem to the 3D space groups.

There exist 275 space-time groups with 72 of them symmorphic and the rest 203

non-symmorphic.

There are still 7 crystalline systems and 14 Bravais lattices for 2+1D space-time

groups, whose numbers are the same as in the 3D case, but the situation is different.

The cubic space-time crystal does not exist in 2+1D since we cannot compare the

length along the time direction with that in the ab-plane, i.e., there does not exist

a universal velocity like the light velocity in non-relativistic physics. Instead, there

exist two different types of monoclinic space-time crystals. “Monoclinic” here means

that the c-axis is perpendicular to the ab-plane, but the a and b axes are non-

perpendicular to each other. The c-direction could be chosen as time, or, one of the

spatial directions corresponding to the T - and R-monoclinic space-time crystals.

Other crystal systems such as tetragonal, orthorhombic, trigonal, hexagonal, and

triclinic ones can be similarly constructed.

2.5. Spectral degeneracy protected by nonsymmorphic space-time

symmetry

For static crystals, it has been extensively studied that nonsymmorphic space-group

symmetries can protect spectral degeneracies and enrich topological phases.
105–109

In this subsection, we show that the intertwined space-time nonsymmorhic symme-

tries also protect non-trivial spectral degeneracies of the driven system.

We express a general space-time group element as

g = Tr(u)Tt(τ )Rm
s
t , (15)

where Tr(u) and Tt(τ ) are spatial and temporal translations, respectively. R is a

point group operator; mt is the time-reversal operation with s = 1 or 0 determining

whether g is anti-unitary or not, respectively. If two operations g1 and g2 belong to

the little group of a high symmetry point κ = (k, ω), whose point group operations

commute, then

g1g2 = Tg2g1 (16)

with T a translation of integer unit vectors. T is decomposed into spatial and

temporal parts as T = Tr(ũ)Tt(t̃), where
ũ = (I −R2)u1 − (I −R1)u2, t̃ = 2s2t1 − 2s1t2. (17)

Below we review degeneracies protected by this symmetry.

The representation matrices Mg1,2 acting on Floquet-Bloch wavefunctions with

κ satisfy

Mg1Mg2 = e
ik⋅ũ−iωt̃

Mg2Mg1 . (18)
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The following three cases need to be examined depending on whether g1,2 are unitary

or anti-unitary.

First, if neither g1 nor g2 reverses the direction of time. In this case, t̃ = 0, and

then the phase factor in Eq. (18) does not involve time. If k ⋅ u = 2πp/q with p

and q coprime, then the Bloch-Floquet wavefunctions exhibit a q-fold degeneracy at

κ = (k, ω) proved as follows. Since g1 belongs to the little group, a Bloch-Floquet

eigenstate ψκ of quantum number κ can be chosen as an eigenstate of Mg1 satisfying

Mg1ψκ = μψκ. Then consider the sequence of

ψκ, Mg2ψκ, M
2
g2ψκ, ..., M

q−1
g2 ψκ, (19)

all of which share the same κ since g2 belongs to the little group of κ. Moreover,

they are also g1’s eigenstates exhibiting a set of different eigenvalues as

η, μη, μη
2
, ..., μη

q−1
(20)

with η = e
i2πp/q

. Then they are orthogonal to each other spanning a q-fold degener-

acy.

Second, we consider the case that only one of g1,2 involves time-reversal. Without

loss of generality, Mg1 is assumed to be unitary while Mg2 is anti-unitary. Then

the prefactor in Eq. (18) exhibits frequency dependence. Again since g1 is in the

little group, the Floquet-Bloch eigen state ψκ can be chosen as an Mg1 eigenstate,

expressed as

Mg1ψκ = e
ik⋅u1−iωt1e

iθ
ψκ, (21)

in which θ is extracted to be only dependent on the point group operation R1. Based

on Eq. (18), Mg2ψκ is also an eigenstate of g1 as

Mg1 (Mg2ψκ) = e
ik⋅(−u1+ũ)+iω(−t̃+t1)e−iθ (Mg2ψκ) . (22)

Plugging in t̃ = 2t1, then the frequency dependence in the phase factor in Eq. (22)

disappears. We conclude that if e
ik⋅(2u1−ũ)+2iθ ≠ 1, then two phases in Eqs. (21)

and (22) do not equal. Hence, the degeneracy is protected. Nevertheless, further

applying high powers of Mg2 does not bring new phases.

The last case is when both g1 and g2 flip the time-direction, i.e., both Mg1 and

Mg2 are anti-unitary. By defining g = g1g2 which is unitary again and combining g

and g2, we have

gg2 = Tr(u)Tt(τ )g2g, (23)

which is reduced to case 2.

We emphasize that in none of the above three cases, the degeneracy condition

depends on the frequency component of κ. This is expected since one can always

shift the frequency of the spectrum by adding a constant to the Hamiltonian.
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2.6. Discussions

So far the concept of space-time group has received considerable attentions.
110–119

We expect it would serve as a guiding principle for quantum dynamic studies, in

analogy to the role of space group to static crystalline symmetries.
9

The classifi-

cation of space-time group in 3+1D would be of fundamental importance if it is

completed successfully, which is currently under investigation.

Actually the lattices in solids are dynamic, and the quantized lattice vibrations

are phonons. However, phonons are typically thermally driven and incoherent. If a

certain type of phonon mode is coherently excited, say, optically, or, by other pump-

ing methods, it cannot be treated perturbatively.
34,120

Instead, the time-dependent

motions of lattice ions should be treated at the zeroth order, i.e., we should include

them in the time-dependent lattice potential of the Schrödinger equation. In artifi-

cial lattices, such as the phononic, photonic crystals, and optical lattice for ultracold

atoms, lattice potentials could be manipulated on purpose.
36,110,117

In these cases,

space-time group should replace space group as the symmetry guidance of quantum

dynamics.

Certainly, the semi-classic transport in dynamic crystals is of importance. When

the periodicity of lattice potential is weakly broken by slowly varying external fields

both spatially and temporally, semi-classic equations of motion for a quantum parti-

cle could be developed.
32

We should distinguish two different types of dynamics: the

fast changing periodical lattice potential which should be taken by the band struc-

ture calculation, and the slowly changing external field which should be treated in

an adiabatic way. A challenging problem is how to generalize the Berry curvature

formalism to the dynamic version and incorporate it into equations of motion.
121

The work in this direction would provide a general framework for further studying

topological properties in dynamic systems.
122

Another direction to explore is the connection to the research of time crys-

tal.
43,123–132

The current study of time crystal is concentrated on the spontaneous

breaking of the discrete time-translational symmetries, which is a profound interac-

tion effect. Nevertheless, the symmetry breaking pattern typically is just the Floquet

type. It would be interesting to combine these two directions together, for example,

to consider how to spontaneously generate dynamic crystals with nonsymmorphic

space-time symmetries. More philosophically, we could ask the problem of discrete

subgroups of different types of space-time symmetries, including Galilean, Poincaré,

anti-de Sitter symmetries, etc.

3. High Symmetry Perspective to Large-spin Cold Fermion Systems

The study of ultracold atom systems has become a new frontier for condensed matter

physics as a way of creating novel quantum states of matter. We have proposed a
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new perspective of high symmetries (e.g. SU(N) and Sp(N)) since 2003 to study the

alkali and alkaline-earth fermion systems,
56–63

where N is the fermion component

number and typically even. It is exciting to explore, in atomic systems, complex

and beautiful many-body physics difficult to realize in usual solids.
89,90

It also

significantly enriches the physics of large-N quantum magnetism by providing a

realistic system.

3.1. The generic SO(5) symmetry of spin-3
2
cold fermions

In this subsection, we review the proof of an exact and generic hidden symmetry

of Sp(4), or, isomorphically SO(5) symmetry in spin-3
2
fermion systems (e.g.

132
Cs,

9
Be,

135
Ba,

137
Ba,

201
Hg).

56,59,a
It plays the role of SU(2) in electron systems since

its exactness is independent of dimensionality, lattice geometry, and particle filling.

Such a high symmetry without fine-tuning is rare, which can be used as a guiding

principle for exploring novel quantum phases.

Let us begin with the standard s-wave scattering interactions of spin-3
2
fermionic

atoms.
133,134,b

Since the orbital wavefunction is symmetric in the s-wave channel, the

total spin wavefunction of two fermions is constrained by Pauli’s exclusion principle

to be antisymmetric, which must be either singlet or quintet. The corresponding

interaction parameters are denoted g0 and g2, respectively. The Hamiltonian reads,

H = ∫ d
d
r⃗

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ∑
α=±3/2,±1/2

ψ
†
α(r⃗) (−h̵22m

∇2 − μ)ψα(r⃗)
+ g0P

†
0,0(r⃗)P0,0(r⃗) + g2 ∑

m=±2,±1,0
P

†
2,m(r⃗)P2,m(r⃗)} , (24)

with d the space dimension, μ the chemical potential, and P
†
0,0, P

†
2,m the singlet

and quintet pairing operators defined through the Clebsh-Gordan coefficient for two

indistinguishable particles as

P
†
F,m(r⃗) = ∑

αβ

⟨3
2

3

2
;F,m∣3

2

3

2
αβ⟩ψ†

α(r⃗)ψ†
β
(r⃗), (25)

where F = 0, 2 and m = −F,−F + 1, ..., F . Its lattice version is the spin-3
2
Hubbard

a
Sp(4) and SO(5) share the same Lie algebra. Rigorously speaking, Sp(4) has spinor representations
while SO(5) has not. Sp(4) is the double covering group of SO(5), and the relation between
them is the same as that between SU(2) and SO(3). For simplicity, we will use Sp(4) and SO(5)
interchangeably neglecting their minor difference.
b
The total spin of an atom is often called “hyperfine spin” including contributions from the nuclear

spin, electron spin and electron orbital angular momentum. Below we follow the convention of
atomic physics to use F to denote an atom’s hyperfine spin. For simplicity, spin and hyperfine spin
are used interchangeably.
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model,

H = −t ∑
⟨ij⟩,σ

(ψ†
iσψjσ + h.c.) − μ∑

iσ

ψ
†
iσψiσ

+U0∑
i

P
†
0 (i)P0(i) + U2 ∑

i,−2≤m≤2
P

†
2m(i)P2m(i), (26)

where t is the hopping integral, U0,2 are the onsite Hubbard interaction parameters

in the singlet and quintet channels, respectively.

So far, the perspective in Eqs. (24) and (26) is the usual spin SU(2) symme-

try. The 4-component spinor, singlet and quintet channels correspond to the spin

quantum numbers 3
2
, 0, and 2, respectively. Below we will show that this degener-

acy pattern equally well fits in a high symmetry group of Sp(4), or, isomorphically,

SO(5), which provides a whole new perspective in spin-3
2
fermion systems.

For this purpose, we construct the Sp(4) algebra by extending the typical charge

and spin sectors. For spin-1
2
systems, charge and spin form a complete set for the

particle-hole (p-h) channel observables. However, they are incomplete since there

are 4
2 = 16 bilinears in spin-3

2
systems,

M
I = ψ

†
i,αM

I
αβψi,β (I = 1 ∼ 16). (27)

To systematically decompose the 16 matrix kernels of M
I
αβ , high rank spin tensors

are employed,

particle number: I;

spin: F
i
, i = 1, 2, 3;

spin quadrupole: ξ
a
ijFiFj , a = 1, .., 5;

spin octupole: ξ
L
ijkFiFjFk, L = 1, .., 7, (28)

where ξ’s are the typical fully symmetric, traceless tensors converting 3-vector into

spherical tensors.

The five spin quadrupole matrices are denoted Γ
a = ξ

a
ijFiFj , which remarkably

anticommute with each other forming a basis of the Dirac Γ matrices satisfying

{Γa,Γb} = 2δab. (29)

Explicitly, they are

Γ
1 = ( 0 −iI

iI 0
) , Γ

2,3,4 = ( σ⃗ 0

0 −σ⃗
) , Γ

5 = (0 I

I 0
) , (30)

where I and σ⃗ are the 2×2 unit and Pauli matrices, respectively. They are explicitly

expressed by the spin matrices as

Γ1 =
1√
3
(FxFy + FyFx), Γ2 =

1√
3
(FzFx + FxFz), Γ3 =

1√
3
(FzFy + FyFz),

Γ4 = F
2
z −

5

4
, Γ5 =

1√
3
(F 2

x − F
2
y ). (31)
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Moreover, the 3 spin and 7 spin octupole matrices together can be organized into

10 commutators of Γ-matrices defined as

Γ
ab = −

i

2
[Γa

,Γ
b] (1 ≤ a, b ≤ 5). (32)

Consequently, the 16 particle-hole channel bilinear operators are classified ac-

cording to their properties under the Sp(4) transformations as scalar, vector, and

anti-symmetric tensors (generators) as

n(r⃗) = ψ
†
α(r⃗)ψα(r⃗), na(r⃗) = 1

2
ψ

†
α(r⃗)Γa

αβψβ(r⃗),
Lab(r⃗) = −

1

2
ψ

†
α(r⃗)Γab

αβψβ(r⃗). (33)

The SO(5) generators Lab and its vectors na together span the SU(4) algebra. They

satisfy the commutation relations as

[Lab, Lcd] = −i(δacLbd + δbdLac − δadLbc − δbcLad),[Lab, nc] = −i(δacnb − δbcna),[na, nb] = −iLab. (34)

It is well known that the SU(4) algebra is isomorphically to SO(6), and SU(4) is the

double covering group of SO(6).

In order to study pairing operators in the particle-particle channel and time-

reversal transformation, we introduce the charge conjugation matrix R: The com-

bination of R and the creation operators Rαβψ
†
β
transforms the same as the annihi-

lation operator ψα under the Sp(4) transformation. The existence of R is based on

the pseudoreality of Sp(4) spinor representation, satisfying

R
2 = −1, R

† = R
−1 = t

R = −R, RΓ
a
R = −t

Γ
a
, RΓ

ab
R = t

Γ
ab
, (35)

where
t
Γ
a,ab

are the transposed matrices of Γ
a,ab

. In the representation of Eq. (30),

R is expressed as R = Γ1Γ3.

Under the assistance of R, the fermion pairing operators is expressed as
61

η
†(r⃗) = Reη + i Imη = 1

2
ψ

†
α(r⃗)Rαβψ

†
β
(r⃗),

χ
†
a(r⃗) = Reχa + i Imχa = −

i

2
ψ

†
α(r⃗)(Γa

R)αβψ†
β
(r⃗). (36)

Clearly, η
†(r⃗) is an Sp(4) scalar, and χ

†
a(r⃗)’s are a set of Sp(4) vector. They are

related to the spin SU(2) representation via

P
†
0,0 = −

1√
2
η

†
,

P
†
2,0 = −i

1√
2
χ

†
4, P

†
2,±1 =

1

2
(−χ†

3 ± iχ
†
2), P

†
2,±2 =

1

2
(∓χ†

1 + iχ
†
5). (37)

The anti-unitary time-reversal transformation T
2 = −1 is expressed as

T = R C, (38)
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where C denotes complex conjugation. Lab’s consist of spin and spin-octupole op-

erators.
56,135

Since they are odd rank spin tensors, they are time-reversal odd. na’s

and N are time-reversal even. It is also straightforward to check that they transform

differently under the T transformation

TnT
−1 = n, TnaT

−1 = na, TLabT
−1 = −Lab. (39)

Now we are ready to prove the generic SO(5) symmetry of Eqs. (24) and (26).

The kinetic energy part has an explicit SU(4) symmetry which is the unitary trans-

formation among four spin components. The singlet and quintet interactions are

proportional to η
†(r⃗)η(r⃗) and χ

†
a(r⃗)χa(r⃗), respectively, thus reducing the symmetry

group from SU(4) to SO(5). When g0 = g2, the SU(4) symmetry is restored be-

cause χ
†
a, η

†
together form the 6 dimensional antisymmetrical tensor representation

of SU(4).

For the continuum model, the odd partial wave scatterings include the spin triplet

and septet channels, whose interactions are denoted as g1 and g3, respectively. The

SO(5) symmetry is broken if g1 ≠ g3, and restored at g1 = g3 since the triplet and

septet together could form the 10D adjoint representation of SO(5). However, to the

leading order, p-wave scattering is weak for neutral atoms, and thus can be safely

neglected. For the lattice model, the onsite interactions do not allow the triplet and

septet interactions.

For later convenience, the lattice Hubbard model of Eq. (26) can be rewritten in

another manifestly Sp(4) invariant form as

H0 = −t ∑
⟨i,j⟩

(ψ†(i)ψ(j) + h.c.) ,
HI = ∑

i,1≤a≤5
[3U0 + 5U2

16
(n(i) − 2)2 − U2 − U0

4
n
2
a(i)] − (μ − μ0)∑

i

n(i), (40)

where the SU(4) symmetry appears at U0 = U2 as before. At half-filling, μ0 =(U0 + 5U2)/2 to ensure the particle-hole symmetry.
c

3.2. The SO(7) unification and the χ-pairing

The spin-1
2
Hubbard model defined in a bipartite lattice in any dimensions actually

possesses a pseudospin SU(2) symmetry spanned by the η-pairing operators and par-

ticle number as discovered by Yang
26

and by Yang and Zhang.
27

In this subsection,

we review the extension of the pseudo-spin symmetry to the SO(7) symmetry in the

spin-3
2
Hubbard model, and define the quintet χ-pairing operators. It exhibits much

richer unifying power in treating a variety of competing orders at equal footing.
56

The η-pairing operator in spin-1
2
systems sums over the onsite singlet pairing op-

erators with opposite signs on two sublattices. The pseudospin SU(2) algebra is par-

ticularly useful for unifying competing orders in the negative-U Hubbard model.
26–28

c
Here half-filling means the average particle number per site equals 2, half of the component number.
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The complex order parameters of superconductivity and the charge-density-wave are

unified forming a 3D representation. The η-pairing generator transforms supercon-

ductivity into charge-density-wave and vice versa. At half-filling, the pseudospin

SU(2) symmetry is exact, and these two types of orders are degenerate. Away

from half-filling, the SU(2) symmetry is explicitly broken, and the superconduct-

ing ground state is selected. However, when applying the η-pairing operator to the

ground state, it creates well-defined excitations, which are the pseudo Goldstone

modes rotating superconductivity into charge-density-wave.

Before moving on, let us fully explore the symmetry structure of spin-3
2
systems.

The largest algebra formed by 4-component fermions is actually SO(8),
136

including

16 p-h channel fermion bilinears and the other 12 in the p-p channel. On each site,

the local SO(8) generators Mab(i) (0 ≤ a < b ≤ 7) are organized as follows,
56,59

Mab(i) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Reχ1(i) ∼ Reχ5(i) N (i) Reη(i)
Imχ1(i) n1(i)

Lab(i) ∼ ∼
Imχ5(i) n5(i)

0 −Imη(i)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (41)

with N (i) = (n(i) − 2)/2. For 1 ≤ a < b ≤ 5, they are just Lab(i) forming its SO(5)

subalgebra. The global SO(8) generators are defined as

Mab = ∑
i

Mab(i), or, Mab = ∑
i

(−)iMab(i), (0 ≤ a < b ≤ 7), (42)

depending on Mab lying in the p-h or p-p channels, respectively. More explicitly, we

write

Lab = Mab, na = Ma7, N = M06,

η
† = M06 − iM67, χ

†
a = M0a + iMa6, (43)

with 1 ≤ a < b ≤ 5. Lab, na and N lie in the p-h channel, and η and χ
†
a lie in

the p-p channel. The η
†
operator is the spin-3

2
generalization of Yang’s η

†
, both of

which are spin singlet. In contrast, the χ
†
a pairing operator is a non-trivial quintet

generalization.

It is easy to check that the H0 part of the Hamiltonian Eq. (40) satisfies[H0,Mab] = 0. However, Hint typically breaks the SO(8) symmetry unless it vanishes

within the framework of 4-fermion interactions.

The next highest algebra is SO(7) spanned byMab with 0 ≤ a < b ≤ 6, which is the

high-rank Lie algebra generalization of Yang’s pseudospin SU(2) algebra. Explicitly,

they include the SO(5) generators Lab, the χ-pairing operators Reχa, Imχa, and the

particle number N . This SO(7) symmetry becomes exact at U0 = −3U2, where the

interacting part of the Hamiltonian Eq. (40) is reduced to

HI = ∑
i,0≤a<b≤6

{2
3
U2 [Mab(i)]2 − (μ − μ0)n(i)}. (44)
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At half-filling, μ = μ0, then the global SO(7) symmetry becomes exact.

The SO(7) symmetric spin-3
2
Hubbard model can be further divided into two

cases: U0 = −3U2 with (I) U2 > 0; (II) U2 < 0. The physics of case (I) lies in SO(7)’s

vector representation, while that of case (II) lies in the adjoint representation.

In case (I), the system in the weak coupling regime exhibits the competition

between the singlet superconductivity and density-wave of spin quadrupole orders,

whose order parameters are organized as

Va = ∑
i

(−)iMa6, or, Va = ∑
i

Ma6, (0 ≤ a ≤ 7) (45)

depending on Va lying in the p-h channel or the p-p channel, respectively. More

explicitly, superconductivity and spin quadrupole density wave are unified as

V0 = ReΔs, Va = SDWa (1 ≤ a ≤ 5), V6 = −ImΔs. (46)

They transform according to the vector representation of SO(7),

[Mab, Vc] = i (δbcVa − δacVb) . (47)

Hence, the Goldstone manifold is S
6
. Away from half-filling, SO(7) is broken and

the singlet superconductivity is selected as the ground state ordering. The χ-pairing

operators remain the eigen-operators as

[H,χ
†
a] = −(μ − μ0)χ†

a, and, [H,χa] = (μ − μ0)χa. (48)

At μ < μ0, applying χ
†
a to the superconducting ground state ∣Ω⟩ creates a quintet

excitation,

H (χ†
a∣Ω⟩) = (μ0 − μ) (χ†

a∣Ω⟩) , (49)

which carries the lattice momentumQ = (π, π). In other words, the χa-pairing opera-

tor behaves like a quasi-Goldstone mode, which rotates the singlet superconductivity

to the density-wave state of the a-th component of spin quadrupole density-wave.

Yang’s η-pairing operators were generalized to the SO(5) theory of high Tc su-

perconductivity, which unifies the 2-component superconductivity and 3-component

antiferromagnetism into a 5-vector. Nevertheless, the SO(5) algebra is not exact.
29

The celebrated neutron resonance modes in the superconducting states were inter-

preted as the pseudo-Goldstone modes rotating from superconductivity to antiferro-

magnetism, denoted as π-modes. The χ-modes here are just analogs of the π modes

SO(5) theory.
29

However, the SO(5) algebra is not exact in high Tc cuprate systems.

In contrast, here the SO(7) symmetry is exact.

The SO(7) unification is even more powerful in case (II) with U0 > 0, in which the

21D adjoint representation of SO(7) plays the role. The order parameter manifold

includes the quintet superconductivity, the 10-fold density-wave of spin and spin

octupole orders, and charge-density-wave, which are organized as

Tab = ∑
i

(−)iMab, or, Tab = ∑
i

Mab, (0 ≤ a < b ≤ 6), (50)
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depending on Tab lying in the p-h channel or the p-p channel, respectively. Explicitly,

they are

Δq,a = T0a + iTa6, SDWab = Tab, CDW = T06, (51)

where 1 ≤ a < b ≤ 6. They transform according to the SO(7) algebra as

[Mab, Tcd] = i (δacTbd + δbdTac − δadTbc − δbcTad) . (52)

It is amazing to realize such a “grand unification” in a non-relativistic model.

The Goldstone manifold is SO(7)/[SO(5)× SO(2)], which is 10-dimensional. When

away from half-filling, the SO(7) symmetry is broken into SO(5), and the ground

state exhibit the quintet superconductivity. Equation (49) still applies. Assuming⟨Ω∣Δq,b∣Ω⟩ ≠ 0, χ
†
a∣Ω⟩ remains a quasi-Goldstone mode which rotates to the spin/spin

octupole density-wave state SDWab if a ≠ b, or, the charge-density-wave state if a = b.

The pseudo-spin SU(2) symmetry of the spin-3
2
version occurs at U0 = 5 U2. In

this case, HI is rewritten as

HI = ∑
i,1≤a,b≤5

{−U2 L
2
ab(i) − (μ − μ0)n(i)} , (53)

which only involve the SO(5) generators. Then M06, M07, M67 span an SU(2)

algebra commuting with all the SO(5) generators. More explicitly, they are just the

pseudo-spin SU(2) algebra spanned by the η-pairing and particle number operators.

At U0 = 5 U2 < 0, this pseudospin SU(2) symmetry unifies the singlet pairing and

charge-density-wave order parameters in a similar way to the spin-1
2
negative-U

Hubbard model. Again, when away from half-filling, this symmetry is broken, and

the ground state is the singlet pairing state. In this case, the η-pairing operators

remain eigen-operators

[H, η
†] = −(μ − μ0)η†

, and, [H, η] = (μ − μ0)η. (54)

We emphasize that the pseudo-spin SU(2) symmetry in the spin-3
2
system is still

different from that in the spin-1
2
case. In the latter case, the empty and doubly oc-

cupied states form a pseudospin-1
2
representation. In the spin-3

2
case, there are three

onsite singlet states: empty, 2-particle singlet, and the 4-occupied states forming a

pseudo-spin-1 representation.

Based on the above analysis and assisted by mean-field calculations, the weak-

coupling phase diagram in a bipartite lattice at half-filling in two dimensions and

above is shown in Fig. 6. The higher symmetries lines are as follows: The SU(4)

symmetry appears along line E with U0 = U2; the SO(7) symmetry appears along

lines F and H with U0 = −3U2; and the SO(5)⊗ SU(2)symmetry appears long line G

with U0 = 5U2. These lines are phase boundaries separating phases A, B, C, and D.

Phase A and B are regimes where repulsive interactions dominate. Hence, they are

density-wave states of spin tensors. In phase A, the onsite singlet energy is smaller

than the quintet energy, leading to the spin quadrupole density-wave forming the
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U0

U2 E: SU(4) line

U0=U2

F: SO(7) line

U0= -3U2

A:

B:

D:

0)( >≠< iη 0)()( >≠−< iL
ab

i

0)()( >≠−< in
a

i

0)()( >≠−< iN
i

C:

MC boundary 

U0=U2

MC boundary

3 U0= -5U2

G: SO(5)*SU(2) line

U0= 5 U2
H: SO(7) line

U0= -3 U2

Fig. 6. Competing phases of spin- 3
2
Hubbard model unified by high symmetries. (A) and (B): An-

tiferromagnetism in the Sp(4) adjoint and vector representations; (C): the singlet superconductivity;
(D): CDW; (E), (F), (G), and (H): exact phase boundaries with higher symmetries of SU(4), SO(7),
SO(5) ⊗ SU(2) and SO(7), respectively. From Ref. 56.

5-vector representation of the Sp(4) group. On the other hand, the lowest onsite

states in phase B are 5-fold degenerate, leading to the spin/spin octupole density-

wave forming the 10-dimensional adjoint representation of Sp(4). The Goldstone

manifold in phase A is SO(5)/SO(4)=S
4
, while that in phase B is SO(5)/[SO(3)⊗

SO(2)]. On line E, the SU(4) symmetry unifies the 15 dimensional density-wave

orders in all the spin channels forming the SU(4) adjoint representation, whose

Goldstone manifold is U(4)/[U(2)⊗ U(2)].

Phase C is the singlet pairing state, and phase D is the charge-density-wave state.

Orders in phases B and C are unified along the SO(7) line F. In contrast, the SO(7)

line H unifies orders in phases A, D, and the quintet pairing. Orders in phases C

and D are unified along the pseudospin SU(2) symmetry line G.

At last, let us mention an interesting point that SO(7) possesses a subgroup of

G2, which is the smallest exceptional Lie group and also the automorphism group

of non-associative algebra of octonions. A G2 symmetric spin-3
2
Hubbard model

is constructed which is the common subgroup of two different SO(7) algebras con-

nected by the structure constant of octonions as shown in Ref. 63. This model

exhibits various interesting symmetry breaking patterns: The G2 symmetry can be

spontaneously broken into SU(3), or, SU(2)⊗ U(1), both of which are essential in

high energy physics. In quantum disordered states, quantum fluctuations generate

the effective SU(3), or, SU(2)⊗ U(1) gauge theories.
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3.3. Quartet (charge-4e) superfluidity and quartet density wave

Superconductivity arises from the coherent condensation of Cooper pairs, which

is the central concept of the celebrated Bardeen-Cooper-Schrieffer (BCS) theory.

Moreover, there exist multi-fermion clustering instabilities in strong correlation sys-

tems in various disciplines of modern physics. The SU(3) gauge symmetry requires

three quarks to form a color singlet bound state of baryon
19
; α-particles are 4-body

bound states of two protons and two neutrons, and biexcitons are bound states of

two electrons and two holes. These states go beyond the framework of the BCS

theory since they cannot be reduced to a 2-body problem. The competitions among

the quartetting (charge 4e) and pairing (2e) superfluidities, quartet and pair density

wave orderings are investigated in 1D 4-component fermion systems.
58,69

In recent

years, charge-4e superconductivity has been proposed as a consequence of strong

fluctuations of the pair-density-wave state in high Tc cuprates.
137,138

Competitions

of 4-fermion orderings in the context of superconducting phase fluctuations have

recently received attentions.
139–141

Excitingly experimental evidence of Little-Parks

oscillations at the periods of hc/(4e) and hc/(6e) have been observed in the Kagome

superconductor CsV3Sb5.
142

Spin-3
2
systems allow the quartteting order, i.e., 4 fermions forming a clustering

instability, which is also called “charge-4e” in condensed matter physics. A quartet

in the strong coupling limit is a 4-body maximally entangled EPR state with all the

spin components forming an SU(4) singlet, whose order parameter is expressed as

Q(x) = ψ
†
3
2

(x)ψ†
1
2

(x)ψ†
− 1

2

(x)ψ†
− 3

2

(x). (55)

Furthermore, spin-3
2
systems could support 6 different types of Cooper pairing states

including an Sp(4) singlet and a set of Sp(4) quintet states whose order parameters

are presented in Eq. (36). It would be interesting to investigate their competitions.

Assisted by the strong coupling methods for 1D problems, we are able to ana-

lyze the competition between the quartetting and pairing formations. Quartets and

pairs can undergo either superfluidity or density-wave transitions depending on the

charge channel interactions. Only the quartetting states are SU(4) invariant, and

the 6 pairing operators presented in Eq. (36) form the rank-2 antisymmetric ten-

sor representation of SU(4).
d
Due to the strong quantum fluctuations, non-Abelian

Lie group symmetries cannot be spontaneously broken in 1D. Hence, only quartet

orderings, either superfluidity or density wave, are allowed by the SU(4) symmetry.

Nevertheless, if the symmetry is reduced to Sp(4), the Sp(4) singlet pairing could

survive, while the quintet pairing still cannot survive. Naturally, there exist compe-

titions between Sp(4) singlet (charge-2e) pairing orders and quartteting (charge-4e)

orders. Between them it is an Ising order-disorder transition in the spin channel.

d
In terms of SO(6), which equals SU(4)/Z2, they form the 6-vector representation.
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Here we briefly outline the procedure of the bosonization and renormalization

group (RG) analysis, and the details were presented in Ref. 59. The Sp(4) cur-

rents include scalar (charge), vector (spin quadrupole), and tensor (spin plus spin

octupole) ones,

JR,L(z) = ψ
†
R,α(z)ψR,α(z), J

a
R,L(z) = 1

2
ψ

†
R,α(z)Γa

αβψR,β(z) (1 ≤ a ≤ 5),
J
ab
R,L(z) = 1

2
ψ

†
R,α(z)Γab

αβψR,β(z) (1 ≤ a < b ≤ 5), (56)

where R and L refer to right- and left-movers. The low energy effective Hamiltonian

density H = H0 +Hint is written as,

H0 = vf{π4JRJR +
π

5
(Ja

RJ
a
R + J

ab
R J

ab
R ) + (R → L)},

Hint =
gc
4
JRJL + gvJ

a
RJ

a
L + gtJ

ab
R J

ab
L , (57)

where the chiral couplings are neglected at one-loop level since it only renormalizes

Fermi velocities. At the tree level, these dimensionless coupling constants are related

by the pair interaction parameters g0, g2 defined in Eq. (24) as gc = (g0 + 5g2)/2,
gv = (g0 − 3g2)/2, gt = −(g0 + g2)/2. Certainly, they are renormalized significantly

under the RG process. At gv = gt, or, g0 = g2, the SU(4) symmetry is restored.

The phase diagram at incommensurate fillings is presented at Fig. 7. The charge

sector remains gapless and decouples with the spin sectors. In the spin sector,

three phases are identified: Phase A is the gapless Luttinger liquid phase lying in

the repulsive interaction region where 0 < g2 < g0, which is controlled by the non-

interacting fixed point. Phase B is the quartetting phase controlled by the strong

coupling fixed point along the SU(4) line with gv = gt → +∞, or, g0 = g2 → −∞. It

lies in the regime where attractive interactions dominate. Phase C is the spin singlet

pairing phase controlled by the strong coupling point along the line of −gv = gt → +∞
corresponding to g0 → −∞ and g2 → 0. The pairing phase even covers the regime

with a purely repulsive interaction regime.

Within quartetting phase B, there also exist two competing orders, the quartet-

ting superfluidity and quartet density wave. By checking the periodicity, the quartet

density wave corresponds to the 2kf CDW. Four fermions first form quartets, and

then they either undergo superfluidity, or, density wave ordering. As for the charge

sector, their bosonic expressions are

Q = ψ
†
3
2

ψ
†
1
2

ψ
†
− 1

2

ψ
†
− 3

2

∝ e
2i

√
πθc , Oqdw = ψ

†
RαψLα ∝ e

i
√
πφc . (58)

The scaling dimensions for quartet superfluidity and density-wave orders are 1/Kc

and Kc/4, respectively. Hence, the quartet superfluidity wins at Kc > 2, while the

quartet density wave wins at Kc < 2.

Similarly in phase C, Cooper pairs can either undergo superfluidity, or, pair

density wave ordering. The pair density wave corresponds to the 4kf charge density
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20

0

2

20

Fig. 7. Competition between quartetting (charge-4e) and singlet pairing (charge-2e) phases in 1D
spin- 3

2
systems at incommensurate fillings. Combined with the charge channel Luttinger parameter

Kc, three phases are identified with phase boundaries marked by dashed lines. (A) The gapless
Luttinger liquid phase controlled by the non-interacting fixed point (the black spot). (B) Quartet-
ting superfluidity at Kc > 2 or quartet density-wave (2kf ) at Kc < 2. They are controlled by the
strong coupling fixed point along the SU(4) line (the red spot); (C) singlet pairing superfluidity at
Kc > 1/2 or pair density wave (4kf ) at Kc < 1/2. They are controlled by the strong coupling fixed
point along g2 = 0 (the blue spot). Phases B and C are both gapped in spin channels, and the
transition between them is an Ising order-disorder transition. From Ref. 58.

wave. As for the charge sector, their bosonic expressions are

Δs = η
† = ψ

†
3
2

ψ
†
− 3

2

− ψ
†
1
2

ψ
†
− 1

2

∝ e
i
√
πθc , Opdw = ψ

†
Rαψ

†
Rβ

ψLβψLα ∝ e
2i

√
πφc . (59)

The scaling dimensions for the singlet pairing and pair density wave orders are

1/(4Kc) and Kc, respectively. Hence, the pairing superfluidity dominates over the

pair-density-wave at Kc > 1/2. In the region of 1 > Kc > 1/2, pairing superfluidity

is the leading instability in an overall repulsive interaction environment.

The boundary between phase B quartetting (charge-4e) and phase C singlet

pairing (charge-2e) is determined by the unstable fixed point (gv = 0, gt → ∞),
which is approximately plotted in Fig. 7. The competitions between these two

phases can be mapped to a phase-locking problem of two-band superconductivity.

The first component is Δ1 = ψ
†
3
2

ψ
†
− 3

2

, and the second one Δ2 = ψ
†
1
2

ψ
†
− 1

2

, whose bosonic

representations are

Δ1 ∝ e
i
√
πθ1 = e

i
√
π(θc+θr), Δ2 ∝ e

i
√
πθ2 = e

i
√
π(θc−θr), (60)
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where the charge channel θc is the average phase and θr is the relative phase. In

fact, θr and its vortex, or, dual field φr, are of the spin quadrupole channel. The

bosonic expressions of the pairing and quartetting order parameters are expressed

as

Δs = Δ1 −Δ2 ∝ e
i
√
πθc cos

√
πθr, Q = Δ1Δ2 = e

i2
√
πθc cos 2

√
πφr. (61)

θc is power-law fluctuating, and does not play a role in the transition between quar-

tetting and pairing. It is the relative phase fluctuations that control the transition

as described by the sine-Gordon theory,

Heff =
1

2
{(∂xθr)2 + (∂xφr)2} + 1

2πa2
(λ1 cos 2

√
πθr + λ2 cos 2

√
πφr) , (62)

which contains cosine terms of both θr and φr.

If λ1 > λ2, the relative phase θr is pinned leading to the pairing order; otherwise if

λ1 < λ2, the vortex (dual) field φr is pinned giving rise to the quartetting order. The

transition occurs at λ1 = λ2. Equation (62) can be mapped to two free Majorana

fermions with massesm± = ∣λ1±λ2∣. One channel becomes massless at the transition,

which is the Ising critical point.

As a difference between the pairing and quartetting orders, there exist quartet

breaking processes of 4 → 1 + 3 → 1 + 1 + 2 and 4 → 2 + 2, which can be used to dis-

tinguish quartetting and pairing. The vortex lattice configurations are also different

for quartetting superfluidity. In the quartetting superfluid, the flux quantization

is hc/(4e). Hence, the number of vortices should be doubled compared to those of

pairing superfluidity.

3.4. Color magnetism

The prominent multi-particle correlations also manifest in the SU(N) quantum an-

tiferromagnetism in the Mott insulating states at 1/N -filling, i.e., one fermion per

site. The superexchange favors the tendency that every N sites form an SU(N)

singlet as dubbed “color magnetism” due to its similarity to the SU(3) gauge theory

of quantum chromodynamics in which 3 quarks form a color singlet.

In the one-dimensional Sp(4) Heisenberg chain in the fundamental spinor repre-

sentation, it has been found that the ground state exhibits oscillations at the period

of four sites.
58,62

The plaquette tendency was investigated in the SU(4) symmet-

ric Kugel-Khomskii model by diagonalization up to the size of 4 × 4 sites.
143

The

Majumdar-Ghosh model was generalized to the SU(4) case in a ladder system whose

ground state is solvable as a direct product state of SU(4) plaquettes.
57

The 4-site

SU(4) singlet plaquette wavefunction can be written as

1√
4!
εαβγδψ

†
α(1)ψ†

β
(2)ψ†

γ(3)ψ†
δ
(4)∣Ω⟩, (63)

which is a 4-particle maximally entangled EPR state.
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Consider the SU(4) antiferromagnetism with each site in the fundamental repre-

sentation in a 3D cubic lattice. We construct the SU(4) resonating plaquette model

in 3D in analogous to the Rokhsar-Kivelson quantum dimer model in 2D square

lattice.
60,144

There exist three resonant configurations: the left-right, front-back,

up-bottom plaquette coverings in a cube as shown in Fig. 8.

The Rokhsar-Kivelson (RK) type Hamiltonian is constructed as
145

:

H = −t ∑
each cube

{∣A⟩⟨B∣ + ∣B⟩⟨C∣ + ∣B⟩⟨C∣ + h.c.}
+ V ∑

each cube

{∣A⟩⟨A∣ + ∣B⟩⟨B∣ + ∣C⟩⟨C∣}, (64)

where t is assumed to be positive and V is the plaquette flipping amplitude. Similar

to the RK point of the quantum dimer model, here at V /t = 2, the ground state

is the equal weight superposition of all plaquette configurations connected by local

flips.
144

C

A B

Fig. 8. In the SU(4) Mott-insulator at quarter-filling, i.e., one particle per site in the fundamental
representation of SU(4). The superexchange interaction favors four sites of a plaquette form an
SU(4) singlet in analogous to the dimer formation in the SU(2) antiferromagnetism. For a 3D cube,
there exist three flappable plaquette configurations, based on which a quantum plaquette model
can be constructed. It can be described by an effective high-rank gauge theory with conserved
electric dipoles instead of charges. From Ref. 60.

The low energy physics of the quantum plaquette model can be mapped to a

gauge theory model, actually, it is a high order gauge theory. We assign each face

with an integer number n only taking values of 1 and 0: 1 corresponds to that

the plaquette is an SU(4) singlet, and otherwise, 0. The “electric field” at site i is

defined as a rank-2 symmetric traceless tensor

Ei,μν = η(i) (ni+ 1
2
μ̂+ 1

2
ν̂ −

1

2
) , (65)

where η(i) = ±1 marking the sublattice, and i + 1
2
μ̂ + 1

2
ν̂ refers to the location of a

face center. Since each site can only join one singlet, the sum of n over all the twelve
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faces sharing the same site is constrained to be 1, which can be represented as

∇x∇yExy + ∇y∇zEyz + ∇z∇xEzx = 5η(i), (66)

where ∇ is the lattice derivative. According to the standard electrodynamics, E is

conjugate to the vector potential Ai,μν , which is also a rank-2 tensor, as

[Ei,μν , Aj,ρσ] = iδij(δμρδνσ + δμσδνρ). (67)

Since E is like angular momentum taking integer numbers, A should behave as an

angular variable Ai,μν = η(i) θi+ 1
2
μ̂+ 1

2
ν̂ , which is compact with the period of 2π. Then

[Ei,μν , e
iAj,νσ ] = (δμρδνσ + δμσδνρ)eiAj,νσ . (68)

With these preparations, the plaquette flipping term in Eq. (64) is represented

as

Ht = − t {cos(∇zAxy − ∇xAyz) + cos(∇xAyz − ∇yAzx) + cos(∇yAzx − ∇zAxy)} . (69)

The associated gauge invariant transformation is,

Aμν → Aμν + ∇μ∇νf, (70)

where f an arbitrary scalar function. The corresponding Gauss’s law becomes

∂i∂jEij = ρ. (71)

Its physical meaning has recently been revealed in the context of the “fracton”

physics, which is a recent focus in the condensed matter community for exotic states

of matter and has the potential of applications for topological quantum memory.
146

3.5. Half-filled SU(N) Hubbard models: Slater vs. Mott physics

How interactions drive a partially filled band into an insulating state is an out-

standing problem. There exist two basic physical pictures — the Slater physics

(Fermi surface nesting) at weak coupling and the Mott physics at strong coupling.

For the SU(2) case, the antiferromagnetic (AFM) order increases monotonically and

smoothly. No phase transition exists between the Slater and Mott regions.
147–149

There exist qualitative differences between the Slater and Mott regimes for the

two-dimensional SU(N) Hubbard models arising from the enhanced spin and charge

fluctuations at N > 2. Previous large-N studies in the literature mostly focus on

the antiferromagnetic Heisenberg models.
55,150

In contrast, the interplay between

charge and spin physics is even more challenging, which could be investigated via

the sign-problem free quantum Monte-Carlo (QMC) simulations. The following

fermionic SU(N) Hubbard model at half-filling is employed,

H = −t∑
⟨ij⟩

{c†iαcjα + h.c.} + U ∑
i

(n(i) − N

2
)2 , (72)
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Fig. 9. QMC simulations on SU(N) Hubbard models to reveal how interaction effects scale with
fermion component number N . (a) The AFM orders of the SU(N) Hubbard models in the square
lattice as varying U and N . The AFM order shows a monotonically increase at N = 2 but behaves
differently at N = 4 and 6. For the latter cases, the AFM orders start to grow and then drop as
increasing U . In particular, it is completely suppressed in the SU(6) case at U > Uc at N = 6, after
which the VBS order appears. This shows a quantum phase transition from the Slater physics to
the Mott physics region. (From Ref. 93.) (b) QMC simulations of the relative bandwidth WR for
the 1D SU(N) Hubbard model at half-filling. The results show the convergence between itineracy
and locality as N → ∞. The dashed lines shown as a guide from top to bottom correspond to
U/t = 0.5; 1.0; 2.0; 3.0; 5.0; 7.0; 9.0; 11.0; 13.0; 15.0; 17.0; 19.0, respectively. The cross-over lines with
U/t = 2 (marked red) separating the weak and strong interaction regions are nearly N -independent.
(From Ref. 97.)

where N is an even number. The U -term is written in the particle-hole symmetric

form, which pins the average particle number per site at N/2, i.e., half-filling.
QMC simulations indicate the fundamental difference between the SU(N) case

and SU(2) case as shown in Fig. 9(a) for a square lattice. The AFM orders in

both SU(4) and SU(6) cases start to appear at small U in agreement with the

Slater physics, where the single-particle gaps are exponentially small. As U further

increases, the AFM orders reach the maxima and then decrease. Meanwhile, the

single-particle gaps scale linearly with U , marking the onset of Mott physics. For the

SU(6) case, the AFM order is completely suppressed at a large value of Uc ≈ 13.3.

Fitting the simulation data shows that the critical exponents of the AFM order with

ν = 0.60 and η = 0.44.
94

At U > Uc, the transition to the valence-bond-solid (VBS)

state is found, which can be interpreted as the transition from the Slater regime to

the Mott regime where the local-moment super-exchange dominates.

How do interaction effects scale with N with fixing the filling level and the

interaction U? Sign-problem free QMC simulations have been performed for the

half-filled SU(N) Hubbard models in 1D to address this problem.
97

Based on simu-

lation results, we conjecture the existence of a universal interacting state as N → ∞
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explained as follows: The relative bandwidth is defined to reflect the correlation

strength,

WR(U,N ) = Ek,N (U )/EK (0), (73)

where EK,N (U ) is the kinetic energy per component with the interaction parameter

U and component number N , and EK (0) is that at U = 0. Hence WR(U = 0, N ) = 1

for the free system, and it becomes 0 in the strong coupling limit at U = ∞. At small

values of U/t, say U/t ∼ 1, fermions are nearly itinerant, and correlations manifest

through inter-component collisions. Hence, WR(U,N ) decreases monotonically as

N increases which enhances the collision possibility resulting in the amplification

of correlations. In contrast, at large values of U/t, say, when U/t > 10, increasing

N softens the Mott insulating background. The kinetic energy gained from virtual

hoppings scales as N
2
t
2/U , hence, WR(U,N ) increases linearly as increasing N . In

the crossover region which lies around U/t ≈ 2, WR(U,N ) ≈ 0.9 nearly independent

on N . Although the simulation data are still inconclusive, we conjecture that

lim
N→∞

[1 −WR(U,N )] ≈ 0.1, (74)

which means an interacting large-N limit. It means that weak and strong inter-

acting systems are driven to a crossover region as N → ∞, but from opposite di-

rections exhibiting a convergence of itinerancy and Mottness. On the other hand,

limN→∞ limU→0[1 −WR(U,N )] = 0. Hence, there exists a singularity at U → 0 and

N → ∞. Other physical quantities, including the Fermi distribution, and the spin

structure factor, also exhibit nearly N -independent behavior. More analytic and

numeric works are needed to further check if there exists a universal strongly inter-

acting limit with vanishing charge gaps as N → ∞, and its possible connection to

non-Fermi liquid states.

3.6. Discussions

The perspective of high symmetries (SU(N), Sp(N)) brings much richness and nov-

elty to studying large-spin ultracold fermions. The large numbers of spin compo-

nents render the system in the quantum large-N regime instead of the semi-classical

large-S regime. We have reviewed systematically the hidden Sp(4) symmetries in

spin-3
2
systems, the unification based on the χ-pairing which is an SO(7) general-

ization of Yang’s η-pairing. Quartet superfluidity, quartet density wave state, and

plaquette singlet formation in the Mott insulating state exhibit similar features of

multi-particle clustering correlations analogous to the color singlet in quantum chro-

modynamics. Interaction effects as varying the value of N are investigated, which

show a tendency of convergence of itinerancy and Mottness as N → ∞.

On the experimental side, there have been significant progresses in the past

decade. The SU(6) symmetric
173

Yb
77,80

and SU(10) symmetric
87
Sr

82
fermion

atom systems have been experimentally realized. The nuclear spin, as well as the
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electron-orbital degree of freedom, leads to rich physics.
64,65

Various SU(N) sym-

metric quantum degenerate gases and Mott insulators in optical lattices have been

realized.
64,77,78,80–82

As for spin-3
2
systems, there are a few candidate atoms

132
Cs,

9
Be,

135
Ba,

137
Ba and

201
Hg. Considering the rapid developments in this field, we

expect that the exotic Sp(4) physics could also be experimentally investigated.

4. Unconventional Magnetism and Spontaneous Spin-Orbit

Ordering

In the non-relativistic Fermi liquid theory, spin is an internal symmetry indepen-

dent of orbital rotations, which rigorously speaking should be denoted as “isospin”

instead of spin from the relativistic perspective. In the mechanism of unconven-

tional magnetic transitions, “isospin” develops entanglement with momentum ori-

entation and genuinely becomes the physical spin, hence, it shares the same spirit

of “spin-from-isospin” in gauge theories.
151

The consequential states can be viewed

as “non-s-wave” generalizations of ferromagnetic metals in which spin no longer

polarizes along a unique direction but varies with momentum forming a non-trivial

representation of the rotation group.
100,152

In other words, effective spin-orbit coupling is generated as an order parameter

through the Pomeranchuk type of Fermi surface instabilities, which is tunable by

external parameters such as temperature and pressure. Furthermore, similar to

magnetic fluctuations in ferromagnets, this effective spin-orbit coupling possesses

its collective mode dynamics. This gives rise to a conceptually new mechanism to

generate spin-orbit coupling dynamically without involving relativity.
99,100

Due to

the richness of many-body physics, unconventional magnetism potentially provides

a new way to engineer spin-orbit couplings and to control electron spins.

4.1. Fermi liquid theory and Pomeranchuk instabilities

In this subsection, we briefly review the concept of the non-relativistic Fermi liquid

theory and Pomeranchuk instability.
98

A large part of our current understanding of interacting electronic systems is

based on the Landau Fermi liquid theory, which was designed originally for the

normal state
3
He and also applies to most metals.

102,153
The central assumption is

the existence of the well-defined Fermi surface and fermionic quasi-particles, which

exist as long-lived states at very low energies. Interactions among quasi-particles,

which are reflected by the forward scattering processes of quasi-particles near the

Fermi surface, are described by the Landau interaction functions. The Landau

interaction function can be classified into the density (particle-hole singlet) and spin

(particle-hole triplet) channels, which are also traditionally denoted as symmetric
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(s) and asymmetric (a) channels, respectively,

fαβ,γδ(k̂1, k̂2) = f
s(k̂1, k̂2) + f

a(k̂1, k̂2)σ⃗αβ ⋅ σ⃗γδ, (75)

where k̂ is the direction of quasi-particle momentum close to the Fermi surface.

Each of them can be further decomposed into different orbital partial wave channels

as

f
s,a(k̂, k̂′) = ∑

l

f
s,a

l
Pl(k̂ ⋅ k̂′) (76)

where Pl is the l-th Legendre polynomial and l denotes the orbital angular momen-

tum of the partial wave channel.

In the Landau Fermi liquid theory, the interactions among quasi-particles are

captured by a few dimensionless Landau parameters

F
s,a

l
= N0f

s,a

l
, (77)

where N0 is the density of states on the Fermi surface. Physical susceptibility in

each channel acquires significant renormalizations by the Landau interactions,

χ
s(a)
FL,l

= χ0,l

1 + F
s
1 /3

1 + F
s(a)
l

/(2l + 1) , (78)

whereχ0,l is the susceptibility of free fermi gas. Spin susceptibility lies in the F
a
0

channel, and compressibility lies in the F
s
0 channel.

Pomeranchuk instabilities refer to a large class of instabilities of Fermi surface

distortions in both the density and spin channels.
98

In order for the Fermi surface

to be stable, Landau parameters F
s(a)
l

cannot be too negative. Otherwise, Fermi

surface distortions will occur. The Fermi surface could be viewed as an elastic

membrane in momentum space. Let us perturb the Fermi surface and expand the

energy cost in different partial-wave channels. We arrive at

ΔE

V
= 2π

N0
∑
lm

{(1 + F
s,a

l

2l + 1
) ∣δns,a

lm
∣2} , (79)

where δn
s(a)
lm

are amplitudes of Fermi surface distortions in the corresponding partial-

wave channels, and V the system volume. The first term is the kinetic energy cost

which is always positive, while the second term is the interaction contribution, which

can be either positive or negative. When F
s,a

l
< −(2l + 1), the surface tension of the

Fermi surface goes negative, and develops instability in the corresponding channels,

which is consistent with the divergence of susceptibility in Eq. (78) at F
s,a

l
= −(2l+1).

The most familiar Pomeranchuk instabilities are found in the s-wave channel,

i.e., ferromagnetism at F
a
0 < −1 and phase separation at F

s
0 < −1. Pomeranchuk

instabilities in non-s-wave wave channels (l ≥ 1) have been attracting a great deal

of attention.
99,100,154–166

The density channel instabilities result in uniform but
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anisotropic liquid (nematic) phases,
167

which have been investigated in the con-

text of doped Mott insulators
168

and high Tc materials.
161

Experimental evidence

has also been found in ultra-high mobility two-dimensional electron gases (2DEG)

in AlxGa1−xAs-GaAs heterostructures and quantum wells in nearly half-filled high

Landau levels at very low temperatures,
169,170

and near the metamagnetic transition

of the ultra-clean samples of the bilayer ruthenate Sr3Ru2O7.
171–173

Unconventional magnetism corresponds to Pomeranchuk instabilities in the spin

channel with l ≥ 1.
99,100,154,155,163–165

In Ref. 99, these states are classified by the

author and Zhang as isotropic and anisotropic phases dubbed β and α-phases, re-

spectively. The α-phases was studied by many groups before: The p-wave phase was

first studied by Hirsch
154,155

under the name of the “spin-split” state, and was also

proposed by Varma et al.
163,164

as a candidate for the hidden order phenomenon in

URu2Si2; the d-wave phase was studied by Oganesyan et al.
167

under the name of

“nematic-spin-nematic” phase. Systematic studies of ground state properties and

collective excitations in both the anisotropic α and isotropic β-phases have been

performed.
100,152

Chubukov and Maslov found that when approaching the ferro-

magnetic quantum critical point, the p-wave channel spin Pomeranchuk instability

develops before the ferromagnetic instability.
174

4.2. Unconventional magnetism as multipolar orderings

The unconventional magnetic order parameters are defined as multipolar parameters

in momentum space but not in coordinate space.
99,100

For simplicity, we first take

the 2D p-wave case as an example. Its order parameters are the x and y-spatial

components of spin-dipole moments defined as

n1 =
∣fa

1 ∣
V

∑
k

s(k) k̂x, n2 =
∣fa

1 ∣
V

∑
k

s(k) k̂y, (80)

where f
a
1 is the Landau interaction parameter defined in Eq. (76); k̂x,y = kx,y/∣k∣

are the p-wave angular form factors; s(k) = ⟨c†
kα

σ⃗αβckβ⟩ is the spin-moment of

momentum k, and ⟨⟩ means ground state expectation value. Each of n1,2 is a 3-

vector in spin space. This is a natural generalization of the ferromagnetic moment

S = ∑k s(k) whose s-wave angular form factor is just a constant.

In the anisotropic p-wave α-phase depicted in Fig. 3(C), the order parameter

configuration is equivalent to only one of n1 and n2 is nonzero, or more generally,

n1 ∥ n2. Their orientation in spin space is arbitrary. The order parameter configu-

ration in the p-wave β phase depicted in Fig. 3(B) shows that ⟨nx
1⟩ = ⟨ny

2⟩ ≠ 0. More

generally, this is equivalent to both n1,2 ≠ 0 and their orientations are perpendicular

to each other as n1 ⊥ n2. Using an optics analogy, the spin configuration over

the Fermi surface in the α-phase is linearly polarized, while that in the β-phase is

circularly polarized.
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This order parameter definition can be easily generalized into other partial wave

channels in 2D and 3D systems by using the corresponding multipolar angular form

factors. For example, the 2D d-wave channel order parameters can be defined as

components of spin-quadrupole moments

n
d
1 =

∣fa
2 ∣
V

∑
k

s(k) cos 2φk, n
d
2 =

∣fa
2 ∣
V

∑
k

s(k) sin 2φk, (81)

where φk is the azimuthal angle of k. We could also combine them as a matrix form

n
μ,b

with each column representing a 3-vector nb. Below we will use the matrix and

vector forms of order parameters interchangeably.

The 3D counterpart of these expressions can be written in terms of spherical

harmonic functions. Hence, in 3D the Latin label b of the order parameter n
μb

take

2l + 1 values, while the Greek index μ still takes x, y, z.

We consider a 2D Fermi-liquid system focusing on a general partial-wave channel-

l. Since there is no spin-orbit coupling, the symmetry is the direct product

SOL(2) ⊗ SOS(3), where L and S refer to the orbit and spin channels, respectively.

The Landau interaction function f
l
a could depend on the total momentum q of the

particle-hole excitations with the assumption that

f (q) = f
a
l

1 + κ∣fa
l
∣q2 , (82)

which gives rise to an interaction range ξ ≈
√
κ∣fa

l
∣. Mean-field theory is valid

when ξ ≫ d ≈ 1/kF , where d is the inter-particle distance. After the mean-field

decomposition, the mean-field Hamiltonian becomes

HMF = ∑
k

ψ
†
α(k) [ε(k) − μ − (n1 cos(lθk) + n2 sin(lθk)) ⋅ σ⃗]ψβ(k) + ∣n1∣2 + ∣n2∣2

2∣fa
l
∣ . (83)

The validity of mean-field theory at quantum criticality requires an analysis of quan-

tum fluctuations which are not included in mean-field theory.
175,176

To determine the ground state configuration of n⃗1,2, the Ginzburg-Landau (GL)

free energy is constructed as,

F (n1,n2) = γ1∂anb ⋅ ∂anb + r(n2
1 + n

2
2) + v1[n2

1 + n
2
2]2 + v2∣n1 × n2∣2. (84)

The coefficients r, v1,2 are calculated from mean-field free energy in Ref. 100, whose

expressions are omitted here.

When l = 1, a new gradient term can appear which contains the linear order

spatial derivative and the cubic order of order parameters as

ΔF (n1,n2) = γ2εμνλn
μa
n
νb
∂an

λb = γ2{(∂xn2 − ∂yn1) ⋅ (n1 × n2)}. (85)

Such a term is allowed because n1,2 are odd under parity transformation and even

under time-reversal transformation, i.e., Pn1,2P
−1 = −n1,2, and Tn1,2T

−1 = n1,2. It
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does not bring much effect in the normal phase because it is at the cubic order of the

order parameter. However, we will see in Sec. 4.4.2, this term becomes important

in the ordered p-wave β-phase, which drives a Lifshitz transition spontaneously

developing a chiral pitch.

Both α and β-phases are driven by the negative value of r, i.e., Fl < −2 in 2D.

Whether the ground state takes the β or α-phase depends on the sign of v2. If

v2 < 0, Eq. (84) favors n1 ⊥ n2, thus gives rise to the β-phase. On the other hand,

α-phase appears at v2 > 0, which favors n1 ∥ n2.

4.3. “Spin from isospin” in non-relativistic systems

Spin in the relativistic theory, by definition, is part of the generators of the rotation

transformation. Hence, it is always coupled to momentum as required by the Lorentz

invariance. While in the non-relativistic theory, it decouples from momentum, and

becomes an “isospin” type internal degree of freedom. The α and β-phases entangle

spin with momentum together via order parameters. In this sense, spin genuinely

changes from the status of “isospin” into spin. As we explained before, this effective

spin-orbit coupling arises from many-body interaction instead of the single-particle

relativistic physics.

In the isotropic β-phase with l ≥ 1, spin winds around the Fermi surface, exhibit-

ing a vortex-like structure in momentum space. For the 2D p-wave β-phase depicted

in Fig. 10(A), its mean-field single particle Hamiltonian reads

HMF,β = ∑
k

ψ
†(k) [ε0(k) − μ − n̄(k̂xσx + k̂yσy)]ψ(k), (86)

where ∣n1∣ = ∣n2∣ = n̄. It exhibits a σ⃗ ⋅ k type spin-orbit coupling, which is called

the gyrotropic spin-orbit coupling.
177

The fermion spectrum is isotropic as ε(k) =
ε0(k)± n̄ in the β-phase. Similarly to the ferromagnet, Fermi surfaces in the β-phase

split into large and small circles. However, they are characterized by helicity, i.e.,

the spin projection along its momentum, not by spin polarization.

The symmetry breaking in the β-phases is particularly interesting. The normal

Fermi liquid state has both spin and orbital rotational symmetries. The state de-

picted in Fig. 10(A) is still isotropic where the total angular momentum J = L + S

remains conserved although L and S are no longer separately conserved. If we

fix momentum and only rotate spin, the configuration in Fig. 10(A) changes. In

other words, the relative spin-orbit symmetry is broken, a concept first proposed by

Leggett in superfluid
3
He systems.

102

In solid state physics, Rashba and Dresselhaus are two familiar spin-orbit cou-

plings whose spin configurations in momentum space are depicted in Figs. 10(B) and

10(C), which corresponds to order parameter configurations of (n1 ∥ ŷ, n2 ∥ −x̂),
and (n1 ∥ x̂, n2 ∥ −ŷ), respectively. These two spin-orbit couplings are equivalent to
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B

W=1

Rashba

W=-1

C

Dresselhaus

A

W=1

Gyro

Fig. 10. Spontaneous spin-orbit orderings in the β-phases. Order parameter configurations and the
momentum space vortices with the winding numbers w = ±1. (A) Gyrotropic (w = 1), (B) Rashba
(w = 1), (C) Dresselhaus (w = −1). From Ref. 100.

the gyrotropic one in Eq. (86) up to a global spin rotation. Starting from the config-

uration depicted Fig. 10(A), we can arrive at the Rashba configuration by fixing k

unchanged and rotating electron spin around the z-axis at 90
◦
of each k. Similarly

the Dresselhaus configuration can be obtained by the rotation around the x-axis

at 180
◦
. These ground state spin configurations exhibit, in momentum space, the

vortex structures with the winding numbers w = ±1. In principle, we can perform

an arbitrary spin rotation to obtain all the equivalent states, thus the ground state

Goldstone manifold is [SOL(2) ⊗ SOS(3)/SO(2)J = SO(3).
This vortex picture in momentum space can be generalized into a general F

a
l

channel with the winding numbers ±l. In fact, the generated spin-orbit coupling

pattern is beyond the relativity framework. In particular, for even values of l,

the dynamic spin-orbit orders break time-reversal symmetry, while the relativistic

spin-orbit coupling is time-reversal invariant. The mean-field Hamiltonian Hβ,l for

the β-phase in angular momentum channel l can be expressed through a d-vector,

defined by d(k) = (cos(lθk), sin(lθk), 0), as
Hβ,l = ∑

k

ψ
†(k) [ε(k) − μ − n̄d⃗(θk) ⋅ σ⃗)]ψ(k), (87)

where d(θk) is the spin quantization axis for the single particle state at k. Each Fermi

surface is characterized by the eigenvalues ±1 of the helicity operators σ⃗ ⋅ d(k̂).
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The mean-field Hamiltonian in the anisotropic α-phase (Fig. 3(C)) can be written

as

HMF,α = ∑
k

ψ
†(k){ε0(k) − μ − n̄k̂xσz}ψ(k). (88)

The fermion spectra read ε(k) = ε0(k) ± n̄k̂x, and the spin up and down Fermi

surfaces shift to left and right, respectively. This configuration is equivalent to the

combination of Rashba and Dresselhaus spin-orbit couplings with an equal strength.

It is an anisotropic phase in both spin and orbit channels. Generally the Fermi

surface shift can along any in-plane direction, and the spin axis can pick any 3D

direction, thus the ground state Goldstone manifold is [SOL(2)⊗SOS(3)]/[SOS(2)] =
SOL(2) ⊗ S2.

These β and α-phases are particle-hole channel analogies to the triplet p-wave

pairing superfluid
3
He-B and A phases, respectively. The order parameters in

3
He

are defined as x, y and z-spatial components of the dipole-moment of the Cooper

pairing amplitude over the Fermi surfaces.
102,178

They are defined as

Δi = ∑
k

Δ(k) k̂i (i = x, y, z), (89)

where Δ(k) = ⟨c†α(k)(iσ2σ⃗)αβc†β(−k)⟩. Each one of Δx,Δy and Δz is a 3-vector in

spin space. In the B-phase, Δx,y,z are perpendicular to each other forming a triad.

In the A-phase only two of them are nonzero with a phase difference of π
2
, and

they are parallel to each other in spin space. As a result, the B-phase is essentially

isotropic with a constant gap over the Fermi surface, while the A-phase is anisotropic

with nodes.

From the symmetry point of view, the unconventional magnetic β and α phases

exhibit similar properties to the
3
He-B and A phases under spatial rotations. The

angular form factor of the gap functions in the
3
He-B and A phases are very similar

to the Fermi surface splittings in the p-wave magnetic β and α-phases, respectively.

4.4. Collective excitations in unconventional magnetic states

As a result of spontaneous symmetry breaking, unconventional magnetic states ex-

hibit low energy excitations. In this subsection, we review the Goldstone modes in

both α and β-phases. Such modes are absent in the conventional spin-orbit coupling

systems.

4.4.1. Goldstone modes in the α-phase

We first comment on the stability of the p-wave α-phase. The Ginzburg-Landau

energy of Eq. (85) contains a cubic term linear in spatial derivatives. It might

induce a linear derivative coupling between the massless Goldstone modes at the

quadratic level, leading to a Lifshitz instability in the ground state. However, as
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will be shown below, the Goldstone modes in the α-phase share the same index in

either the orbital or the spin channel as the condensed mode. Hence, they cannot

be coupled together by Eq. (85).

The α-phases break rotational symmetries in both orbital and spin channels,

hence, the Goldstone modes can be classified into density and spin channel modes,

respectively. Without loss of generality, we assume the ordered configuration as

shown in Fig. 3(C),

⟨nμb⟩ = n̄δμzδb1, i.e. ,n1 = n̄êz,n2 = 0. (90)

In other words, spin configuration is along ±ẑ, and Fermi surface distortion is along

the x-axis. Three collective modes are Goldstone modes, including one branch in

the density channel, and two branches in the spin channel.

The density channel Goldstone mode is the oscillation of the distorted Fermi

surface. It is associated with the field n
z
2,

n
z
2(q) = −

f
a
1 (q)
V

∑
k

ψ
†
k+qσ⃗ψkky, (91)

which describes the Fermi surface oscillation in the y-direction while keeping the spin

configuration unchanged. Calculations at the random-phase approximation (RPA)

level show the effective Lagrangian,

L
α
FS(q, ω) = N0 [ qξ

2

∣F a
l
∣ − i

ω

2vfq
(1 + 2 cos 2φq)] . (92)

This Goldstone mode is overdamped because of the Landau damping, and the damp-

ing is anisotropic depending on propagation directions.

The spin channel Goldstone modes nsp,x±iy describe spin oscillations while

keeping the Fermi surface unchanged, which are spin-dipole precession modes. In

contrast, they exhibit nearly isotropic underdamped dispersion relations at small

propagating wavevectors with the dispersion relation

ω
2
x±iy =

n̄
2

∣F a
1 ∣ (qξ)

2
. (93)

Different from spin-waves in the ferromagnets, the dispersion relation here is linear

with momentum, which is a consequence of time-reversal symmetry.

4.4.2. Goldstone modes in the β-phase

We further study the Goldstone modes in the β-phase. For simplicity, we consider

the 3D β-phase with the isotropic ground state exhibiting

n
μa = n̄δμa. (94)

In other words, n1,2,3 form an orthogonal triad. The total angular momentum J

remains conserved, such that fluctuations of δn
μa

are classified into eigenstates of J
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as Ojjz (q, ω). j = 0, 1, 2 mean the singlet, triplet and quintet channels respectively,

and jz is the SO(2) quantum number rotating around the propagation direction q.

The Goldstone modes belong to the triplet channel (j = 1), which are the small

relative spin-orbit rotations as

O1,0(q, ω) = 1√
2
εzμaδn

μa(q, ω), O1,±1(q, ω) = 1

2
(εxμa ± iεyμa)δnμa(q, ω). (95)

The RPA approximation gives the dispersion relations,

ω
2 = 4n̄

2∣F a
1 ∣ (κq2Nf

+
jz∣q∣x
18kf

) (x = n̄

vfkf
, jz = 0,±1) , (96)

which is valid in the low energy regime of ω, vfq ≪ n̄ ≪ vfkf .

The linear dependence on q in the dispersion Eq. (96) is due to the broken parity

in the ordered β phase. Consequently, ω
2
becomes negative for the branch with

helicity jz = −1 at small q. This means that the uniform ground state in the β-

phase is unstable, instead it exhibits a Lifshitz-like instability. This behavior is a

general feature in systems with broken parity such as the spiral order in helical

magnets, and the cholesteric liquid crystals.
179

The true ground state configuration

in the β phase is complicated with the preliminary analysis presented in Ref. 100.

4.4.3. Resonances in inelastic neutron scattering spectroscopy

The unconventional magnetic orders are spin-multipole moment in momentum space

and cannot couple to neutron magnetic moments statically. Hence, there should be

no elastic Bragg peaks. The spin-channel Goldstone modes in the α-phase do not

couple to neutron moments directly, either. Nevertheless, they carry spin quantum

numbers and thus couple to spin-wave modes dynamically.

Consider the following commutation relations,

[Sx, n
y
1] = in

z
1, [Sy, n

x
1] = −inz

1. (97)

In the p-wave α-phase with the configuration given in Eq. (90), n
z
1 can be replaced by

the constants of ±in̄. As a result, the Goldstone modes n
x
1 and n

y
1 become conjugate

to spin, and the coupling to spin is developed dynamically.

More formally, we can write down the following coupling Lagrangian,

L = (n⃗1 × ∂tn⃗1 + n⃗2 × ∂tn⃗2) ⋅ S⃗. (98)

In the ordered state of Eq. (90), it is reduced to

L = n̄ (Sy∂tn1x − Sx∂tn1y) . (99)

The RPA approximation shows that the dynamic spin-spin correlation function be-

haves as

χs(q, ω) = ⟨S+(q, ω)S−(−q,−ω)⟩ = N0
ω
2

n̄2

κq2

N0
− 2∣Fa

1 ∣ ω2

n̄2 − iδ
. (100)
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Hence, it induces a resonance part in the transverse spin wave-excitations. The

spectral functions exhibit the δ-peak at the excitation energy of the Goldstone mode,

Imχs(q, ω) = κπv
2
f n̄

2
q
2∣F a

1 ∣2δ(ω2 − ω
2
q ), (101)

which can be detected in the inelastic neutron scattering experiments. This is very

similar to the interpretation of the SO(5) theory of the neutron resonance mode:

the π-mode lies in the particle-particle channel which decouples from spin in the

normal state, but becomes conjugate to spin in the superconducting state giving

rise to spin resonances.
29–31

Such a resonance peak only exhibits in the ordered phase, and vanishes in the

disordered phase. As shown in Eq. (99), in the anisotropic α-phases this resonance

only occurs in spin-flip channels. Similar analysis can also be performed in the

isotropic β-phases, in which the resonances occur in both spin-flip and non-flip

channels.
100

4.5. Spin-orbit coupled Fermi liquid theory

So far we have considered the dynamic generation of spin-orbit coupling in non-

relativistic Fermi liquid theory. Nevertheless in materials with heavy elements,

there does exist the relativistic spin-orbit coupling.

If a system does not exhibit inversion symmetry, the relativistic spin-orbit cou-

pling leads to Fermi surface splitting, say, the Rashba type. In this case, the rel-

ativistic spin-orbit coupling behaves like an external field which would round off

the unconventional phase transition and pin down a particular spin-orbit ordering

configuration. This situation is similar to cooling a magnet below the transition

temperature in an external magnetic field.

On the other hand, if a system Hamiltonian still preserves both parity and time-

reversal symmetries, the Fermi surface should remain doubly degenerate. Spin-orbit

coupling does not manifest itself in the Fermi surface splitting but should exhibit

in the Landau Fermi liquid theory. Such a situation also occurs in the presence

of prominent magnetic dipolar interactions, which is invariant under simultaneous

rotations in both orbital and spin channels, but not under a rotation in either

channel. Landau-Fermi liquid theory has been extended to this situation.
177,180

In the inversion invariant spin-orbit coupled systems, the fermion distribution

function is reorganized in the spin-orbit coupled bases as

δnαα′(k̂) = ∑
JJz ;LS

δnJJz ;LS YJJz ;LS(k̂, αα′), (102)

where YJJz;LS(k̂, αα′) is the spin-orbit coupled spherical harmonic functions

YJJz;LS(k̂, αα′) = ∑
msz

⟨LmSsz∣JJz⟩YLm(k̂)χSsz ,αα
′ , (103)
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and χSsz ,αα
′ is the bases for the particle-hole singlet (density) channel and triplet

(spin) channel, respectively. The Landau interaction function is generalized to the

interaction matrix,

N0

4π
fαα′;ββ′(k̂, k̂′) = ∑

JJzLL
′

YJJz;L1(k̂, αα′)FJJzL1;JJzL
′1Y

†
JJz;L′1

(k̂, ββ ′), (104)

where we only keep the particle-hole triplet component. The Landau matrix is

diagonal with respect to the total angular momentum J and its z-component Jz,

but may have off-diagonal elements with L ≠ L
′
. Constrained by the inversion

symmetry, L − L
′ = 0, 2.

Similar to the non-relativistic case, when an eigenvalue of the Landau interaction

matrix is negatively large, i.e., λ < −1, it triggers the Pomeranchuk instability in

the corresponding channel. For example, the instability in the channel with J = 1
−
,

L = S = 1, where “ − ” means odd parity, generates the 3D analogy of the Rashba

spin-orbit coupling,

Hso,1− = ∣n∣∑
k

ψ
†(k)(k × σ⃗) ⋅ l̂ψ(k), (105)

where l̂ is a 3D unit direction, ∣n∣ is the magnitude of the spin-orbit order parameter.

The Pomeranchuk instability promotes it to the single particle level by breaking the

rotational symmetry and parity.

Let us still use the order parameter n
μb

defined in Sec. 4.2 to represent the

order parameters in the sector L = S = 1 for a 3D inversion invariant spin-orbit

coupled Fermi liquid theory. The 3 × 3 matrix of n includes three sectors of J =
0, 1, 2, which corresponds to pseudo-scalar (gryotropic), vector (Rashba), and tensor

(Dresselhaus) type spin-orbit coupling, respectively.

The Ginzburg-Landau free energy can be constructed as F = F0 +ΔF ,

F0 = r0tr (nT
n) + β1 (tr (nT

n))2 + β2tr (nT
n)2 ,

ΔF =
r1
3

(trn)2 + r2
4
tr (nT − n)2 . (106)

Under SOL(3) and SOS(3) rotations, n is transformed as n → TSnT
†
L
, where TL,S is

the rotation matrix in the orbit and spin channels, respectively. F0 is invariant under

independent TL and TS , and ΔF is only invariant under simultaneous spin-orbit

rotations. The r1,2 terms are an analogy to magnetic anisotropy for magnetic phase

transitions, which lead to different types of universal classes. Then at the quadratic

level, the eigenvalues of the pseudo-scalar, vector, tensor channels are determined

by r0 + r1, r0 + r2, and r0, respectively. The actual ordering depends on which

eigenvalue is negatively most dominant. If the pseudo-scalar channel instability

dominates, the phase transition only breaks parity, which is an Ising type transition

without the Goldstone mode. If the vector channel instability dominates, there is

also rotational symmetry breaking with the Goldstone manifold S
2
. The symmetry
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breaking pattern for the tensor ordering channel is more involved, the Goldstone

manifold is formally denoted as SO(3)/G, where G is the residual symmetry group

in the ordered state. The nature of G depends on in which tensor component the

symmetry breaking takes place. Nevertheless, when β2 is included, the situation is

complicated, and the analysis of the phase diagram is deferred to another work.

4.6. Discussions

We are not aware of conclusive evidence for the existence of the unconventional

magnets. Taking into account the great discoveries of the unconventional supercon-

ductivity and pairing superfluidity in high Tc cuprates and
3
He, respectively, we

are optimistic that unconventional magnetic phases also exist in Nature. We pro-

pose to systematically search for these new phases in
3
He, ultracold atomic systems,

semiconductors, heavy fermion materials and ruthenates, both in experiments and

in numerical simulations.

Unconventional magnetic orders are natural generalizations of itinerant ferro-

magnetism, whose driving force is still the exchange interaction. But it needs to

be in the non-local version, i.e., a non-s-wave channel. Nevertheless, interactions in

the high angular momentum channels are typically weak. In Ref. 181, a heuristic

argument is provided to employ the orbital hybridized band structure to promote

the Landau interaction to high partial-wave channels. Consider a dxz/dyz hybridized
orbital band. Around the Fermi surface, the Bloch wavefunction takes the orbital

configuration as

∣Ψα(k)⟩ = e
ikr (cosφk∣dxz⟩ + sinφk∣dyz⟩) ⊗ χα, (107)

where χα is the spin eigenstate. The Landau interaction at the Hartree-Fock level

is

f↑↑(k1k2) = V (q = 0) − 1

2
(1 + cos 2θk1k2

)V (k1 − k2),
f↑↓(k1k2) = V (q = 0). (108)

The appearance of the d-wave form factor cos 2θk1k2
is due to the orbital hybridiza-

tion, i.e., even though two electrons possess the same spin, they can still be distin-

guished by their orbital components. Hence, although V (k1−k2) could be dominated

by the s-wave component, the angular form factor shifts a significant part of the

spectral weight into the d-wave channel. Based on this formalism, a possible expla-

nation of the nematic transition observed in Sr3Ru2O7 was provided.

Below we summarize several possible directions for searching unconventional

magnetism. Ferromagnetic fluctuations in the normal state of
3
He are strong.

The values of F1a of
3
He are measured as negative via the normal-state spin diffu-

sion constant, spin-wave spectrum, and the temperature dependence of the specific

heat.
182–185

It varies from around −0.5 to −1.2 with increasing pressures to the
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melting point, reasonably close to the instability point F
a
1 = −3. We conjecture that

3
He could support unconventional magnetism under certain conditions or exhibit

strong fluctuations of these orders.

An important direction to search for unconventional magnetism is the so-called

“hidden-order” systems. Hidden orders typically mean that thermodynamic quan-

tity measurements exhibit a transition to a low temperature ordered state. However,

the nature of the orders remains unknown since they do not exhibit themselves in

typical detections. Unconventional magnetic orders neither break translation sym-

metry nor exhibit magnetic orderings in real space. They are multipolar orderings

in momentum space, hence, they are difficult to detect via typical experimental

methods. Hence, they are natural candidates for hidden orders. In fact, multipolar

orderings in real space are also popular candidates for hidden orders in literature.

For example, the well-known system of heavy fermion compound URu2Si2 ex-

hibits a mysterious phase transition at 17K by showing a large anomaly in specific

heat. It also exhibits a jump in the non-linear magnetic susceptibility at the tran-

sition. However, even with efforts after a few decades, the nature of this transition

remains elusive.
186,187

Varma proposed an order, which is essentially the p-wave α-

phase in our language.
163,164

Calculations for thermodynamic quantities fit in exper-

iment measurements reasonably well. Another hidden order compound Cd2Re2O7

exhibits heat capacity anomaly and a kink of DC resistivity around 200K. Recently,

it has been discovered that the hidden order phase exhibits inversion symmetry

breaking via the optical 2nd harmonic generation measurements.
188,189

Since this is

a heavy element compound, Pomeranchuk instabilities of spin-orbit coupled Fermi

liquid theory may be a promising candidate.
177,190

An obstacle to identifying unconventional magnetism is the lack of definitive ex-

perimental signatures and detection methods. We know that antiferromagnetism is

very common among transition metal oxides, more common than itinerant ferromag-

netism. However, the experimental identification of the antiferromagnetic ordering

is only possible after the detection method of neutron scattering spectroscopy be-

came available.

Maybe unconventional magnetism already exists somewhere, but we need to

think about how to detect them. In addition to the inelastic neutron scattering

resonances (Sec. 4.4.3), we outline the following possible methods.

The β phases exhibit effective spin-orbit coupling, hence, standard methods to

detect spin-orbit coupling still apply. The distinctive feature is that the spin-orbit

coupling effects should turn on and off at a phase transition.

Transport measurements can be used to detect the dynamic generation of spin-

orbit coupling. For example, the existence of the anomalous Hall effect (AHE)

relies on spin-orbit coupling. Therefore, detecting the AHE signal turning on at a

phase transition would be an evidence of the onset of the entanglement of spin and

momentum. As for the d-wave α-phase, i.e., spin-↑ and spin-↓ Fermi surfaces exhibit
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opposite quadrupolar distortions. Taking the principal axes of the quadrupolar

distortion as x and y-axis, it is straightforward to show that the spin and charge

currents satisfy

( jspx
j
sp
y

) ∝ (1 0

0 −1
) ( jcx

j
c
y
) . (109)

A verification of this transport relation would be a signature of the d-wave α-

phase.
100

Methods that can detect Fermi surface splitting are useful. The angular resolved

photon emission spectroscopy (ARPES) can be used to detect the band splitting.

In fact, such an experiment has been performed in the system with relativistic spin-

orbit coupling. In the unconventional magnetic phases, ARPES in principle can

measure temperature-dependent Fermi surface splittings. Fermi surface splitting

also shows up in quantum oscillation experiments (e.g. Shubunikov-de Haas (SdH)

oscillations) as beat patterns. Hence, a temperature-dependent beat pattern in this

kind of experiments would be a signature of the development of unconventional

magnetism.

5. Conclusions

We have reviewed a few applications of the symmetry principle in condensed matter

and cold atom systems.

First, we reviewed the concept of “space-time” group, which provides a symmetry

framework for studying transport and topological properties in a variety of dynamic

systems beyond the Floquet framework, such as laser-driven solid state lattices,

dynamic photonic crystals, and optical lattices. Various fundamental concepts are

generalized, including space-time unit cell, momentum-energy Brillouin zone, Bloch-

Floquet theory. Novel nonsymmorphic space-time transformations are identified

including time-screw rotation, time-glide reflection, and time-shift rotary reflection.

Thirteen space-time groups are classified in 1+1D with 5 of them non-symmorphic,

and 275 space-time group are classified in 2+1D. We expect that space-time group

will play an important role in studying dynamic systems, in a similar way to space

group for static crystals.

Second, we reviewed the progress of studying large-spin ultracold fermions from

the perspective of high symmetries. Due to enhanced quantum spin fluctuations

from the large number of fermion components, such systems naturally lie in the

large-N region instead of the large-S region which is typically studied in solids. A

generic Sp(4), or, isomorphically, SO(5) symmetry is proved in spin-3
2
systems, which

plays a similar role of SU(2) in spin-1
2
systems. This symmetry can be upgraded to

SO(7) under certain conditions which extends Yang’s η-pairing to χ-pairing as its

high rank Lie algebra counterpart. The 7D vector and 21D adjoint representations
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of SO(7) unify a variety of competing orders in both particle-particle and particle-

hole channels. Large-spin systems can exhibit multi-particle clustering orderings or

correlations both in the superfluid state with attractions and in the super-exchange

physics with repulsions, which is similar to 3-quark baryon (color singlet) formation

in high energy physics. The competitions among quartetting superfluidity/density-

wave and pairing superfluidity/density-wave are investigated. The SU(4) singlet

plaquette states in a 3D cubic lattice can be described by a quantum plaquette

model, whose effective description is mapped to a high order gauge theory. We

anticipate that research along this direction can bridge cold atom physics, condensed

matter, and high energy physics together. Along with the experimental progress,

even more exotic strong coupling physics that is not easily accessible in usual solid

state systems could be investigated.

At last, we reviewed the unconventional magnetism as a mechanism of “spin from

isospin” to generate spin-orbit coupling in non-relativistic Fermi liquids. They are

also novel states of itinerant electrons generalizing ferromagnetism to unconventional

symmetries based on the Fermi surface instabilities of the Pomeranchuk type. These

states include the isotropic β-phase and the anisotropic α-phase, which are the

particle-hole channel analogy to the superfluid
3
He-B and A phases, respectively.

Different from the relativistic spin-orbit coupling, these dynamically generated spin-

orbit couplings possess collective excitations of Goldstone modes, whose dynamics

couple to spin moment and induce resonances in the inelastic neutron scattering

spectroscopy. Possible realizations of “unconventional magnetism” in hidden order

systems and experimental detections are discussed.
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48. N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S. Lühmann, K. Sengstock, and

C. Weitenberg, Experimental reconstruction of the Berry curvature in a topological Bloch
band, 1509.05763. 05882(2015), 1–8 (2015). doi: 10.1126/science.aad4568. URL http:

//arxiv.org/abs/1509.05763.
49. S. Xu and C. Wu, Space-time crystal and space-time group, Phys. Rev. Lett. 120, 096401

(Feb, 2018). doi: 10.1103/PhysRevLett.120.096401. URL https://link.aps.org/doi/10.

1103/PhysRevLett.120.096401.
50. T. Morimoto, H. C. Po, and A. Vishwanath, Floquet topological phases protected by time

glide symmetry, Phys. Rev. B. 95, 195155 (May, 2017). doi: 10.1103/PhysRevB.95.195155.
URL https://link.aps.org/doi/10.1103/PhysRevB.95.195155.

51. Congjun Wu. Exotic many-body physics with large-spin fermi gases. Physics, 3:92, Nov. 2010.
URL https://physics.aps.org/articles/v3/92.

52. I. Affleck, Large-n limit of SU(n) quantum “spin” chains, Phys. Rev. Lett. 54, 966–969
(Mar, 1985). doi: 10.1103/PhysRevLett.54.966. URL http://link.aps.org/doi/10.1103/

PhysRevLett.54.966.
53. D. P. Arovas and A. Auerbach, Functional integral theories of low-dimensional quantum

heisenberg models, Phys. Rev. B. 38, 16–332 (Jul, 1988). doi: 10.1103/PhysRevB.38.316.
URL http://link.aps.org/doi/10.1103/PhysRevB.38.316.

54. I. Affleck and J. B. Marston, Large-n limit of the heisenberg-hubbard model: Implications for
high-Tc superconductors, Phys. Rev. B. 37, 3774–3777 (Mar, 1988). doi: 10.1103/PhysRevB.
37.3774. URL http://link.aps.org/doi/10.1103/PhysRevB.37.3774.

55. N. Read and S. Sachdev, Spin-peierls, valence-bond solid, and néel ground states of low-
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76. Á. Rapp, W. Hofstetter, and G. Zaránd, Trionic phase of ultracold fermions in an optical lat-
tice: A variational study, Phys. Rev. B. 77(14):144520 (Apr, 2008). doi: 10.1103/PhysRevB.
77.144520.

R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

of
 th

is
 P

D
F 

is
 n

ot
 p

er
m

itt
ed

.



June 15, 2022 11:12 ws-rv187x260mm Book Title CNY100-025 page 467

The Symmetry Principle in Condensed Matter Physics (I) 467

77. S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and Y. Takahashi,
Realization of a SU(2)×SU(6) system of fermions in a cold atomic gas, Phys. Rev. Lett. 105,
190401 (Nov, 2010). doi: 10.1103/PhysRevLett.105.190401. URL http://link.aps.org/doi/

10.1103/PhysRevLett.105.190401.
78. S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, An su(6) mott insulator of an atomic

fermi gas realized by large-spin pomeranchuk cooling, Nat. Phys. 8(11), 825–830 (Nov, 2012).
ISSN 1745-2473. URL http://dx.doi.org/10.1038/nphys2430.

79. S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, Interaction
and filling-induced quantum phases of dual Mott insulators of bosons and fermions, Nature
Physics. 7, 642–648 (Aug, 2011). doi: 10.1038/nphys2028.

80. H. Hara, Y. Takasu, Y. Yamaoka, J. M. Doyle, and Y. Takahashi, Quantum degenerate mix-
tures of alkali and alkaline-earth-like atoms, Phys. Rev. Lett. 106, 205304 (May, 2011). doi:
10.1103/PhysRevLett.106.205304. URL http://link.aps.org/doi/10.1103/PhysRevLett.

106.205304.
81. G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schfer, H. Hu, X.-J. Liu, J. Catani,

C. Sias, M. Inguscio, and L. Fallani, A one-dimensional liquid of fermions with tunable spin,
Nature Physics. 10(3), 198C201 (Feb, 2014). ISSN 1745-2481. doi: 10.1038/nphys2878. URL
http://dx.doi.org/10.1038/nphys2878.

82. B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian, Degen-
erate fermi gas of

87
Sr, Phys. Rev. Lett. 105, 030402 (Jul, 2010). doi: 10.1103/PhysRevLett.

105.030402. URL http://link.aps.org/doi/10.1103/PhysRevLett.105.030402.
83. P. G. Mickelson, Y. N. Martinez de Escobar, M. Yan, B. J. Desalvo, and T. C. Killian,

Bose-Einstein condensation of Sr88 through sympathetic cooling with Sr87, Phys. Rev. A.
81(5):051601 (May, 2010). doi: 10.1103/PhysRevA.81.051601.
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