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“Unconventional magnetism” was proposed to describe the exotic states arising from Landau-Pomeranchuk
instabilities in the spin channel nearly two decades ago. Its odd-partial-wave-channel (e.g., p-wave) states break
parity giving rise to the dynamic generation of spin-orbit coupling, while its even-partial-wave-channel (e.g.,
d-wave) states break time-reversal symmetry. Both types of states can exhibit collinear and noncollinear spin
configurations over Fermi surfaces with the former and latter termed as the α and β phases, respectively. The
collinear states in even partial-wave channels are in the same symmetry class of “altermagnetism”. In this work,
we investigate unconventional magnetism in both p- and d-wave channels within spin-orbit coupled systems
with parity and time-reversal symmetries maintained. Based on the Ginzburg-Landau free energy analysis, the
p-wave channel yields the gyrotropic, Rashba, Dresselhaus-type spin-orbit couplings. They compete and mix
evolving from the β phase to the α phase with various types of spin-momentum lockings. Analyses are performed
in parallel for the d-wave unconventional magnetism. We emphasize that the single-particle dispersion is not
sufficient to justify the spin-group type symmetry of the full Hamiltonian. Furthermore, Goldstone manifolds
and excitations are examined in each unconventional magnetic phase.
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I. INTRODUCTION

Itinerant ferromagnetism breaks rotational symmetry in
the spin channel but not in the orbital channel. The orbital
rotation here means rotation without involving spins denoted
as SO(3)L and SO(2)L in three and two dimensions, respec-
tively. For a single-orbital band system in solids, it acts on
coordinates and momenta. Spin rotation is denoted as SO(3)S ,
which acts on spin moments not affecting coordinates and
momenta. The resulting spin polarization is uniform when
moving the electron around the Fermi surface. This situ-
ation is similar to conventional s-wave superconductors in
which the phase of the gap function does not change over
the Fermi surface. In other words, it could be deemed as
the “s-wave magnetism”. Furthermore, there exist uncon-
ventional superconductivity and pairing superfluid in higher
partial-wave channels. Over two decades ago, in analogy to
triplet fermion pairing superfluidity, such as

3
He-A and B-

phases, Wu and Zhang studied spin-channel Pomeranchuk
instabilities that spontaneously generate spin-orbit orderings
in the p-wave channel of spin- 1

2 systems and the d-wave
channel of spin- 3

2 cases [1]. Furthermore, the Pomeranchuk
instability in spin channels was analyzed in general partial-
wave channels by Wu, Sun, Fradkin, and Zhang [2], yielding
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spin-multipole ordering over Fermi surfaces, which later
was termed as “unconventional magnetism” [3]. Similarly to
unconventional superconductivity, unconventional magnetic
orders form nontrivial representations of the rotational group.
Unconventional magnetism was later extended to orbital
band systems as a candidate mechanism for explaining the
nematic metamagnetic state observed in Sr3Ru2O7 [4]. Un-
conventional magnetism under magnetic dipolar interactions,
which is a form of spin-orbit coupled interaction, was also
investigated [5].

The Landau-Fermi liquid theory provides a natural mi-
croscopic mechanism for unconventional magnetism [1,2,5].
When the Landau interaction parameter in the F a

l channel
with l � 1 is negatively large, i.e., F a

l < −(2l + 1) in 3D and
F a

l < −2 in 2D [6], the Fermi surface instability occurs lead-
ing to unconventional magnetism. Unconventional magnetism
can be classified by the evenness of the partial-wave number
l , and whether the spin texture over the Fermi surface is
collinear or noncollinear. In analogy to 3He–A and B phases,
the collinear and noncollinear unconventional magnetic states
are termed as α and β phases, respectively [1]. For odd values
of l , the unconventional magnetic states remain time-reversal
(TR) invariant but break parity (P). In contrast, for even values
of l , such states break TR but maintain P. In the α phase, the
Fermi surfaces exhibit an anisotropic distortion, while those
in the β phase remain circular or spherical and undistorted.
The α phase of the p-wave state was studied by Hirsch under
the name of the spin-split state [7,8]. The d-wave collinear
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phase was also speculated upon by Oganesyan et al. [9] under
the name of “nematic-spin-nematic” state, exhibiting Fermi
surface distortions of orthogonal ellipses with opposite spin
components.

On the other hand, spin-orbit coupling (SOC) plays an
important role in the study of solid state physics particularly
for spintronics applications [10]. It was originally studied
in atomic physics: The orbital angular momentum and spin
of electrons are coupled as Hso = λsoL · σ as a low-energy
approximation of the relativistic Dirac equation. In solids,
electrons do not belong to a particular atom, and SOC orig-
inates from relativity correction to the band structure. In the
following, we denote SOC originated from relativistic physics
as the explicit SOC. It can appear in a single-orbital band
system as the coupling between spin and momentum without
requiring an explicit orbital angular momentum operator L.
For example, the Rashba SOC for 2D electrons with inversion
symmetry breaking is expressed as HR = λR(kxσy − kyσx ). In
a 3D system without inversion symmetry, the SOC appears as
H3D = λRk · σ .

The emerging states of unconventional magnetism pro-
vides a new mechanism to generate effective SOC [1], from
a symmetry breaking effect as a result of quantum phase
transitions. Hence, the effective SOC is like an order param-
eter, which can be tuned by varying temperature and other
parameters. New types of SOC impossible via relativity can
also be generated, for example the d-wave case that breaks
time-reversal symmetry.

The recent research focus on the “altermagnetism” is re-
lated to a particular subset of unconventional magnetism—the
α phase in the even partial wave channels [11–16]. They
are connected to each other via the adiabatic evolution with-
out changing the symmetry. Because of the breaking of TR
symmetry, the Bloch-wave from the periodic lattice potential
can be viewed as superposed by plane waves with the same
spin but opposite wavevectors such that the real space spin
textures can develop respecting the d-wave spin-group-type
symmetry. Recent experiments in altermagnets have uncov-
ered phenomena such as the anomalous Hall effect [17–19]
and Kramers degeneracy lifting [20–22]. Key to this evolution
is the interplay between the electron band structure and lat-
tice magnetic orders. The classification of spin-space groups
has systematically organized magnetic orders with negligible
SOC [13–16], where spin and spatial rotational symmetries
are independent.

In realistic condensed matter systems, the explicit SOC
because of relativistic physics always exists, which was not
taken into account in previous studies of unconventional mag-
netism [1,2]. The explicit SOC could select certain types of
unconventional magnetic orders, which otherwise would be
equivalent because of the separate rotational symmetries in
spin and orbital channels, or, could bring new configurations
of orders. In this article, we study this effect by using the
Ginzburg-Landau (GL) formalism. We use the p-wave mag-
netism in 3D and the d-wave case in 2D as representative
examples. The independent spin SO(3)S and orbital SO(3)L

rotational symmetries are explicitly broken down to SO(3)J

symmetry in the total angular momentum channel. At the
quadratic level of the GL analysis, three distinct regimes
are identified in p-wave channel corresponding to the scalar,

vector, and tensor representations of the SO(3)J group, re-
spectively. The quartic terms in the GL free energy mix phases
in different channels, and phase boundaries are determined.
A parallel classification is extended to the 2D d-wave case,
corresponding to representations associated with the total
angular momentum Jz = 1, 2, 3, respectively. Furthermore,
the topological defects and Goldstone modes in each phase
are elucidated. Although the single-particle dispersion shows
features reminiscent of spin-group type symmetry, the full
Hamiltonian and the many-body physics do not exhibit such a
symmetry.

The rest part of this paper is organized as follows. In
Sec. II, we introduce the symmetry analysis and Ginzburg-
Landau framework for unconventional magnetism in odd/even
partial-wave channels. Section III focuses on the 3D p-wave
unconventional magnetism in the spin-orbit coupled systems,
characterizing three distinct phases through their spin-textures
and symmetry-breaking features. Section IV investigates the
d-wave unconventional magnetism under spin-orbit coupling.
In Sec. V, the relation between SOC and spin-group type
symmetry is discussed. Section VI summarizes the results on
spin-orbit coupled unconventional magnetism.

II. UNCONVENTIONAL MAGNETISM

In this section, we review the symmetry analysis of the un-
conventional states in both odd and even partial wave channels
in the absence of the explicit SOC [1,2].

A. Symmetry and Ginzburg-Landau analysis

In a single-band Fermi liquid, electrons are renormalized
into quasiparticles, and only quasiparticles near the Fermi
surface are important, being responsible for the low-energy
physics [23]. The field operators of quasiparticle are described
by a two-component spinor field operator ψ (r) = (ψ↑, ψ↓)T

with spatial coordinates r. For a rotationally symmetric sys-
tem, the interactions for quasiparticles near the Fermi surface
can be decomposed in terms of different partial-wave channels
denoted by the orbital angular momentum quantum number l:
l = 0 for the s-wave channel; l = 1 for the p-wave channel;
l = 2 for the d-wave channel, and so on. We use the index
b to denote different components of the lth partial wave. For
the 3D case, there exist 2l + 1 components for a given l , such
that b = 1, 2, . . . , 2l + 1. For the 2D case, there are only two
components for l �= 0, hence, b = 1, 2.

In the lth partial-wave channel, the order parameters for
unconventional magnetism are defined as follows [1,2]:

Q̂μb(r) = ψ†(r)σμg(l )
b (−i∇̂ )ψ (r), (1)

where Pauli matrices σμ (μ = x, y, z) describe the orienta-
tion in the spin space; g(l )

b is the lth partial-wave symmetric
tensor in the orbital channel with b = 1, 2 in 2D and b =
1, 2, ..., 2l + 1 in 3D; ∇̂ is defined as an unit operator as
∇̂ = �∇/| �∇|. In the ordered phase, the order parameters exhibit
nonvanishing expectation values as

nμb ≡ 〈Q̂μb(r)〉 =
∫

dd k
(2π )d

〈ψ†(k)σμψ (k)〉g(l )
b (k̂), (2)
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with unit vector k̂ = k/|k|. This leads to a dynamic generation
of unconventional magnetism because of electron correlations
[1,2]. In other words, nμb is a spin multipole order defined in
momentum space.

The effective Hamiltonian for electrons in the l-wave chan-
nel in the d dimension is

H =
∫

dd k
(2π )d

ψ†(k)
[
ε(k) − μ + σμnμbg(l )

b (k̂)
]
ψ (k), (3)

where nμb induces an effective “magnetic” field mμ(k̂) =
nμbg(l )

b (k̂) in momentum space.
The unconventional magnetic states exhibit different sym-

metry patterns in the odd and even partial-wave channels.
Under TR transformation T and inversion (parity) transfor-
mation P, the order parameter transforms in the way

T nμbT −1 = (−1)l+1nμb, PnμbP−1 = (−1)l nμb, (4)

corresponding to the ZT
2 TR and the ZP

2 inversion symme-
tries, respectively. The p-wave case, as a representative of
odd partial waves, maintains TR symmetry and breaks par-
ity, playing the role of an effective spin-orbit coupling. In
contrast, the d-wave case, as a representative of even partial
waves, breaks TR symmetry but keeps parity invariant. Upon
turning the lattice potentials, there should not be spin textures
for the p-wave unconventional magnetic state owing to TR
symmetry. On the contrary, the Bloch waves for the d-wave
case can develop spin textures within the unit cell; hence,
it yields the same symmetry class of the recently proposed
“altermagnetic” states [11,12]. As explained in Ref. [2], un-
conventional magnetic states often exhibit symmetries of a
combined spatial and spin rotations not necessarily at the same
rotation angles, which are termed “spin-group” symmetries in
later literature [13–16].

In addition to TR and parity, the order parameter nμb

reflects several kinds of symmetries. For convenience, we
use the 3D case as an example, and the situation for 2D
is quite similar. Under the independent rotational transfor-
mations in the spin space [RS ∈ SO(3)S] and orbital space
[RL ∈ SO(3)L], tensor nμb transforms in the following way:

nμb → RS,μνnνaR−1
L,ab. (5)

Up to the quartic level, the Ginzburg-Landau free energy,
respecting the discrete TR and inversion symmetries, as well
as the SO(3)S × SO(3)L symmetry, takes the form,

F [n] = αTr(nnt ) + β1[Tr(nnt )]2 + β2Tr(nnt )2, (6)

with nt represents the transpose of n. Here, α, β1, and β2

are interaction parameters that can be determined by Landau
parameters and density of states, whose expressions are given
in Ref. [2]. nnt is a 3 × 3 matrix. As shown in Appendix A,
the eigenvalues of nnt are positive definite, which are param-
eterized as f 2

i with i = 1, 2, 3. Then,

F
[

f 2
i

] = α
∑

i

f 2
i + β1

(∑
i

f 2
i

)2

+ β2

∑
i

f 4
i . (7)

On the condition that Tr(nnt ) is fixed to λ2, i.e., f 2
1 + f 2

2 +
f 2
3 = λ2, the minimization of Eq. (6) yields

f 2
1 = f 2

2 = f 2
3 = 1

3λ2, (8)

at β2 > 0, and without loss of generality we have

f 2
1 = λ2, f 2

2 = f 2
3 = 0, (9)

at β2 < 0 [1,2].

B. The α and β phases

In the rest of this article, we examine two representative
situations. First, we address the 3D p-wave case in the angular
momentum channel l = 1, a configuration intrinsically linked
to spin-orbit coupling phenomena. Subsequently, we extend
our analysis to 2D systems for the general lth partial-wave
channels, with a focus on the d-wave (l = 2) symmetry that
establishes connections with the emerging paradigm of alter-
magnetism.

We first consider the p-wave channel in the 3D case. The
3D α phase or β phase is favored at β2 < 0 and β2 > 0, re-
spectively [1,2]. If β2 < 0, the minimization of Eq. (6) yields
the order parameter configuration nμb = n̄d̂μêb where d̂ and ê
are two unit vectors in the spin and orbital space, respectively.
Without loss of generality, we choose d̂ = ê = ẑ, such that the
order parameter is given by nμb = n̄δμzδbz. The dispersions
of the two spin orientations split and the original degener-
ate Fermi surfaces undergo opposite-direction distortions for
opposite spin polarizations. The residue symmetry in the α

phase is the spatial SO(2)L rotation around ê, the spin channel
SO(2)S rotation around d̂ , and the combined spin-orbit Z2

rotation around ê × d̂ at the angle of π such that ê → −ê,
and d̂ → −d̂ . The resulting Goldstone manifold is

[SO(3)L × SO(3)S]/[SO(2)L × SO(2)S � Z2]

= (
S2

L × S2
S

)
/Z2, (10)

where S2
L,S means the Goldstone manifold of 2D sphere S2 in

terms of spatial and spin rotations, respectively. The associ-
ated Goldstone modes are two channels of orbital waves and
two channels of spin-dipole wave.

On the contrary, for β2 > 0, minimizing the free energy fa-
vors the configuration nμb = n̄Dμb, where Dμb is an arbitrary
SO(3) matrix. While maintaining an isotropic Fermi surface,
this phase develops a nontrivial spin texture around the Fermi
surface, which is known as the β phase [1,2]. The residue
symmetry in such a phase is the overall spin-orbit rotation
SO(3)J . If in the absence of the explicit SOC, the Goldstone
manifold corresponding to the β phase is

[SO(3)L × SO(3)S]/SO(3)J = SO(3)R, (11)

where SO(3)R refers to the Goldstone manifold of the relative
spin-orbit rotations.

The associated Goldstone modes are three branches of
spin-orbit waves corresponding to relative spin-orbit rotations.

In the 2D cases, it will be convenient to introduce two vec-
tors in the spin space, �n1 = nμ1 and �n2 = nμ2, and formulate
the free energy in the form [2],

F [�n1, �n2] = α(|�n1|2 + |�n2|2) + (β1 + β2)(|�n1|2 + |�n2|2)2

− 2β2|�n1 × �n2|2. (12)

The relevant lth partial-wave tensors are given by

g(l )
1 (k) = cos(lθk ), g(l )

2 (k) = sin(lθk ), (13)
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FIG. 1. Fermi surface distortions in the α phase (β2 < 0) for the
p-wave channel (l = 1) and the d-wave channel (l = 2).

where θk is the azimuthal angle of k.
If β2 < 0, the minimization of the free energy Eq. (12)

favors �n1 ‖ �n2. Without loss of generality, we can consider
�n1 = n̄ẑ with vanishing �n2, leading to the effective lth partial-
wave spin-orbital coupling,

Hd = n̄ cos(lθk )σz. (14)

The resulting α state exhibits Fermi surface splitting for
the opposite spin orientation, as depicted in Fig. 1. Of
particular contemporary interest is the l = 2 partial-wave
(d-wave) channel realization in this phase, which manifests
as a momentum-dependent spin-splitting of the Fermi sur-
face, a hallmark feature now recognized as “altermagnetism”
[11,12]. The residual symmetry in the α phase is the spin
SO(2)S rotation around n̂1, the spatial rotation at the angle
of 2π/l , and the spin-group type symmetry that rotate at the
angle of π/l around combined with spin-rotation at the angle
π around the n̂1 axis. Hence, the Goldstone manifold is

[SO(2)L × SO(3)S]/[SO(2)S � Z2 × Zl ]

= [SO(2)L/Zl ] × [
S2

S/Z2
]
. (15)

The associated Goldstone modes are one channel of orbital-
waves and two channels of spin-dipole wave.

On the other hand, for β2 > 0, the minimization of the free
energy in Eq. (12) favors �n1 ⊥ �n2 with equal amplitudes. For
simplicity, we can assume �n1 = n̄x̂ and �n2 = n̄ŷ, which leads
to the Hamiltonian

Hd = n̄(cos(lθk )σx + sin(lθk )σy). (16)

The isotropic dispersion exhibits spin texture around the
Fermi surface, which is characterized by the 2D winding
number l for each channel, as depicted in Fig. 2. The l = 1
β phase typically leads to the generation of the Rashba and
Dresselhaus spin-orbit couplings [1,2]. The residual symme-
try in this phase is generated by J ′

z = Lz + lσz/2. Hence, the
Goldstone manifold is

[SO(2)L × SO(3)S]/SO(2)J ′ = SO(3)R. (17)

The associated Goldstone modes are also three branches of
spin-orbit waves.

FIG. 2. Fermi surface and spin texture in the β phase (β2 > 0)
for the p-wave channel (l = 1) and the d-wave channel (l = 2).

III. THE p-WAVE UNCONVENTIONAL MAGNETISM
UNDER SPIN-ORBIT COUPLING

In the presence of the explicit SOC, the full rotational
symmetry within the spin and orbital channels, the SO(3)S ×
SO(3)L symmetry of the Fermi liquid, breaks down to the
overall rotational symmetry of SO(3)J where J = S + L de-
notes the total angular momentum [1,2,5]. In this section, we
study the consequence of unconventional magnetism in the
p-wave channel in 3D under the relativistic SOC.

A. Decomposition of order parameters

The order parameter nμb in the p-wave channel carries the
symmetry of the spin current. It can be decomposed into the
following sectors according to the SO(3)J symmetry, i.e., 3 ×
3 = 1 ⊕ 3 ⊕ 5, as

n = T + A + S, (18)

with each tensor given by

T = Tr(n)

3
; A = n − nt

2
; S = n + nt

2
− T . (19)

Here, T is the identity matrix multiplied by the trace of nμb;
A is the antisymmetric part, and S is the traceless symmetric
part of nμb, respectively. They transform according to the J =
0, 1, 2 irreducible representations of SO(3)J , respectively. In
other words, they are the scalar, vector, and rank-2 spherical
tensor, respectively. In the presence of the explicit SOC, the
remaining symmetry is SO(3)J , and the quadratic term of the
GL free energy splits as

F2[n] = α0Tr(T T t ) + α1Tr(AAt ) + α2Tr(SSt ). (20)

Each channel of J = 0, 1, 2 may develop different ordering
patterns explained as follows. In the case where α0 = α1 =
α2 = α, Eq. (20) reduces to the quadratic term of the GL free
energy of Eq. (6).

The order parameter corresponding to J = 0 is a pseu-
doscalar such that nμb = n̄δμb. It was termed as the gyrotropic
phase in the transition-metal dichalcogenide semimetal 1T-
TiSe2 [24,25], and it is a special case of the β phase. The
effective spin-orbit coupling takes the following form:

Hgyro = n̄k · �σ , (21)
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FIG. 3. Schematic illustration of spin textures on the Fermi
surface cross section in the kx-kz plane for (a) gyrotropic, (b) fer-
roelectric (Rashba), and (c) multipolar (Dresselhaus) phase. The
original Fermi surfaces (dotted circle) are splitting into two Fermi
surfaces (solid line) with spins of different directions.

exhibiting the full SO(3)J symmetry. Taking the eigenvalues
±1 of the helicity operator �σ · k̂, the energy dispersion re-
lations are ξ±(k) = ε(k) − μ ± n̄k. The corresponding spin
texture exhibits a monopole configuration in momentum
space, as shown in Fig. 3(a). The 3D topological charge of
the spin polarization over the two Fermi surfaces exhibiting
opposite helicities are

w = 1

4π

∮
d2k̂ n̂(k̂) · (∂μn̂(k̂) × ∂ν n̂(k̂)) = ±1, (22)

respectively, where n̂(k) = ±k̂. The spin current pattern con-
sistent with the J = 0 sector is that the spin polarization is
parallel to the direction of the spatial flow. Now, with ex-
plicit spin-orbit symmetry breaking, such a phase only further
breaks parity. The originally gapless modes associated with
the Goldstone manifold Eq. (11) become gapped.

The order parameter matrix of the J = 1 channel is
skew-symmetric, nt = −n, which can be mapped onto a pseu-
dovector n̄û. Such an order can occur as a Pomeranchuk
instability in fermion systems with magnetic dipolar inter-
actions [5], which represent a form of spin-orbit coupled
interaction explicitly breaking the SO(3)L × SO(3)S symme-
try. The effective spin-orbit coupling takes the Rashba form,

HR = n̄�σ · (û × k), (23)

with the unit vector û. The residual symmetry of the J = 1
channel order is SO(2)J , corresponding to the rotation around
the û axis. For the case that û = ẑ,

HR = n̄(kxσy − kyσx ). (24)

The associated Goldstone manifold is

SO(3)J/SO(2)J = S2
J , (25)

giving rise to two Goldstone modes. Equation (23) exhibits the
same symmetry as the Rashba SOC, nevertheless, for the case
of a 3D Fermi surface the SOC disappears along the direction
where k ‖ û, as depicted in Fig. 3(b). In momentum space, the
spin-momentum locking exhibits a vortex loop configuration
with a winding number w = 1.

The order parameter in the J = 2 sector reduces to the 5D
space of a traceless symmetric matrix Sμb = Sbμ. The effective
SOC takes the Dresselhaus form,

HD = 1
2 Sμb(σμkb + σbkμ). (26)

For the case where Sμb = n̄
2
√

3
diag(1, 1,−2),

HD = n̄

2
√

3
(kxσx + kyσy − 2kzσz ). (27)

as depicted in Fig. 3(c). The corresponding energy disper-
sion relations are ξ±(k) = ε(k) − μ ± n̄

2
√

3

√
k2 + 3k2

z , and
the 3D winding number over the Fermi surface w =

1
4π

∮
d2k̂ n̂(k̂) · (∂μn̂(k̂) × ∂ν n̂(k̂)) = ∓1, respectively, where

n(k) = ±(kx, ky,−2kz ). For the diagonal order with J =
2, Jz = 0, the residual symmetry is D(∞)J , containing the
rotation around the z axis and a π angle rotation around any
axis in the xy plane. The Goldstone manifold is

SO(3)J/D(∞)J = S2
J /Z2. (28)

There also exist four other typical spin-momentum locking
texture configurations exhibiting effective SOCs, such as

k̂xσy + k̂yσx, k̂xσx − k̂yσy,

k̂yσz + k̂zσy, k̂zσx + k̂xσz. (29)

They exhibit antivortex loop configurations with a 2D winding
number w = −1. In these phases, the residual symmetry is
discrete, the D4d symmetry with respect to a plane specified by
the order, say, the kx-ky plane for the k̂xσy + k̂yσx-type order.

B. The effect of the quartic β2 terms

In principle, in a spin-orbit coupled GL free energy, there
exist three independent quadratic terms for the gyrotropic
(J = 0), Rashba (J = 1), and multipolar (J = 2) orders as
shown in Eq. (20). For simplicity, we only consider the case
that α1 = α2 = α, and denote α0 = α + �α0. Then the GL
free energy at the quadratic level becomes

F [n] = αTr(nnt ) + �α0

3
(Trn)2. (30)

Such a term breaks the degeneracy of the phase with J = 0
from the other two phases. The phase with J = 0 is disfavored
and favored at �α0 > 0 and �α0 < 0, respectively.

The quartic β1 term β1Tr(nnt )2 = β1[Tr(T T t ) +
Tr(AAt ) + Tr(SSt )]2; hence, it will not mix the three sectors
of J = 0, 1, and 2. Nevertheless, the non linearity of the β2

term will mix them. Below we will study the ground-state
order parameter configuration in the cases of �α0 > 0 and
�α0 < 0, respectively.

1. Explicit SO symmetry breaking with �α0 > 0

For �α0 > 0, the minimization of the GL free energy fa-
vors the solution satisfying the traceless condition Trn = 0. In
other words, the order parameter nμb prefers to project out the
component of J = 0 and keep the components of J = 1 and
2. The phase diagram and the corresponding spin-momentum
configurations around the Fermi surface are shown in Fig. 4.

Let us consider the effect of a positive �α0 in the β phase,
i.e., the case of β2 > 0. According to the result in Sec. II A,
the β2 term reaches the minimum when nnt is a constant
matrix provided fixing Tr(nnt ) = ∑

i f 2
i = λ2. This means

that n = n̄R with n̄ the magnitude of the order and R is an
O(3) matrix. Up to an inversion transformation, we assume
that R ∈ SO(3), which can be parameterized as R(n̂, θ ) with
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FIG. 4. Schematic phase diagram illustrating the phases as a
function of β2 and �α0. Here, only the cross section within the
kx-ky plane is depicted. In the regime where �α0 > 0, the system
stabilizes in the α phase when β2 < 0, characterized by a circular
Fermi surface shifted along the t̂ direction and spin polarization
along ŝ direction. However, for positive β2, the β phase becomes
stable, with its specific spin texture depending on �α0. If �α0 > 0,
the spin configuration results from a 2π/3 rotation around the û
axis to the reference configuration (e.g., the J = 0 gyrotropic phase).
Alternatively, a gyrotropic phase is stabilized when �α0 < 0, and
this phase also persists for negative β2 of small magnitude. For
β2 < 0 and large enough in the magnitude, the multipolar component
is induced and the Fermi surface of the opposite spin sector will
distort in the opposite direction.

n̂ ∈ S2 the rotation axis and θ the rotation angle. At θ = 2
3π ,

Tr(R) = 1 + 2 cos θ = 0. As a result, a generic matrix form
of R(û, 2

3π ) is defined as follows: For two three-vectors a and
b, R acts as

a · R · b =
√

3

2
a · (û × b) + 3

2

(
(a · û)(û · b) − 1

3
a · b

)
,

which is similar to the case of the Leggett angle found in the
context of superfluid 3He–B [23]. The effective SOC becomes

HSOC = n̄

[
σ · (û × k̂)√

3
+ (σ · û)(û · k̂) − 1

3
σ · k̂

]
. (31)

The Goldstone manifold of the order parameter can be
parameterized as

T R
(
û, 2

3π
)
T −1 = R

(
T û, 2

3π
)
, (32)

where T is an SO(3) matrix. When T is the rotation around the
axis of û, R does not change; hence, the Goldstone manifold is
SO(3)J/SO(2)J = S2 with two branches of Goldstone modes.
For a particular example of û = 1√

3
(1, 1, 1), which results in

the mean-field Hamiltonian,

HSOC = n̄(σzkx + σxky + σykz ). (33)

Hence, there is no nontrivial line defect since the fundamental
homotopy group π1(S2) = 1. Nevertheless, there exist topo-

logically nontrivial point defects as classified by the second
homotopy group π2(S2) = Z .

Now consider the effect of a positive �α0 to the α phase,
i.e., the regime of β2 < 0. The ground-state order parameter
configuration is parameterized by n = n̄R with R(ŝ, t̂ ) defined
as follows: For any two three-vectors a and b, R acts as

a · R · b = (a · ŝ)(t̂ · b), (34)

where t̂ and ŝ are two unit vectors orthogonal to each other. It
is easy to show that in this case Trn = 0. The effective SOC
takes the following form:

HSOC = −n̄(ŝ · σ)(t̂ · k̂). (35)

The two spherical Fermi surfaces shift in the direction of t̂
with spin direction along ŝ, exhibiting a SOC that is a super-
position of Rashba and Dresselhaus-like with equal weight.

The residual symmetry of the α phase at �α0 > 0 is the
rotation around the axis of ŝ × t̂ at the angle of π . Hence, the
Goldstone manifold is

SO(3)J/Z2 = SU (2)J/Z4 = S3
J /Z4, (36)

where Z4 represents the SU (2) rotation around ŝ × t̂ by the
angle of 0,±π, 2π . Hence, the fundamental group of the
Goldstone manifold is π1(SO(3)J/Z2) = Z4, which means
that there exist four different types line defects character-
ized by the winding numbers of 0,± 1

2 , 1. There exist three
branches of Goldstone modes, which correspond to rotations
around three axes of t̂ , ŝ, and ŝ × t̂ . The second homotopy
group π2(SO(3)J/Z2) = 0, which means that there is no non-
trivial point defect.

2. Explicit SO symmetry breaking with �α0 < 0

The situation that β2 > 0 favors the β phase, and the
gyrotropic state (J = 0) favored by �α0 < 0 also belongs
to the β phase. Hence, at β2 > 0, the ground state takes
the gyrotropic state, i.e., nμa = n̄δμa. This is a Z2 symmetry
breaking phase, i.e., parity breaking, but the SO(3)J symmetry
is maintained.

The situation of β2 < 0 is more complicated since it favors
the α phase that is incompatible with the gyrotropic state.
Naturally, there exists a competition between them. This gy-
rotropic phase with effective SOC HSOC = n̄�σ · k̂ is robust
against a negative β2 with a small magnitude. In contrast, a
negative β2 term with a sufficiently large magnitude will mix
the gyrotropic order. As far as the β2 term is not so large, the
ground-state configuration will be given by f1 � f2 = f3; see
Appendix A for details based on the singular value decompo-
sition (SVD).

The mixed phase on the left of the phase boundary exhibit
an effective spin-orbit coupling taking for the form

HSOC = n̄(σ · k̂ + a(σ · û)(k̂ · û)), (37)

where a is the coefficient of the α-phase component. The two
unit vectors representing the orbital and spin polarizations are
parallel to each other in the α phase marked as û to maxi-
mize Tr(nnt ). The Fermi surface configurations are marked
in Fig. 4. The residue symmetry of such a state is the SO(2)
rotation around û and the π angle rotation around any axis
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perpendicular to û. Hence, the Goldstone manifold is

SO(3)J/D(∞)J = RP2, (38)

and its fundamental group is π1(RP2) = Z2, which means
that there exist two types of line defects characterized by the
winding numbers of 0 and 1

2 .

IV. D-WAVE UNCONVENTIONAL MAGNETISM IN 2D

In this section, we investigate unconventional magnetism
within a 2D system, with a particular focus on the l = 2
partial-wave (d-wave) channel. Although the extension to
higher partial-wave channels is straightforward, the d-wave
case, characterized by its anisotropic nature and a winding
number of 2, provides a clear framework for elucidating the
underlying physics. The emergent phases in this channel can
arise intrinsically from Pomeranchuk instabilities in Fermi
liquids [2,26] or be induced by lattice spin configuration
[11,12].

A. The d-wave order parameters

Following the formalism set up in Sec. II A, the order
parameter for d-wave (l = 2) unconventional magnetism is
defined via the expectation value,

nμb ≡ 〈Q̂μb(r)〉 = 〈ψ†(r)σμg(2)
b (−i∇̂ )ψ (r)〉, (39)

where g(2)
b (k) are the basis functions for the l = 2 channel

in 2D (b = 1, 2). These basis functions possess a winding
number of 2 and are explicitly given by [2]

g(l=2)
1 (k) = cos 2θk, g(l=2)

2 (k) = sin 2θk, (40)

where θk is the azimuthal angle of k. The development
of a nonzero order parameter nμb induces an effective
momentum-dependent field, leading to the following term in
the Hamiltonian,

Hd = σx(nx1 cos 2θk + nx2 sin 2θk )

+ σy(ny1 cos 2θk + ny2 sin 2θk )

+ σz(nz1 cos 2θk + nz2 sin 2θk ). (41)

For convenience, we use μ = x, y, z to represent the spin
channel index. The Hamiltonian explicitly breaks the TR sym-
metry, but preserves the inversion (parity) symmetry.

To elucidate the symmetry constraints on the d-wave un-
conventional magnetic order, we examine the transformation
properties of nμb under simultaneous rotations in spin and
orbital spaces. Consider a rotation by the angle θ about the
z axis. The d-wave basis functions transform as

(cos 2θk, sin 2θk ) → ( cos 2(θk + θ ), sin 2(θk + θ )). (42)

Under this operation, the 3 × 2 order parameter matrix trans-
forms as

nμb → RS,μν (θ )nνaR−1
L,ab(2θ ), (43)

where the rotation matrices in the spin and orbital sectors are
given explicitly by, in the spin space

RS (θ ) =
⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠,

and in the orbital space,

RL(2θ ) =
(

cos 2θ sin 2θ

− sin 2θ cos 2θ

)
.

B. Spin-orbit coupling splitting

In the presence of explicit SOC, the system symmetry is
reduced to O(2)J , which is the semidirect product between the
SO(2)J and mirror reflection with respect to a vertical plane.
The order parameters may be decomposed into irreducible
representations of the conserved O(2)J symmetry group. We
define the following combinations:

T1 = (nx1 + ny2, ny1 − nx2),

T2 = (nz1, nz2),

T3 = (ny2 − nx1, nx2 + ny1). (44)

Tl at l �= 0 consist of two bases, and their complex superpo-
sition carries the eigenvalue of Jz = ±l . Under the rotation
angle θ , they transform as

Tl → TlRL(lθ ). (45)

The GL free energy at the quadratic order can be con-
structed as follows:

F2[n] = α1T1 · T1 + α2T2 · T2 + α3T3 · T3,

= α1[(nx1 − ny2)2 + (nx2 + ny1)2]

+α2
[
n2

z1 + n2
z2

]
+α3[(ny1 − nx2)2 + (nx1 + ny2)2], (46)

where the phenomenological parameters αJ (J = 1, 2, 3) de-
pend on microscopic details such as temperature and band
structure. The sign and magnitude of these parameters deter-
mine the relative stability of each phase. The minimization of
this free energy selects the dominant TJ component, thereby
determining the realized d-wave phase.

Each of T1,2,3 type of orders exhibit a distinct spin-orbit
texture pattern over the Fermi surface. Despite the breaking
of TR symmetry, the net magnetization vanishes. For the
ordering in the T1 channel, nx1 = −ny2 and ny1 = nx2. The
corresponding effective Hamiltonian takes the form,

H1 = nx1(σx cos 2θk − σy sin 2θk )

+ nx2(σx sin 2θk + σy cos 2θk ). (47)

Such an effective Hamiltonian results in a spin-splitting Fermi
surface. The spin orientation exhibits an antivortex structure
with a winding number of w = −2 as shown in Fig. 5(a). As
for the T2 channel, the effective Hamiltonian simplifies to

H2 = σz(nz1 cos 2θk + nz2 sin 2θk ). (48)

where nz1 and nz2 correspond to the dx2−y2 and dxy config-
uration, respectively, as depicted in Fig. 5(b). This phase,
identified with the α phase [2] or the “altermagnetic” state
[11,12], is characterized by a splitting of the originally spin-
degenerate Fermi surface into two orthogonal ellipses with
opposite spin polarization. The spin configuration in this case
is topologically trivial. Finally, for the J = 3 channel, nx1 =
ny2, nx2 = −ny1, and nz1 = nz2 = 0. It leads to the effective
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FIG. 5. Spin configurations in momentum space around the
Fermi surface for the three channels: (a) Jz = 1, (b) Jz = 2, and
(c) Jz = 3. In the presence of d-wave magnetism, the original Fermi
surfaces (dotted circle) split into two Fermi surfaces (solid circles)
with opposite spin polarizations.

Hamiltonian

H3 = nx1(σx cos 2θk + σy sin 2θk )

+ nx2(σx sin 2θk − σy cos 2θk ). (49)

In this phase, the spin texture forms a vortex configuration
in momentum space, yielding a winding number w = +2
as shown in Fig. 5(c). The contrasting vortex and antivortex
textures in the J = 3 and J = 1 channels, respectively, reflect
the additive (J = 2 + 1) versus subtractive (J = 2 − 1) nature
of the underlying angular momentum couplings.

The above orders exhibit the so-called “spin-group” type
symmetry. For the cases of that exhibits the winding number
w = ±2, there appears an effective J ′

z = Lz + w
2 σz. In the

case of w = 0, i.e., Jz = 2, the residual symmetry is SO(2)S

rotation around the z axis in the spin channel, the C2 rotation
at the angle of π in the orbital channel, and a Z2 rotation
with the angle of π around an axis perpendicular to the spin
axis. Nevertheless, this kind of symmetries do not belong to
the original SO(2)J ; hence, they can be viewed as emergent
symmetries at low energies.

All the above orders in the three channels of T1,2,3 break
the continuous rotational symmetry in the Jz channel. Since
the total symmetry is SO(2)J , the Goldstone manifold is also
SO(2)J . It gives rise to a single branch of gapless Goldstone
modes, which are anticipated to dominate the low-energy dy-
namics of these d-wave magnetic states.

C. The effect of the quartic β2 terms

We now incorporate quartic terms into the GL free energy
and study their effect on the d-wave magnetism. Building
upon the quadratic analysis above, we consider the full GL
functional up to fourth order. For simplicity, we focus on
the competition driven by α2 = α + �α2 and β2, assuming
α1 = α3 = α remain negative. The free energy takes the form

F [n] = αTr(nnt ) + �α2
(
n2

z1 + n2
z2

)
+β1[Tr(nnt )]2 + β2Tr[(nnt )2], (50)

where Tr(nnt ) = |�n1|2 + |�n2|2. For convenience, we use the
two-vector representation defined as �n1 = (nx1, ny1, nz1) and
�n2 = (nx2, ny2, nz2). The quadratic β1(Tr[(nt n)])2 term pri-
marily affects the magnitude of the order parameter, leading
to the stability of the ordered state when α < 0 and β1 > 0.
The β2 term further influences the relative orientation of the
spin vectors �n1 and �n2, which can be rewritten in the form [2],

β2Tr[(nnt )2] = β2(|�n1|2 + |�n2|2)2 − 2β2|�n1 × �n2|2.
We analyze the ground-state configuration based on the signs
and magnitudes of �α2 and β2.

1. d-wave unconventional magnetism with �α2 > 0

When �α2 > 0, the �α2(n2
z1 + n2

z2) term disfavors the
Jz = 2 component. The order parameters in terms of �n1 and �n2

tend to project out their z component in spin orientation. The
β2 term further selects the specific ground state configuration.

If β2 < 0, the term −2β2|n1 × n2|2 is minimized when �n1 ‖
�n2. This corresponds to the α-phase configuration. Given the
constraint from �α2 > 0, we expect in-plane parallel spins.
Since the cases of different winding numbers w = ±2 are
energetically the same, their superposition yields the α phase
with an in-plane spin configuration. Without loss of generality,
we can choose �n1 = n̄x̂ and �n2 = 0, where n̄ is the magnitude.
This leads to the effective d-wave spin-orbit Hamiltonian,

Hd = n̄ cos(2θk )σx. (51)

This state represents the α phase with purely in-plane compo-
nents of �n1 and �n2, as depicted in Fig. 6.

If β2 > 0, minimizing the β2 term leads to �n1 ⊥ �n2 with
equal amplitudes, |�n1| = |�n2|. This favors the β-phase con-
figuration. A possible realization compatible with �α2 > 0
(in-plane spin) is �n1 = n̄x̂ and �n2 = n̄ŷ. The corresponding
Hamiltonians are

Hd = n̄(cos(2θk )σx ± sin(2θk )σy). (52)

These states exhibit a characteristic spin texture winding twice
around the Fermi surface (w = ±2), indicative of the β phase
[2], shown in Fig. 6.

The residual symmetry in both phases is the rotation at the
angle of 180◦ combined with a reflection with time-reversal
symmetry. Hence, the Goldstone manifold is SO(2)J/Z2. The
point defect is classified by the fundamental group Z .

2. d-wave unconventional magnetism with �α2 < 0

We now turn to the parameter regime of �α2 < 0. Ac-
cording to the GL free-energy functional, the �α2 term
energetically favors configurations that maximize the compo-
nents of the order parameter along the z axis in spin space.
The ground-state structure is further determined by the sign
of β2.

When β2 < 0, it favors the spin to be collinear, �n1 ‖ �n2.
This condition is compatible with the tendency favored by
α2 < 0 for spins to align along the z axis. Minimizing the
GL free energy leads to �n1 = nz1ẑ and �n2 = nz2ẑ being par-
allel. Without loss of generality, this configuration can be
represented by �n1 = n̄ẑ and �n2 = 0. The effective d-wave
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FIG. 6. Schematic phase diagram in the β2-�α2 parameter space,
including representative configurations for the distinct phases. The
arrows indicate the in-plane spin texture. For β2 < 0 and �α2 > 0,
the system favors an α phase characterized by parallel spin axes
(�n1 ‖ �n2) lying in the xy plane; in this phase, the circular Fermi sur-
faces split into two ellipsoids with associated in-plane spins pointing
in opposite directions. When β2 > 0 and �α2 > 0, the favored state
is the β phase, featuring in-plane orthogonal spins of equal magni-
tude (�n1 ⊥ �n2 and |�n1| = |�n2|) and a spin texture around the Fermi
surface with winding number w = ±2. In the region where β2 < 0
and �α2 < 0, a pure Jz = 2 α-phase state (also known as d-wave α

phase) is stabilized, distinguished by spins aligned along the z axis.
Finally, the quadrant with β2 > 0 and �α2 < 0 exhibits competition:
for small positive β2, the Jz = 2 state may persist, whereas for large
positive β2, a mixed state emerges featuring distorted Fermi surfaces
and complex spin textures.

spin-orbital term is given by

Hd = n̄ cos(2θk )σz, (53)

corresponding to the d-wave α phase [2,11,12]. The Fermi
surface exhibits characteristic splitting as depicted in Fig. 6.

Conversely, when β2 > 0, the quartic β2 term favors or-
thogonal spin vectors, �n1 ⊥ �n2, while the condition �α2 < 0
favoring z alignment for both vectors; hence, this creates a
competition. A detailed analysis using singular value decom-
position (SVD) for the 3 × 2 order parameter matrix nμb is
presented in Appendix B. It indicates that the α phase remains
stable to the regime of weak β2. When β2 is large enough,
minimizing the GL free energy yielding an order parame-
ter structure characterized by two singular values, f1 > f2 >

0, where the dominant left singular vector (associated with
f1) aligns with the ±ẑ direction. As shown in Appendix B,
this minimum energy configuration, under appropriate basis
choices, corresponds to an effective Hamiltonian of the form,

Hd = f1 cos(2θk )σz + f2 sin(2θk )σy, (54)

where f1 � f2 � 0 are determined by minimizing the free
energy. This Hamiltonian represents a mixed phase: the f1

term describes the Jz = 2 component favored by �α2 < 0,
while the f2 term introduces an in-plane spin component (σy)

coupled to the g(2)
2 (k̂) = sin 2θk basis function, arising as a

result of the influence of β2 > 0. This phase exhibits distorted
Fermi surfaces and more complex spin textures compared to
the pure Jz = 2 state, as illustrated schematically in Fig. 6.
The precise determination of the magnitudes f1, f2 and the
location of the phase boundary between the pure Jz = 2 state
( f2 = 0) and the mixed state ( f2 > 0) requires the detailed
minimization of the free energy functional, as outlined in
Appendix B.

V. DISCUSSION

Spin-orbit coupling always exists in real materials. SOC
lowers the symmetry from two independent rotational symme-
tries in spin and orbital channels down to the overall rotation
symmetry. Hence, in the study of unconventional magnetism,
the role of SOC is similar to that of magnetic anisotropy in
the study of magnetism. As shown in Fig. 6, the Fermi surface
structures of the α- and β-phase Fermi surface structures
could still be maintained, but the relative configurations of
momentum and spin are pinned by the relativistic SOC.

The above analysis may bring caution when applying the
concept of “spin-group” in real materials, in particular, when
the material contains heavy elements. Even though the Fermi
surface splitting, or, the real space spin texture, exhibits spin-
group type symmetry, it does not mean that SOC is weak. For
example, the Fermi surface structures of Fig. 6 exhibit the
symmetry of an spatial rotation by the angle of π

2 followed
by a spin rotation by the angle of π . However, this symmetry
applies only to the single-particle dispersion, and does not
reflect the fundamental symmetry of the full Hamiltonian. All
properties beyond the single-particle level, such as collective
excitations and topological structures, should not manifest
spin-group properties.

The experimental exploration of unconventional mag-
netism in real materials has revealed a rich landscape of
novel quantum phases, in which SOC plays an important
role. Seminal examples like the transition-metal dichalco-
genide semimetal 1T-TiSe2, the spin–orbit coupled metal
Cd2Re2O7 and Sr2(Ir,Rh)O4 have served as crucial candidates
for observing these phenomena. For instance, the detec-
tion of a gyrotropic phase in 1T-TiSe2 [24,25] underscores
the realization of chirality through spontaneous breaking
of space-inversion, mirror-reflection, and rotoinversion sym-
metries in this material. In Cd2Re2O7, investigations have
uncovered a structural phase transition lacking conventional
order [27–29], with evidence pointing towards a parity-
breaking metallic phase driven by multipolar order parameters
and enhanced spin-orbit coupling [27,30]. The intricate inter-
play of spin-orbit interactions and electron correlations further
extends to unconventional Mott insulators like Sr2(Ir,Rh)O4,
where hidden time-reversal symmetry breaking orders,
potentially linked to novel topological effects, are being ac-
tively investigated [31].

VI. CONCLUSIONS

In summary, we have systematically explored the possible
symmetry-breaking patterns of unconventional magnetism in
the 3D p-wave and 2D d-wave channels under the explicit
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spin-orbit coupling. The GL free energies are constructed
for exploring the phase diagram. The spin-orbit symmetry
splitting takes place at the quadratic order, which results in
different channels classified based on the representation of the
total angular momentum. In 3D, the p-wave unconventional
magnetism exhibits channels with J = 0, 1, 2, and in 2D
the d-wave unconventional magnetism exhibits channels with
Jz = ±1,±2,±3. When the quartic terms were incorporated,
we considered the simplified cases where two of the three
channels are degenerate at the quadratic level for both the 3D
p-wave and 2D d-wave cases, respectively. Minimization of
the GL free energies leads to the ground-state configurations
of the α phase, the β phase, and mixtures between them. Fur-
thermore, by tuning the parameters, we observe distinct dis-
tortions of the Fermi surfaces in both the p-wave and d-wave
channels. These findings provide a deeper understanding of
the interplay between unconventional magnetism and the ex-
plicit spin-orbit coupling that always exists in real materials.
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APPENDIX A: DETAILS OF THE GL ANALYSIS IN 3D

In this appendix, we detail the minimization procedure for
the Ginzburg-Landau (GL) free energy relevant to the p-wave
channel (l = 1) in the presence of spin-orbit coupling (SOC),
focusing on the competition between terms favoring different
types of orders. As derived in the main text [cf. Eq. (20) and
surrounding discussion] [2], the GL functional up to quartic
order, including the SOC-induced splitting (�α0), can be writ-
ten by the 3 × 3 order parameter matrix n ≡ nμb as

F [n] = α Tr(nnt ) + β1 [Tr(nnt )]2

+ �α0

3
(Trn)2 + β2 Tr[(nnt )2]. (A1)

We are particularly interested in the parameter regime relevant
to the competition discussed in Sec. III, namely where α < 0,
β1 > 0, �α0 < 0, and β2 < 0. The term α < 0 drives the
system into an ordered phase, while β1 > 0 (and β1 > |β2|)
ensures stability by fixing the overall magnitude (norm) of the
order parameter. The competition arises between the �α0 <

0 term, which favors the isotropic gyrotropic (J = 0) state,
and the β2 < 0 term, which favors the anisotropic α-phase
configuration.

To analyze the minimum of F [n] for a general real 3 × 3
matrix n, we employ the singular value decomposition (SVD),

n = U�V t , � =
⎛
⎝ f1

f2

f3

⎞
⎠, (A2)

where U and V are two 3 × 3 orthogonal matrices (UtU = I ,
V tV = I), and f1 � f2 � f3 � 0 are the singular values. Us-
ing the SVD, we can express the terms in the free energy,

nnt = U

⎛
⎝ f 2

1
f 2
2

f 2
3

⎞
⎠Ut . (A3)

Notice that f 2
i (i = 1, 2, 3) are the eigenvalues of positive

semidefinite symmetric real matrix nnt , and Tr(nnt ) ≡ λ2 =∑
i f 2

i . The diagonalizability of nnt by an orthogonal matrix,
ensured by the spectral theorem, forms the basis for the SVD
of n. In general, for any 3 × N matrix nμb with N = 2 in 2D
or N = 2l + 1 in 3D, nnt is always positive, semidefinite and
symmetric. The singular value decomposition takes similar
form as Eq. (A2), where the orthogonal matrices V now be-
comes N × N component.

The free energy functional F [n] can thus be written in
terms of the singular values and the orthogonal matrices U,V ,

F = −|α|
∑

i

f 2
i + |β1|

(∑
i

f 2
i

)2

− |β2|
∑

i

f 4
i + �α0

3
(Tr[W �])2,

where W = V tU is also an orthogonal matrix. We seek the
configuration ( fi,W ) that minimizes F . Let us analyze the
term involving �α0. Since we consider �α0 < 0, minimizing
F requires maximizing the term

(Trn)2 = (Tr[W �])2 =
(∑

i

Wii fi

)2

.

The trace |Tr(W �)| = |∑i Wii fi| � ∑
i |Wii| fi. Since W is

orthogonal, |Wii| � 1. The maximum possible value of
|Tr(W �)| for fixed fi occurs when Wii = 1 for all i, which
implies W = I . The condition W = V T U = I means U = V .
In this case, the SVD becomes n = V �V T , indicating that n
is a symmetric matrix, and the singular values fi are the ab-
solute values of the eigenvalues of n. Therefore, the minimum
of the free energy occurs within the manifold of symmetric
matrices n.

Setting U = V , the free energy depends only on the sin-
gular values fi (which are non-negative here, representing the
magnitude of eigenvalues),

F � F0[ f1, f2, f3] ≡ α
∑

i

f 2
i + β1

(∑
i

f 2
i

)2

+ �α0

3

(∑
i

fi

)2

+ β2

∑
i

f 4
i . (A4)
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We now minimize F0 in the regime α < 0, β1 > 0, �α0 < 0,
and β2 < 0. The term β1(λ2)2 + αλ2 is minimized when λ2 =
|α|/2β1, nearly fixing the overall scale. The competition is
between the �α0 term and the β2 term: The term �α0

3 (
∑

fi )2

(with �α0 < 0) is minimized when (
∑

fi )2 is maximized. For
a fixed norm, (

∑
fi )2 is maximized when f1 = f2 = f3. This

favors the isotropic gyrotropic state (n ∝ I). On the contrary,
the term β2

∑
f 4
i (with β2 < 0) is minimized when

∑
f 4
i is

maximized. For a fixed norm,
∑

f 4
i is maximized when one

eigenvalue dominates, i.e., f1 = f , f2 = f3 = 0. This favors
the anisotropic α phase (n ∝ ûût ).

Consider the structure of the solution. The �α0 term favors
making the eigenvalues fi as close as possible. Let us compare
a general state ( f1, f2, f3) where the two smaller eigenvalues

are averaged, ( f1, f̄ , f̄ ) where f̄ 2 = f 2
2 + f 2

3
2 ,

F0[ f1, f2, f3] − F0[ f1, f̄ , f̄ ]

= |�α0|
3

(
2
√

2 f1

√
f 2
2 + f 2

3 − 2 f1( f2 + f3)
)

+ |�α0|
3

( f2 − f3)2 − |β2|
2

(
f 2
2 − f 2

3

)2
.

Using 2( f 2
2 + f 2

3 ) � ( f2 + f3)2, the term in the first line is
always positive. For the contribution in the second line, �α0

would dominate if |β2| is smaller. This suggests that the min-
imum energy configuration with smaller |β2| satisfies f2 =
f3 = f̄ (assuming f1 � f2, f3). In the following, we restrict
to this regime.

Therefore, the ground-state configuration corresponds to
a symmetric matrix n = V �V T with � = diag( f1, f2, f2),
where the eigenvalues f1 � f2 � 0. The free energy becomes

F0[ f1, f2, f2] = − |α|( f 2
1 + 2 f 2

2

) + |β1|
(

f 2
1 + 2 f 2

2

)2

− |β2|
(

f 4
1 + 2 f 4

2

) − |�α0|
3

( f1 + 2 f2)2.

Minimizing this function with respect to f1 and f2 determines
the ground state. If |β2| is sufficiently small compared to
|�α0|, the �α0 term dominates, favoring the isotropic solution
f1 = f2. If |β2| is larger and involved, anisotropy will emerge
with f1 > f2.

The saddle point solution is given by dF0/df1 =
dF0/df2 = 0. To determined the critical values of β2 that
marks the boundary between the isotropic and anisotropic
phases for a given �α0, we perform a stability analysis of the
isotropic solution fi = f (i = 1, 2, 3). The value of f in the
isotropic state is found by minimizing F0[ f , f , f ], yielding

d

df
F0[ f , f , f ] = 0, f =

√
|α| + |�α0|

6|β1| − 2|β2| .

We then investigate the stability of this isotropic solution
against perturbations that break the symmetry towards the
f1 > f2 = f3 configuration. A convenient perturbation repre-
senting this tendency is f1 = f + 2δ, f2 = f3 = f − δ, which
keeps the norm fixed to the linear order in δ. We expand the

FIG. 7. Numerical minimization results for the singular values
( f1, f2, f3) of the order parameter matrix n (assuming n is symmet-
ric) as a function of |β2|. Parameters used are α = −10, β1 = 10,
�α0/3 = −0.5. For small |β2|, the configuration is isotropic ( f1 =
f2 = f3). As |β2| increases beyond a critical value, an anisotropic
configuration with f1 > f2 = f3 becomes energetically favorable.

free energy difference for small δ,

F0[ f + 2δ, f − δ, f − δ] − F0[ f , f , f ]

= −6(−3|�α0||β1| + 2|α||β2| + 3|�α0||β2|)
3|β1| − |β2| δ2 + O(δ3).

The isotropic state (corresponding to δ = 0) is stable if the co-
efficient of the δ2 term above is positive (i.e., energy increases
for δ �= 0). The onset of instability, marking the emergence
of the anisotropic phase (δ = 0), occurs when this coefficient
becomes negative. The critical condition is found by setting
the coefficient to zero, which gives

|β2c| = 3|�α0||β1|
2|α| + 3|�α0| . (A5)

This critical boundary is explicitly shown in Fig. 7. Exact
analytic solution for the critical boundary can be obtained
from considering the anisotropic saddle point. There is no
straightforward functional form for this critical boundary and
we omit this for simplicity.

This stability analysis is corroborated by direct numerical
minimization of the free energy functional F0[ f1, f2, f3], as
shown in Fig. 7. The results verify that the ground state
is either isotropic ( f1 = f2 = f3) or anisotropic with two
degenerate eigenvalues ( f1 > f2 = f3). Figure 8 explicitly
compares the analytical phase boundary predicted by Eq. (A5)
with the boundary determined from the numerical minimiza-
tion. The perturbative analysis gives rise the roughly order and
tendency of the critical boundary compared to the numerical
simulation. The plot illustrates that a larger anisotropy-driving
term (|β2|) is required to overcome the isotropy-favoring term
(|�α0|) when the latter is stronger.

In the anisotropic phase ( f1 > f2 = f3), the order param-
eter matrix n = V diag( f1, f2, f2)V T can be decomposed. Let
û be the eigenvector corresponding to f1 (the first column of
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FIG. 8. Comparison of the theoretically derived critical boundary
(black solid line) and the numerically determined phase boundary
(red dashed line) in the (�α0/3, β2) plane between the isotropic con-
figuration ( f1 = f2 = f3) favored for small |β2| and the anisotropic
configuration ( f1 > f2 = f3) owing to larger |β2|. Parameters used
are α = −10, β1 = 10.

V ). Then,

n = V

⎛
⎝ f2

f2

f2

⎞
⎠V t + V

⎛
⎝ f1 − f2

0
0

⎞
⎠V t

= f2I + ( f1 − f2)ûût .

Substituting this into the effective SOC term HSOC =∑
μb nμbσμk̂b, and using the relation σμ(ûût )μbk̂b = (σ ·

û)(k̂ · û), we obtain the effective Hamiltonian contribution,

HSOC = f2σ · k̂ + ( f1 − f2)(σ · û)(k̂ · û).

This Hamiltonian represents a superposition of the isotropic
gyrotropic SOC (J = 0 type, favored by �α0 < 0) and an
anisotropic term characteristic of the α phase (favored by
β2 < 0), giving rise to the Eq. (37) in the main text.

APPENDIX B: DETAILS OF THE GL ANALYSIS IN 2D

In 2D, the Landau functional up to the quartic order in the
presence of d-wave unconventional magnetism is given by

F [n] = α Tr(nnt ) + �α2
(
n2

z1 + n2
z2

)
+ β1 [Tr(nnt )]2 + β2 Tr[(nnt )2], (B1)

or in the form

F [�n1, �n2] = α(|�n1|2 + |�n2|2) + �α2
(
n2

z1 + n2
z2

)
+ (β1 + β2)(|�n1|2 + |�n2|2)2 − 2β2|�n1 × �n2|2.

For positive β1 + β2 > 0 and negative α < 0, finite order pa-
rameter nμb is favored. The structure of nμb or (�n1, �n2) will be
determined by �α2 and β2.

For �α2 > 0, the spin vectors, �n1 and �n2, tend to locate
within the plane. Then, positive β2 > 0 favors �n1 ⊥ �n2 and
|�n1| = |�n2|, e.g., we can choose �n1 = n̄x̂ and �n2 = n̄ŷ. For
negative β2 < 0, it will favor �n1 ‖ �n2, and we can choose
�n1 = n̄x̂ with �n2 = 0.

For �α2 < 0, the spin vectors, �n1 and �n2, tend to align
within z direction in the spin space. For negative β2 < 0, it

FIG. 9. Numerical minimization results for the singular values
( f1, f2) of the order parameter matrix n (assuming n is symmetric) as
a function of |β2|. Parameters used are α = −10, β1 = 10, �α2 =
−2. For small |β2|, the configuration is f2 = 0. As |β2| increases
beyond a critical value, f2 becomes finite.

will favor �n1 ‖ �n2, and we can choose �n1 = n̄ẑ with �n2 = 0.
Positive β2 > 0 will induce frustration within �α2 < 0. This
case will becomes more complicated. When �α2 < 0 dom-
inate, small β2 term is higher order in n, and the α phase
is stable against weak β2 perturbation. To further clarify this
picture, we consider the SVD as before.

For the real 3 × 2 matrix nμb (μ = x, y, z = 1, 2, 3 and b =
1, 2), its singular value decomposition is given by

n = U�V t , � =
⎛
⎝ f1 0

0 f2

0 0

⎞
⎠, (B2)

with 3 × 3 orthogonal matrix U and 2 × 2 orthogonal matrix
V (UtU = I , V tV = I), combined with real values f1 � f2 �
0. Then, we have

nnt = U

⎛
⎝ f 2

1
f 2
2

0

⎞
⎠Ut , Tr(nnt ) = f 2

1 + f 2
2 , (B3)

and f 2
i (i = 1, 2) are eigenvalues of the symmetric matrix nnt .

From the SVD, we can also have

n2
z1 + n2

z2 = U 2
31 f 2

1 + U 2
32 f 2

2 � f 2
1 ,

where under the constraint f1 � f2 and U 2
31 + U 2

32 + U 2
33 = 1,

the above quantity is maximized when U31 = ±1. Thus, we
can have

F � F0 = − |α|( f 2
1 + f 2

2

) + |β1|
(

f 2
1 + f 2

2

)2

− |�α2| f 2
1 + |β2|

(
f 4
1 + f 4

2

)
,

When |β2| = 0, F0 favors f2 = 0. On the contrary, when
|�α2| = 0, F0 favors f1 = f2. The numerical simulation result
is depicted in Fig. 9. The phase boundary between the f2 = 0
state and f2 > 0 state is numerically simulated, as shown in
Fig. 10.

Analytically, we can introduce the parametrization,
f2/ f1 = t and f 2 = f 2

1 + f 2
2 , or inversely, f1 = f /

√
1 + t2

and f2 = f t/
√

1 + t2. The saddle point is given by the
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FIG. 10. Numerically determined phase boundary (orange
dashed line) in the �α2 − β2 plane between the f2 = 0 configuration
and f2 > 0 configuration. Parameters used are α = −10, β1 = 10.

equation ∂F0[ f , t]/∂ f = 0, leading to

f 2 = |α|(t2 + 1) + |�α2|
(β1 + β2)(t4 + 1) + 2β1t2

t2 + 1

2
� 0,

which is always possible. For the stabilization of this solution,
we consider g(t ) = ∂F0[ f , t]/∂t = 0, namely,

t = 0, t2 = |α|β2 − |�α2|β1

|�α2|β1 + (|α| + |�α2|)β2
.

The critical boundary is given by

β2 = − β1

|α|�α2,

which matchess the numerical results in Fig. 10.
The generic ground state configuration in this case is

given by

n =(±ẑ û2 û3
)⎛⎝ f1 0

0 f2

0 0

⎞
⎠(

v̂t
1

v̂t
2

)
= (± f1ẑ f2û2

)(v̂t
1

v̂t
2

)
.

For precise, we can choose û2 = ŷ and V = I , which corre-
sponds to the effective d-wave spin-orbital coupled term,

Hd = ± f1σz cos(2θk ) + f2σy sin(2θk ),

leading to the term considered in the main text.
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