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Quaternion, an extension of complex number, is the first discovered non-
commutative division algebra by William Rowan Hamilton in 1843. In this
chapter, we review the recent progress in building up the connection between
the mathematical concept of quaternionic analyticity and the physics of high-
dimensional topological states. Three- and four-dimensional harmonic oscillator
wavefunctions are organized by the SU(2) Aharonov–Casher gauge potential to
yield high-dimensional Landau levels possessing the full rotational symmetries
and flat energy dispersions. The lowest Landau-level wavefunctions exhibit
quaternionic analyticity, satisfying the Cauchy–Riemann–Fueter condition, which
generalizes the two-dimensional complex analyticity to three and four dimensions.
It is also the Euclidean version of the helical Dirac and the chiral Weyl equations.
After dimensional reductions, these states become two- and three-dimensional
topological states maintaining time-reversal symmetry but exhibiting broken
parity. We speculate that quaternionic analyticity can provide a guiding principle
for future researches on high-dimensional interacting topological states. Other
progresses including high-dimensional Landau levels of Dirac fermions, their
connections to high-energy physics, and high-dimensional Landau levels in the
Landau-type gauges, are also reviewed. This research is also an important
application of the mathematical subject of quaternion analysis to theoretical
physics, and provides useful guidance for the experimental explorations on novel
topological states of matter.

4.1 Introduction

I feel honored to contribute to this memorial volume for Professor Shoucheng

Zhang. As one of his former Ph.D. students, I have been deeply influenced

by his insights and tastes on physics along my research career. Shoucheng

expressed that he liked our work on quaternion analyticity and high-

dimensional Landau levels. Hence, I review the progress in this direction

below.
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Quaternions, also called Hamilton numbers, are the first noncommutative

division algebra as a natural extension to complex numbers (see the

quaternion plaque in Fig. 4.1). Imaginary quaternion units i, j and k

are isomorphic to the anti-commutative SU(2) Pauli matrices −iσ1,2,3.
Hamilton used quaternions to represent three-dimensional (3D) and four-

dimensional (4D) rotations, and performed the product of two rotations

based on the quaternion multiplication. In fact, it is amazing that he was

well ahead of his time — equivalently he was using the spin-12 fundamental

representations of the SU(2) group, which was before quantum mechanics

was discovered. Nevertheless, the development of quaternoinic analysis

met significant difficulty since quaternions do not commute. An important

progress was made by Fueter in 1935 as reviewed in [1] who defined the

Cauchy–Riemann–Fueter condition for quaternionic analyticity. Amazingly

again, this is essentially the Euclidean version of the Weyl equation proposed

in 1929. Later on, there have been considerable efforts in constructing

quantum mechanics and quantum field theory based on quaternions [2–4].

On the other hand, the past decade has witnessed a tremendous

progress in the study of topological states of matter, in particular, time-

reversal invariant topological insulators in two dimensions (2D) and 3D.

Topological properties of their band structures are characterized by a

Z2-index, which are stable against time-reversal invariant perturbations

and weak interactions [5–15]. These studies are further developments of

quantum anomalous Hall insulators characterized by the integer-valued

Chern numbers [16, 17]. Later on, topological states of matter including

both insulating and superconducting states have been classified into ten

different classes in terms of their properties under the chiral, time-reversal,

and particle–hole symmetries [18,19]. These studies have mostly focused on

lattice systems. The wavefunctions of the Bloch bands are complicated, and

their energy spectra are dispersive, both of which are obstacles for the study

of high-dimensional fractional topological states.

In contrast, the 2D quantum Hall states [20, 21] are early examples of

topological states of matter studied in condensed matter physics. They arise

from the Landau-level quantization due to the cyclotron motion of electrons

in a magnetic field [22]. Their wavefunctions are simple and elegant, which

are basically harmonic oscillator wavefunctions. They are reorganized to

exhibit analytic properties by an external magnetic field.

Generally speaking, a 2D quantum mechanical wavefunction ψ(x, y) is

complex valued, but not necessarily complex analytic. We do not need

the whole set of 2D harmonic oscillator wavefunctions, but would like to

select a subset of them with nontrivial topological properties, then complex
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analyticity is a natural selection criterion. Indeed, the lowest Landau-level

wavefunctions exhibit complex analyticity. Mathematically, it is imposed by

the Cauchy–Riemann condition (see Eq. (4.4) in the text), and physically it

is implemented by a magnetic field, which reflects the fact that the cyclotron

motion is chiral. This fact greatly facilitated the construction of the Laughlin

wavefunction in the study of fractional quantum Hall states [23].

How to generalize Landau levels to 3D and even higher dimensions is

a challenging question. A pioneering work was done by Shoucheng and his

former student Jiangping Hu in 2001 [24]. They constructed the Landau-level

problem on the compact space of an S4 sphere, which generalizes Haldane’s

formulation of the 2D Landau levels on an S2 sphere. Haldane’s construction

is based on the first Hopf map [25], in which a particle is coupled to the

vector potential from a U(1) magnetic monopole. Zhang and Hu considered

a particle lying on the S4 sphere coupled to an SU(2) monopole gauge field,

and employed the second Hopf map which maps a unit vector on an S4

sphere to a normalized 4-component spinor. The Landau-level wavefunctions

are expressed in terms of the four components of the spinor. Such a

system is topologically nontrivial characterized by the second Chern number

possessing time-reversal symmetry. This construction is very beautiful,

however, it needs significantly advanced mathematical physics knowledge

which may not be common for the general readers in the condensed matter

physics, and atomic, molecular, and optical physics community.

We have constructed high-dimensional topological states (e.g., 3D and

4D) based on harmonic oscillator wavefunctions in flat spaces [26, 27].

They exhibit flat energy dispersions and nontrivial topological properties,

hence, they are generalizations of the 2D Landau-level problem to high

dimensions. Again we will select and reorganize a subset of wavefunctions

in seeking for nontrivial topological properties. The strategy we employ is

to use quaternion analyticity as the new selection criterion to replace the

previous one of complex analyticity. Physically, it is imposed by spin–orbit

coupling, which couples orbital angular momentum and spin together to

form the helicity structure. In other words, the helicity generated by spin–

orbit coupling plays the role of 2D chirality due to the magnetic field. Our

proposed Hamiltonians can also be formulated in terms of spin-12 fermions

coupled to an SU(2) gauge potential, or, an Aharonov–Casher potential.

Gapless helical Dirac surface modes, or, chiral Weyl modes, appear on open

boundaries manifesting the nontrivial topology of bulk states.

We have also constructed high-dimensional Landau levels of Dirac

fermions [28], whose Hamiltonians can be interpreted in terms of complex

quaternions. The zeroth Landau levels of Dirac fermions are a branch of
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half-fermion Jackiw–Rebbi modes [29], which are degenerate over all the 3D

angular momentum quantum numbers. Unlike the usual parity anomaly and

chiral anomaly in which massless Dirac fermions are minimally coupled to

the background gauge fields, these Dirac Landau-level problems correspond

to a nonminimal coupling between massless Dirac fermions and background

fields. This problem lies at the interfaces among condensed matter physics,

mathematical physics, and high-energy physics.

High-dimensional Landau levels can also be constructed in the Landau-

type gauge, in which rotational symmetry is explicitly broken [30]. The

helical, or, chiral plane-waves are reorganized by spatially dependent spin–

orbit coupling to yield nontrivial topological properties. The 4D quantum

Hall effect of the SU(2) Landau levels has also been studied in the Landau-

type gauge, which exhibits the quantized nonlinear electromagnetic response

as a spatially separated 3D chiral anomaly.

We speculate that quaternionic analyticity would act as a guiding

principle for studying high-dimensional interacting topological states, which

is a major challenging question. The high-dimensional Landau-level problems

reviewed below provide an ideal platform for this research. This research is

at the interface between mathematical and condensed matter physics, and

has potential benefits to both fields.

This chapter is organized as follows. In Sec. 4.2, histories of complex

number and quaternion, and the basic knowledge of complex analysis

and quaternion analysis are reviewed. In Sec. 4.3, the 2D Landau-level

problems are reviewed for both nonrelativistic particles and relativistic

particles. The complex analyticity of the lowest Landau-level wavefunctions

is presented. In Sec. 4.4, the constructions of high-dimensional Landau

levels in 3D and 4D with explicit rotational symmetries are reviewed. The

quaternionic analyticity of the lowest Landau-level wavefunctions, and the

bulk–boundary correspondences in terms of the Euclidean and Minkowski

versions of the Weyl equation are presented. In Sec. 4.5, we review the

dimensional reductions from the 3D and 4D Landau-level problems to yield

the 2D and 3D isotropic but parity-broken Landau levels, respectively.

They can be constructed by combining a harmonic potential and a linear

spin–orbit coupling. In Sec. 4.6, the high-dimensional Landau levels of

Dirac fermions are constructed, which can be viewed as Dirac equations

in phase spaces. They are related to gapless Dirac fermions nonminimally

coupled to background fields. In Sec. 4.7, high-dimensional Landau levels

in the anisotropic Landau-type gauge are reviewed. The 4D quantum Hall
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responses are derived as a spatially separated chiral anomaly. Conclusions

and outlooks are presented in Sec. 4.8.

4.2 Histories of complex number and quaternion

4.2.1 Complex number

Complex number plays an essential role in mathematics and quantum

physics. The invention of complex number was actually related to the history

of solving the algebraic cubic equations, rather than solving the quadratic

equation of x2 = −1. If one lived in the 16th century, one could simply say

that such an equation has no solution. But cubic equations are different.

Consider a reduced cubic equation x3 + px+ q = 0, which can be solved by

using radicals. Here is the Cardano formula,

x1 = c1 + c2, x2 = c1e
i 2π

3 + c2e
−i 2π

3 , x3 = c1e
−i 2π

3 + c2e
i 2π

3 , (4.1)

where

c1 =
3

√
−q
2
+

√
Δ, c2 =

3

√
−q
2
−

√
Δ, (4.2)

with the discriminant Δ = ( q2)
2 + (p3)

3. The key point of the expressions

in Eq. (4.1) is that they involve complex numbers. For example, consider a

cubic equation with real coefficients and three real roots x1,2,3. It is purely a

real problem: It starts with real coefficients and ends up with real solutions.

Nevertheless, it can be proved by the Galois theory that there is no way

to bypass i. Complex conjugate numbers appear in the intermediate steps,

and finally they cancel to yield real solutions. As a concrete example, for

the case that p = −9 and q = 8, complex numbers are unavoidable since√
Δ =

√−11. The readers may check how to arrive at three real roots of

x1,2,3 = 1,−1
2 ±

√
33
2 .

Once the concept of complex number was accepted, it opened up an entire

new field for both mathematics and physics. Early developments include the

geometric interpretation of complex numbers in terms of the Gauss plane,

the application of complex numbers for two-dimensional rotations, and the

Euler formula

eiθ = cos θ + i sin θ. (4.3)

The complex phase appears in the Euler formula, which is widely used

in describing mechanical and electromagnetic waves in classic physics, and

also quantum mechanical wavefunctions. Moreover, when a complex-valued
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function f(x, y) satisfies the Cauchy–Riemann condition,

∂f

∂x
+ i

∂f

∂y
= 0, (4.4)

it only depends on z = x+ iy but not on z̄ = x− iy. The Cauchy–Riemann

condition sets up the foundation of complex analysis, giving rise to the

Cauchy integral,

1

2πi

∮
1

z − z0
dzf(z) = f(z0). (4.5)

For physicists, a practical use of complex analysis is to calculate loop

integrals. Certainly, its importance is well beyond this. Complex analysis is

the basic tool for many modern branches of mathematics. For example, it

gives rise to the most elegant proof to the fundamental theorem of algebra: An

algebraic equation f(z) = 0, i.e., f(z) is an nth-order polynomial of z, has n

complex roots. The proof is essentially to count the phase winding number

of 1/f(z) as moving around a circle of radius R → +∞. On this circle,

1/f(z) → z−n, then the winding number simply equals −n. On the other

hand, the winding number is a topological invariant equal to the negative of

the number of poles of 1/f(z). Hence, n equals the number of zeros of f(z).

Complex analysis is also the basic tool of number theory: The Riemann

hypothesis, which aims at studying the distribution of prime numbers, is

formulated as a complex analysis problem of the distributions of the zeros

of the Riemann ζ(z)-function.

Complex numbers actually are inessential in the entire scope of classical

physics. It is well known that the complex number description for classic

waves is only a convenience but not necessary. The first time that complex

numbers are necessary is in quantum mechanics — the Schrödinger equation,

i�∂tψ = Hψ. (4.6)

In contrast, classic wave equations only involve ∂2t , and i disappears since

its square equals −1. In fact, Schrödinger attempted to eliminate i in his

equation, but did not succeed. Hence, to a certain extent, i, or, the complex

phase, is more important than � in quantum physics.

4.2.2 Quaternion and quaternionic analyticity

Since 2D rotations can be elegantly described by the multiplication of

complex numbers, it is reasonable to expect that 3D rotations could also be

described in a similar way by extending complex numbers to include the third

dimension. Simply adding another imaginary unit j to construct x+ yi+ zj

does not work, since the product of two imaginary units ij �= i �= j �= ±1.
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Fig. 4.1. The quaternion plaque on Brougham Bridge, Dublin. From wikipedia, https://
en.wikipedia.org/wiki/History of quaternions.

It has to be a new imaginary unit defined as k = ij, and then the quaternion

is constructed as

q = x+ yi+ zj + uk. (4.7)

The quaternion algebra,

i2 = j2 = k2 = ijk = −1, (4.8)

was invented by Hamilton in 1843 when he passed the Brougham bridge in

Dublin (see Fig. 4.1). He realized in a genius way that the product table of

the imaginary units cannot be commutative. In fact, it can be derived based

on Eq. (4.8) that i, j, and k anti-commute with one another, i.e.,

ij = −ji, jk = −kj, ki = −ik. (4.9)

This is the first noncommutative division algebra discovered, and actually

it was constructed before the invention of the concept of matrix. In modern

mathematical language, quaternion imaginary units are isomorphic to the

Pauli matrices −iσ1,−iσ2,−iσ3.
Hamilton employed quaternions to describe the 3D rotations. Essentially

he used the spin-12 spinor representation: Consider a 3D rotation R around

the axis along the direction of Ω̂ and the rotation angle is γ. Define a unit

imaginary quaternion,

ω(Ω̂) = i sin θ cosφ+ j sin θ sinφ+ k cos θ, (4.10)

https://en.wikipedia.org/wiki/History_of_quaternions
https://en.wikipedia.org/wiki/History_of_quaternions
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where θ and φ are the polar and azimuthal angles of Ω̂. Then the unit

quaternion associated with such a rotation is defined as

q = cos
γ

2
+ ω(Ω̂) sin

γ

2
, (4.11)

which is essentially an SU(2) matrix. A 3D vector �r is mapped to an

imaginary quaternion r = xi+ yj + zk. After the rotation, �r is transformed

to �r′, and its quaternion form is

r′ = qrq−1. (4.12)

This expression defines the homomorphism from SU(2) to SO(3). In fact,

using quaternions to describe rotation is more efficient than using the 3D

orthogonal matrix, hence, quaternions are widely used in computer graphics

and aerospace engineering even today. If set �r = ẑ in Eq. (4.12), and let q

run over unit quaternions, which span the S3 sphere, then a mapping from

S3 to S2 is defined as

n = qkq−1, (4.13)

which is the first Hopf map.

Hamilton spent the last 20 years of his life to promote quaternion appli-

cations [8]. His ambition was to invent quaternion analysis which could be as

powerful as complex analysis. Unfortunately, this was not successful because

of the noncommutative nature of quaternions. Nevertheless, Fueter found

the analogy to the Cauchy–Riemann condition for quaternion analysis [1,31].

Consider a quaternionically valued function f(x, y, z, u): It is quaternionic

analytic if it satisfies the following Cauchy–Riemann–Fueter condition,

∂f

∂x
+ i

∂f

∂y
+ j

∂f

∂z
+ k

∂f

∂u
= 0. (4.14)

Equation (4.14) is the left-analyticity condition since imaginary units are

multiplied from the left. A right-analyticity condition can also be similarly

defined in which imaginary units are multiplied from the right. The left

one is employed throughout this chapter for consistency. For a quaternionic

analytic function, the analogy to the Cauchy integral is

1

2π2
1

|q − q0|2(q − q0)
Dqf(q) = f(q0), (4.15)

where the integral is over a closed three-dimensional volume surrounding q0.

The measure of the volume element is

D(q) = dy ∧ dz ∧ du− idx ∧ dz ∧ du+ jdx ∧ dy ∧ du− kdx ∧ dy ∧ dz
(4.16)
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and K(q) is the four-dimensional Green’s function,

K(q) =
1

q|q|2 =
x− yi− zj − uk

(x2 + y2 + z2 + u2)2
. (4.17)

There have also been considerable efforts in formulating quantum

mechanics and quantum field theory based on quaternions instead of complex

numbers [2, 3]. Quaternions are also used to construct the Laughlin-like

wavefunctions of the 2D fractional quantum Hall states [32].

As discussed in “Selected Papers (1945–1980) of Chen Ning Yang with

Commentary” [4], C. N. Yang speculated that quaternion quantum theory

would be a major revolution to physics, mostly based on the viewpoint

of non-Abelian gauge theory. He wrote, “. . . I continue to believe that the

basic direction is right. There must be an explanation for the existence of

SU(2) symmetry: Nature, we have repeatedly learned, does not do random

things at the fundamental level. Furthermore, the explanation is most likely

in quaternion algebra: its symmetry is exactly SU(2). Besides, the quaternion

algebra is a beautiful structure. Yes, it is noncommutative. But we have

already learned that nature chose noncommutative algebra as the language

of quantum mechanics. How could she resist using the only other possible

nice algebra as the language to start all the complex symmetries that she

built into the universe?”

4.3 Complex analyticity and two-dimensional Landau levels

In this section, I recapitulate the basic knowledge of the 2D Landau-level

problem, including the Landau levels of both the nonrelativistic Schrödinger

equation in Sec. 4.3.1 and the Dirac equation in Sec. 4.3.2. I explain the

complex analyticity of the 2D lowest Landau-level wavefunctions.

4.3.1 2D Landau levels for nonrelativistic electrons

Why are the 2D Landau-level wavefunctions so interesting? The answer

is their elegancy. The external magnetic field reorganizes the harmonic

oscillator wavefunctions to yield analytic properties. To be concrete, the

Hamiltonian for a 2D electron moving in an external magnetic field B reads,

H2D,sym =
(�P − q

c
�A)2

2M
. (4.18)

In the symmetric gauge, i.e., Ax = −1
2By and Ay = 1

2Bx, the 2D rotational

symmetry is explicit. The diamagnetic A2-term corresponds to the harmonic
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potential, and the cross term becomes the orbital-Zeeman term. Then

Eq. (4.18) can be reformulated as

H2D,sym =
P 2
x + P 2

y

2M
+

1

2
Mω2

0(x
2 + y2)− ω0Lz, (4.19)

where ω0 is half of the cyclotron frequency ωc with ωc = qB/(Mc) and

qB > 0 is assumed. Equation (4.19) can be interpreted as the Hamiltonian

of a rotating 2D harmonic potential, which is how the Landau-level physics

is realized in cold atom systems.

Since the harmonic potential and orbital-Zeeman term commute, the

Landau-level wavefunctions are just those of a 2D harmonic oscillator. In

Fig. 4.2(a), the spectra of a 2D harmonic oscillator vs. the magnetic quantum

number m are plotted, exhibiting a linear dependence on m as Enr,m =

�ω0(2nr +m + 1) where nr is the radial quantum number. If we view this

diagram horizontally, the degeneracies are finite and no nontrivial topology

appears. But if they are viewed along the diagonal direction, they become

Landau levels. This reorganization is due to the orbital-Zeeman term, which

also disperses linearly EZ = −m�ω0. It cancels the same linear dispersion of

a 2D harmonic oscillator, such that the Landau-level energies are flat. The

states with nr = 0 are the lowest Landau-level states, whose wavefunctions

are given by

ψLLL,m(z) = zme−|z|2/(4l2B), (4.20)

where m ≥ 0 and the magnetic length lB =
√

�c/(qB).

m
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Fig. 4.2. (a) The energy level diagram of a 2D harmonic oscillator vs. the magnetic
quantum number m. The states along the tilted lines are reorganized into the 2D flat
Landau levels. (b) The eigenstates of a 3D harmonic oscillator labeled by the total
angular momentum j± = l ± 1

2
Following the tilted solid (dashed) lines, these states

are reorganized into the 3D Landau-level states with the positive (negative) helicity for
H±

3D,symm, respectively. From Ref. [27].
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Now we impose complex analyticity, i.e., the Cauchy–Riemann condition,

to select a subset of harmonic oscillator wavefunctions. Physically it is

implemented by the magnetic field. It just means that the cyclotron motion

is chiral. After suppressing the Gaussian factor, the lowest Landau-level

wavefunction is simply as,

ψLLL(z) = f(z), (4.21)

which has a one-to-one correspondence to a complex analytic function in the

2D plane. In fact, complex analyticity greatly facilitated the construction of

the many-body Laughlin wavefunctions [23],

ψL(z1, . . . , zn) =
∏
i<j

(zi − zj)
3e

−∑

i

|zi|2
4l2

B , (4.22)

which is actually an analytic function of several complex variables.

Along the edge of a 2D Landau-level system, the bulk flat states change

to the 1D dispersive chiral edge modes. They satisfy the chiral wave equation

[22], (
1

vf

∂

∂t
− ∂

∂x

)
ψ(x, t) = 0, (4.23)

where vf is the Fermi velocity.

4.3.2 2D Landau levels for Dirac fermions

This is a square-root problem of the Landau-level Hamiltonian of a

Schrödinger fermion in Eq. (4.18). The Hamiltonian reads [33],

HD
2D = l0ω{(px −Ax)σx + (py −Ay)σy}, (4.24)

where Ax = −1
2By, Ay = 1

2Bx, l0 =
√

2�c
|qB| , and ω = |qB|

2mc . It can be recast

in the form of

HD
2D =

�ω√
2

[
0 a†y + ia†x

ay − iax 0

]
, (4.25)

where ai = 1√
2
(xi/l0 + ipil0/�) (i = x, y) are the phonon annihilation

operators.

The square of Eq. (4.25) is reduced to the Landau-level Hamiltonian of

a Schrödinger fermion with a supersymmetric structure as

(HD
2D)

2

/(
1

2
�ω

)
=

[
H2D,sym − 1

2�ω 0

0 H2D,sym + 1
2�ω

]
, (4.26)
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where H2D,sym is given in Eq. (4.19). The spectra of Eq. (4.25) are E±n =

±√
n�ω where n is the Landau-level index. The zeroth Landau-level states

are singled out: Only the upper component of their wavefunctions is non-

zero,

ΨD
2D,LLL(z) =

(
ψLLL(z)

0

)
. (4.27)

Here, ψLLL(z) is the 2D lowest Landau-level wavefunctions of the

Schrödinger equation, which is complex analytic. Other Landau levels with

positive and negative energies distribute symmetrically around the zero

energy.

Due to the particle–hole symmetry, each state of the zeroth Landau-

level is a half-fermion Jackiw–Rebbi mode [29, 34]. When the chemical

potential μ approaches 0±, the zeroth Landau-level is fully occupied, or,

empty, respectively. The corresponding electromagnetic response is,

jμ = ± 1

8π

q2

�
εμνλFνλ, (4.28)

which is known as the 2D parity anomaly [33, 35–37]. The signs ± in

Eq. (4.28) refer to μ = 0±, respectively. The two spatial components of

Eq. (4.28) show the half-quantized quantum Hall conductance, and the

temporal component is the half-quantized Streda formula [38].

4.4 3D Landau-level and quaternionic analyticity

We have seen the close connection between complex analyticity and

the 2D topological states. In this section, we discuss how to construct

high-dimensional topological states in flat spaces based on quaternionic

analyticity.

4.4.1 The 3D Landau-level Hamiltonian

Our strategy is to construct the 3D Landau levels based on high-dimensional

harmonic oscillator wavefunctions. Again we select a subset of them and

reorganize them to exhibit nontrivial topological properties: The selection

criterion is quaternionic analyticity, and physically it is a consequence of

spin–orbit coupling. The physical picture of the 3D Landau-level wavefunc-

tions in the symmetric-like gauge is intuitively presented in Fig. 4.3(a),

which generalizes the fixed complex plane in the 2D Landau-level problem

to a moving frame embedded in 3D. Define a frame with the orthogonal

axes ê1, ê2, and ê3, and the complex analytic wavefunctions are defined in
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(a) (b)

Fig. 4.3. (a) The coherent state picture for the 3D lowest Landau-level wavefunctions
based on Eq. (4.31). ê1–ê2–ê3 form an orthogonal triad. The lowest Landau-level
wavefunction is complex analytic in the orbital plane ê1–ê2 with spin polarized along
ê3. (b) The surface spectra for the 3D Landau-level Hamiltonian equation (4.29). The
open boundary condition is imposed for a ball with the radius R0/lso = 8. From Ref. [27].

the ê1–ê2 plane with spin polarized along the ê3-direction. Certainly this

frame can be rotated to an arbitrary configuration. The same strategy can

be applied to any high dimensions.

Now we present the 3D Landau-level Hamiltonian as constructed in [27].

Consider coupling a spin-12 fermion to the 3D isotropic SU(2) Aharonov–

Casher potential �A = G
2 �σ × �r where G is the coupling constant and �σ’s are

the Pauli matrices. The resultant Hamiltonian is

H±
3D,sym =

1

2M

(
�P − q

c
�A(�r)

)2
+ V (�r)

=
P 2

2M
+

1

2
Mω2

0r
2 ∓ ω0�σ · �L, (4.29)

where ± refer to G > 0(<0), respectively; ω0 = 1
2ωso and ωso = |qG|/(Mc)

is the analogy of the cyclotron frequency. V (r) = −1
2Mω2

0r
2, nevertheless,

the 1
2M ( qc )

2A2(r) term in the kinetic energy contributes a quadratic scalar

potential which equals 2|V (r)|, hence, Eq. (4.29) is still bound from below. In

contrast to the 2D case,H±
3D,sym preserve time-reversal symmetry. It can also

be formulated as a 3D harmonic potential plus a spin–orbit coupling term.

Again since these two terms commute, the 3D Landau-level wavefunctions

are just the eigenstates of a 3D harmonic oscillator.

Consider the eigenstates of a 3D harmonic oscillator with an additional

spin degeneracy ↑ and ↓. For later convenience, their eigenstates are

organized into the eigenbases of the total angular momentum j± = l ± 1
2 ,
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where ± represent the positive and negative helicities, respectively. The cor-

responding spectra are plotted in Fig. 4.2(b), showing a linear dispersion

with respect to l as Enr,J±=l± 1
2
,Jz

= �ω0

(
2nr + l + 3

2

)
.

Again, if we view the spectra along the diagonal direction, the novel

topology appears. The spin–orbit coupling term �σ · �L has two branches of

eigenvalues, both of which disperse linearly as l� and −(l + 1)� for the

positive and negative helicity sectors, respectively. Combining the harmonic

potential and spin–orbit coupling, we arrive at the flat Landau levels: For

H+
3D, the positive helicity states become dispersionless with respect to j+, a

main feature of Landau levels. Similarly, the negative helicity states become

flat for H−
3D. States in the 3D Landau levels exhibit the same helicity.

4.4.2 The SU(2) group manifold for the lowest Landau-level

wavefunctions

Having understood why the spectra are flat, now we provide an intuitive

picture for the lowest Landau-level wavefunctions with the positive helicity.

If expressed in the orthonormal basis of (j+, jz), they are rather complicated,

ψLLL,j+=l+ 1
2
,jz
(r, Ω̂) = rlYj+=l+ 1

2
,jz
(Ω̂)e

− r2

4l2so , (4.30)

where lso =
√

�c/|qG| is the analogy of the magnetic length and

Yj+=l+ 1
2
,jz
(Ω̂) is the spin–orbit coupled spherical harmonic function with

the positive helicity.

Instead, they become very intuitive in the coherent state representation.

Let us start with the highest weight states with j+ = jz, whose wavefunctions

are ψLLL,j+=jz(r, Ω̂) = (x+ iy)l exp{− r2

4l2so
} ⊗ | ↑〉. Their spins are polarized

along the z-direction and the orbital channel wavefunctions are complex

analytic in the xy plane. We then perform a general SU(2) rotation such that

the xyz-frame is rotated to the frame of ê1–ê2–ê3. For a coordinate vector �r,

its projection in the ê1–ê2-plane forms a complex variable �r · (ê1+ iê2) based
on in which plane we construct complex analytic functions.

Now it is clear why spin–orbit coupling is essential. Otherwise, if the

orbital plane ê1–ê2 is flipped, then the complex variable changes to its

conjugate, and the complex analyticity is lost. Nevertheless, the spin is

polarized perpendicular along the ê3, which also flips during the flipping

of the orbital plane, such that the helicity remains invariant. In general, we

can perform an arbitrary SU(2) rotation on the highest weight states and

arrive at a set of coherent states forming the over-complete bases of the
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lowest Landau-level states as

ψLLL,ê1,2,3,j+(r, Ω̂) = [(ê1 + iê2) · �r]le−
r2

4l2so ⊗ |αê3〉, (l ≥ 0), (4.31)

where (ê3 · �σ)|αê3〉 = |αê3〉.
Now we can make comparisons among harmonic oscillator wavefunctions

in different dimensions:

(1) In 1D, there are only real Hermite polynomials.

(2) In 2D, a subset of harmonic wavefunctions zm (lowest Landau-level) are

selected exhibiting the U(1) structure.

(3) In 3D, define a moving frame ê1–ê2–ê3, which is the same as the rigid-

body configuration. The complex plane is ê1–ê2. In other words, the

configuration space of the 3D lowest Landau-level states is that of a

triad, or, the SU(2) group manifold.

Since the SU(2) group manifold is isomorphic to the space of unit

quaternions, this motivates us to consider the analytic structure in terms

of quaternions, which will be presented in Sec. 4.4.4.

4.4.3 The off-centered solutions to the lowest

Landau-level states

Different from the 2D Landau-level Hamiltonian, which possesses the

magnetic translation symmetry, the 3D Landau-level Hamiltonian equation

(4.29) does not possess such a symmetry due to the non-Abelian nature

of the SU(2) gauge potential. Nevertheless, based on the coherent state

representation described by Eq. (4.31), we can define magnetic translations

within the ê1–ê2-plane, and organize the off-centered solutions in the 3D

lowest Landau-level.

Consider all the coherent states in the ê1–ê2-plane described by Eq.

(4.31). We define the magnetic translation for this set of states as

Tê3(
�δ) = exp

(
−�δ · �∇+

i

4l2so
�r12 · (ê3 × �δ)

)
, (4.32)

where the translation vector �δ lies in the ê1,2-plane and �r12 = �r − ê3(�r · ê3).
Set ê1 = ẑ, and the normal vector ê3 lying in the xy-plane with an azimuthal

angle φ′, i.e., ê3(φ′) = x̂ cosφ′ + ŷ sinφ′, then αê3(φ
′) = 1√

2
(| ↑〉 + eiφ

′ | ↓〉).
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Consider the lowest Landau-level states localized at the origin,

ψl=0,ê3(r, Ω̂) = e
− r2

4l2so ⊗ |αê3〉, (4.33)

and translate it along ẑ at the distance R. According to Eq. (4.32), we

arrive at

ψφ′,R(ρ, φ, z) = e
i 1

2l2so
Rρ sin(φ−φ′)

e−|�r−Rẑ|2/4l2so ⊗ αê3(φ
′), (4.34)

where ρ =
√
x2 + y2 and φ is the azimuthal angular of �r in the xy-plane.

We can restore the rotational symmetry around the ẑ-axis by performing

the Fourier transform with respect to the angle φ′, i.e., ψjz=m+ 1
2
,R(ρ, φ, z) =∫ 2π

0
dφ′
2π e

imφ′
ψφ′,R. Then the resultant off-centered lowest Landau-level states

are the eigenstates of jz as

ψjz=m+ 1
2
,R(ρ, φ, z) = e

−|�r−Rẑ|2
4l2so eimφ{Jm(x)| ↑〉+ Jm+1(x)e

iφ| ↓〉},
(4.35)

where x = Rρ/(2l2so). It describes a wavefunction with the shape of an

ellipsoid, whose distribution in the xy-plane is within the distance ofml2so/R.

The states ψ± 1
2
,R have the narrowest waist sizes, and their aspect ratio

scales as lso/R as R goes large. On the other hand, for those states with

|m| < R/lso, they localize within the distance of lso from the center located

at Rẑ. As a result, the real space local density of states of the lowest Landau-

level grows linearly with R.

4.4.4 Quaternionic analyticity of the lowest Landau level

wavefunctions

In analogy to complex analyticity of the 2D lowest Landau-level states, we

proved that the helicity structure of the 3D lowest Landau levels leads to

quaternionic analyticity.

Just like two real numbers forming a complex number, a two-component

complex spinor ψ = (ψ↑, ψ↓)T can be mapped to a quaternion by multiplying

a j to the second component,

f = ψ↑ + jψ↓. (4.36)

Then, the familiar symmetry transformations can be represented via multi-

plying quaternions. The time-reversal transformation iσ2ψ
∗ becomes Tf =

−fj satisfying T 2 = −1. The U(1) phase eiθ → feiθ, and the SU(2) rotation
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becomes

ei
φ
2
σxψ → ek

φ
2 f, ei

φ
2
σyψ → ej

φ
2 f, ei

φ
2
σzψ → e−iφ

2 f. (4.37)

To apply the Cauchy–Reman–Fueter condition Eq. (4.14) to 3D, we

simply suppress the fourth coordinate,

∂f

∂x
+ i

∂f

∂y
+ j

∂f

∂z
= 0. (4.38)

We prove a remarkable property below that this condition (Eq. (4.38))

is rotationally invariant.

Lemma 4.1. If a quaternionic wavefunction f(x, y, z) is quaternionic

analytic, i.e., it satisfies the Cauchy–Riemann–Fueter condition, then after

an arbitrary SU(2) rotation, the consequential wavefunction f ′(x, y, z)
remains quaternionic analytic.

Proof. Consider an arbitrary SU(2) rotation g(α, β, γ) = e−iα
2
σze−iβ

2
σy

e−i γ
2
σz , where α, β, γ are Euler angles. In the quaternion representation, it

maps to g = ei
α
2 e−j β

2 ei
γ
2 . After this rotation f(x, y, z) transforms to

f ′(x, y, z) = ei
α
2 e−j β

2 ei
γ
2 f(x′, y′, z′), (4.39)

where (x′, y′,z′) are the coordinates by applying g−1 on (x, y, z). It can be

checked that(
∂

∂x
+ i

∂

∂y
+ j

∂

∂z

)
ei

α
2 e−j β

2 ei
γ
2 = ei

α
2 e−j β

2 ei
γ
2

(
∂

∂x′
+ i

∂

∂y′
+ j

∂

∂z′

)
.

(4.40)

Then we have (
∂

∂x
+ i

∂

∂y
+ j

∂

∂z

)
f ′(x, y, z) = 0. (4.41)

Hence, the Cauchy–Riemann–Fueter condition is rotationally invariant. �

Based on this lemma, we prove the quaternionic analyticity of the 3D

lowest Landau-level wavefunctions.

Theorem 4.1. The 3D lowest Landau-level wavefunctions of H+
3D,sym in

Eq. (4.29) have a one-to-one correspondence to the quaternionic analytic

polynomials in 3D.

Proof. We denote the quaternionic polynomials, which correspond to the

orthonormal bases of the lowest Landau-level wavefunctions in Eq. (4.30),
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as fLLLj+,jz
with j+ = l + 1

2 , and −j+ ≤ jz ≤ j+. The highest weight states

fLLLj+,j+
= (x + iy)l are complex analytic in the xy-plane, hence, they are

obviously quaternionic analytic. Since all the coherent states can be obtained

from the highest weight states via rotations, they are also quaternionic

analytic. The coherent states form a set of overcomplex basis of the lowest

Landau level wavefunctions, hence all the lowest Landau-level wavefunctions

are quaternionic analytic.

Next we prove the completeness that fLLLj+,jz
’s form the complete basis

of the quaternionic analytic polynomials in 3D. By counting the degrees

of freedom of the lth-order polynomials of x, y, z, and the number of the

constraints from Eq. (4.38), we calculate the total number of the linearly

independent lth-order quaternionic analytic polynomials as C2
l+2 − C2

l+1 =

l + 1. On the other hand, any lowest Landau-level state in the sector of

j+ = l + 1
2 can be represented as

fl(x, y, z) =
l∑

m=0

fLLL
j+=l+ 1

2
,jz=m+ 1

2

qm, (4.42)

where qm is a quaternion constant coefficient. Please note that qlm’s are

multiplied from right according to the convention equation (4.36). In Eq.

(4.42), we have taken into account the fact fLLLj+,−jz
= −fLLLj+,−jz

j due to the

time-reversal transformation. Hence, the degrees of freedom in the lowest

Landau-level with j+ = l+ 1
2 are also l+1 in the quaternion sense. Hence, the

lowest Landau-level wavefunctions are complete for the quaternionic analytic

polynomials. �

4.4.5 Generalizations to 4D and above

The above procedure can be straightforwardly generalized to four and even

higher dimensions. To proceed, we need to employ the Clifford algebra

Γ-matrices. Their ranks in different dimensions and concrete representations

are presented in Appendix A. Then we employ the N -dimensional (ND)

harmonic oscillator potential combined with spin–orbit coupling as

HND,LL =
p2ND

2m
+

1

2
mω2

0r
2
ND − ω0

∑
1≤i<j≤N

ΓijLij , (4.43)

where Lij = ripj−rjpi. The spectra of Eq. (4.43) were studied in the context

of the supersymmetric quantum mechanics [39]. However, its connection with

Landau levels was not noticed there. The spin operators in N -dimensions are

defined as 1
2Γij .
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For the 4D case, the minimal representations for the Γ-matrices are still

two-dimensional. They are defined as

Γij = − i

2
[σi, σj ], Γi4 = ±σi, (4.44)

with 1 ≤ i < j ≤ 3. The ± signs of Γi4 correspond to two complex conjugate

irreducible fundamental spinor representations of SO(4), and the + sign

will be taken below. The spectra of the positive helicity states are flat as

E+,nr = (2nr + 2)�ω. The coherent state picture for the 4D lowest Landau

levels can be similarly constructed as follows: Again pick up two orthogonal

axes ê and f̂ to form a 2D complex plane, and define complex analytic

functions therein as,

(xaêa + ixaf̂a)
le

− r2

4l2so ⊗ |αê,f̂ 〉, (4.45)

where |αê,f̂ 〉 is the eigenstate of Γê,f̂ = êaf̂bΓ
ab satisfying

Γê,f̂ |αê,f̂ 〉 = |αê,f̂ 〉. (4.46)

Hence, its spin is locked with its orbital angular momentum in the ê–f̂ -plane.

Following the similar methods in Sec. 4.4.4, we can prove that the 4D

lowest Landau-level wavefunctions for Eq. (4.43) satisfy the 4D Cauchy–

Riemann–Fueter condition (4.14), and thus are quaternionic analytic func-

tions. Again it can be proved that they form the complete basis for the

quaternionic left-analytic polynomials in 4D.

As for even higher dimensions, quaternions are not defined. Nevertheless,

the picture of the complex analytic function defined in the moving frame

still applies. If we still work in the spinor representation, we can express the

lowest Landau-level wavefunctions as ψLLL(xi) = fLLL(xi)e
− r2

2l2
0 , where each

component of the spinor fLLL is a polynomial of ri (1 ≤ i ≤ N). To work

out the analytic properties of fLLL, we factorize Eq. (4.43) as

HND,LL = �ω0(Γ
ia†i )(Γ

jaj), (4.47)

where ai is the phonon operator in the ith-dimension defined as ai =
1√
2

(
1
l0
ri + i l0

�
pi

)
, and l0 =

√
�

mω0
. Then fLLL(xi) satisfies the following

equation,

Γj ∂

∂xj
fLLL(xi) = 0, (4.48)
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which can be viewed as the Euclidean version of the Weyl equation. When

coming back to 3D and 4D, and following the mapping of Eq. (4.36), we

arrive at quaternionic analyticity.

New let us construct the off-centered solutions to the lowest Landau-level

states in 4D. We use �r to denote a point in the subspace of x1–x2–x3, and

Ω̂ as an arbitrary unit vector in it. Set ê = Ω̂ and f̂ = ê4 (the unit vector

along the fourth-axis) in Eq. (4.45). αΩ̂ê4
satisfies

(σi4Ωi)αΩ̂ê4
= (�σ · Ω̂)αΩ̂ê4

= αΩ̂ê4
, (4.49)

hence,

αΩ̂ê4
=

(
cos

θ

2
, sin

θ

2
eiφ
)T

, (4.50)

where we use the gauge convention that the singularity is located at the

south pole. Define the magnetic translation in the Ω̂–ê4-plane,

TΩ̂x4
(u0x̂4) = exp

(
−u0∂x4 −

i

4l2so
(�r · Ω̂)u0

)
, (4.51)

which translates along the ê4-axis at the distance of u0. Apply this

translation to the state of e−r2/4l2so⊗αΩ̂ê4
, we arrive at the off-center solution

ψΩ,u0(�r, x4) = e
− r2+x24

4l2so e
−i

ru0
2l2so ⊗ αΩ̂ê4

. (4.52)

Next, we perform the Fourier transform over the direction Ω̂,

ψ4D;j,jz(�r, x4) =

∫
dΩY

− 1
2

l+ 1
2
,m+ 1

2

(Ω̂)ψΩ,w0(�r, x4), (4.53)

where j = l + 1
2 and jz = m+ 1

2 . Due to the Berry phase structure of αΩ̂ê4

over Ω̂, the monopole spherical harmonic functions, Y
− 1

2

l+ 1
2
,m+ 1

2

(Ω̂), are used

instead of the regular spherical harmonics. Then Eq. (4.53) possesses the 3D

rotational symmetry around the new center (0, 0, 0, w0), and is characterized

by the 3D angular momentum quantum numbers (j, jz). The monopole

harmonic function Y q
jjz

(Ω̂) here is defined as

Y q
jjz

(Ω̂) =

√
2j + 1

4π
ei(jz+q)φdljz ,−q(θ), (4.54)

where θ and φ are the polar and azimuthal angles of Ω̂, and dljz ,−q(θ) =

〈jjz |e−iJyθ|j−q〉 is the standard Wigner rotation d-matrix. The gauge choice

is consistent with that of Eq. (4.50).
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4.4.6 Boundary helical Dirac and Weyl modes

The topological nature of the 3D Landau-level states is indicated clearly in

the gapless surface spectra. Consider a ball of the radius R0 � lso imposed

by the open boundary condition. We have numerically solved the spectrum

as shown in Fig. 4.3(b). Inside the bulk, the Landau-level spectrum is flat

with respect to j+ = l+ 1
2 . As l increases to large values such that the classic

orbital radiuses approach the boundary, the Landau levels become surface

states and develop dispersive spectra.

We can derive the effective equation for the surface mode based on Eq.

(4.29). Since r is fixed at the boundary, it becomes a rotor equation on

the sphere. By linearizing the dispersion at the chemical potential μ, and

replacing the angular momentum quantum number l by the operator �σ · �L,
we arrive at Hsf = (vf/R0)�σ · �L− μ with vf the Fermi velocity. This is the

helical Dirac equation defined on the boundary sphere. When expanded in

the local patch around the north pole R0ẑ, we arrive at

Hsf = �vf (�k × �σ) · ẑ − μ. (4.55)

The gapless surface states are robust against time-reversal invariant pertur-

bations if odd numbers of helical Fermi surfaces exist according to the Z2

criterion [6,7]. Since each fully occupied Landau-level contributes one helical

Dirac Fermi surface, the bulk is topologically nontrivial if odd numbers of

Landau levels are occupied.

A similar procedure can be applied to the high-dimensional case by

imposing the open boundary condition to Eq. (4.43). For example, around

the north pole of rN = (0, . . . , R0), the linearized low energy equation for

the boundary modes is

Hbd = �vf

D−1∑
i=1

kiΓ
iN − μ. (4.56)

On the boundary of the 4D sphere, it becomes the 3D Weyl equation that

Hbd = �vf�k · �σ − μ. (4.57)

4.4.7 Bulk–boundary correspondences

We have already studied the bulk and boundary states of 2D, 3D and

4D lowest Landau-level states. They exhibit a series of interesting bulk–

boundary correspondences as summarized in Table 4.1. In the 2D case, the

bulk wavefunctions in the lowest Landau-level is complex analytic satisfying

the Cauchy–Riemann condition. The 1D edge states satisfy the chiral wave
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Table 4.1. Bulk–boundary correspondences in the lowest Landau-level (LLL)
states in 2D, 3D, and 4D.

Bulk (Euclidean) Boundary (Minkowski)

2D LLL Complex analyticity 1D chiral wave

∂xf + i∂yf = 0 ∂tψ + ∂xψ = 0

3D LLL 3D quaternionic analyticity 2D helical Dirac mode

∂xf + i∂yf + j∂zf = 0 ∂tψ + σ2∂xψ − σ1∂yψ = 0

4D LLL Quaternionic analyticity 3D Weyl mode

∂xf + i∂yf + j∂zf + k∂uf = 0 ∂tψ + σ1∂xψ + σ2∂yψ + σ3∂zψ = 0

equation (4.23). It is essentially the Weyl equation, which is of single-

component in 1D. It can be viewed as the Minkowski version of the Cauchy–

Riemann condition of Eq. (4.4). Or, conversely, the Cauchy–Riemann

condition for the bulk wavefunctions can be viewed as the Euclidean version

of the Weyl equation.

This correspondence goes in parallel in 3D and 4D lowest Landau-level

wavefunctions. Their bulk wavefunctions satisfy the quaternionic analytic

conditions, which can be viewed as the Euclidean version of the helical Dirac

and Weyl equations, respectively.

4.4.8 Many-body interacting wavefunctions

It is natural to further investigate many-body interacting wavefunctions

in the lowest Landau levels in 3D and 4D. As is well known that the

complex analyticity of the 2D lowest Landau-level wavefunctions results

in the elegant from of the 2D Laughlin wavefunction Eq. (4.22), which

describes a 2D quantum liquid [22,23]. It is natural to further expect that the

quaternionic analyticity of the 3D and 4D lowest Landau levels would work

as a guidance in constructing high-dimensional SU(2) invariant quantum

liquid. Nevertheless, the major difficulty is that quaternions do not commute.

It remains challenging how to use quaternions to represent a many-body

wavefunction with the spin degree of freedom.

Nevertheless, we present below the spin-polarized fractional many-body

states in 3D and 4D Landau levels. In the 3D case, if the interaction is spin-

independent, we expect spontaneous spin polarization at very low fillings

due to the flatness of lowest Landau-level states in analogy to the 2D

quantum Hall ferromagnetism [22,40–43]. According to Eq. (4.31), fermions

concentrate to the highest weight states in the orbital plane ê1–ê2 with spin

polarized along ê3, then it is reduced to a 2D quantum Hall-like problem



April 8, 2021 15:1 Memorial Volume for Shoucheng Zhang - 9.61in x 6.69in 2nd Reading b4077-ch04 page 83

Quaternion, Harmonic Oscillator, and High-Dimensional Topological States 83

on a membrane floating in the 3D space. Any 2D fractional quantum

Hall-like state can be formed under suitable interaction pseudopotentials

[25,44,45]. For example, the ν = 1
3 Laughlin-like state on this membrane is

constructed as

Ψ 1
3
(�r1, �r2, . . . , �rn)σ1σ2···σn =

∏
i<j

[(�ri − �rj) · (ê1 + iê2)]
3

⊗|αê3〉σ1 |αê3〉σ2 · · · |αê3〉σn , (4.58)

where |αê3〉 represents a polarized spin eigenstate along ê3, and the Gaussian

weight is suppressed for simplicity. Such a state breaks rotational symmetry

and time-reversal symmetry spontaneously, thus it possesses low energy spin-

wave modes. Due to the spin–orbit locked configuration in Eq. (4.31), spin

fluctuations couple to the vibrations of the orbital motion plane, thus the

metric of the orbital plane becomes dynamic. This is a natural connection to

the work of geometrical description in fractional quantum Hall states [46–48].

Let us consider the 4D case, we assume that spin is polarized as the

eigenstate | ↑〉 of Γ12 = Γ34 = σ3. The corresponding spin-polarized lowest

Landau-level wavefunctions are expressed as

Ψ4D
LLL,m,n = (x+ iy)m(z + iu)n ⊗ | ↑〉, (4.59)

with m,n ≥ 0. If all these spin-polarized lowest Landau-level states with

0 ≤ m < Nm and 0 ≤ n < Nn are filled, the many-body wavefunction is a

Slater-determinant as

Ψ4D(v1, w1; . . . ; vN , wN ) = det[vαi w
β
i ], (4.60)

where the coordinates of the ith particle form two pairs of complex numbers

as vi = xi+iyi and wi = zi+iui; α, β and i satisfy 0 ≤ α < Nm, 0 ≤ β < Nn

and 1 ≤ i ≤ N = NmNn. Such a state has a 4D uniform density as ρ = 1
4π4l2G

.

A Laughlin-like wavefunction can be written down as Ψ4D
k = (Ψ4D)k whose

filling relative to ρ should be 1/k2. It would be interesting to further study

its electromagnetic responses and fractional topological excitations based on

Ψ4D
k . Again such a state spontaneously breaks the rotational symmetry, and

the coupled spin and orbital excitations would be interesting.

4.5 Dimensional reductions: 2D and 3D Landau levels

with broken parity

In this section, we review another class of isotropic Landau-level-like states

with time-reversal symmetry but broken parity in both 2D and 3D. The

Hamiltonians are again the harmonic potentials plus spin–orbit couplings,
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but they are the couplings between spin and linear momentum, not orbital

angular momentum [26, 49, 50]. They exhibit topological properties very

similar to Landau levels.

An early study of these systems filled with bosons can be found in [51].

The spin–orbit coupled Bose–Einstein condensations (BECs) spontaneously

break time-reversal symmetry, and exhibit the skyrmion-type spin textures

coexisting with half-quantum vortices, which have been reviewed in [52].

Spin–orbit coupled BECs have become an active research direction of cold-

atom physics, as extensively studied in [49,53–57].

4.5.1 The 2D parity-broken Landau levels

We consider the Hamiltonian of the Rashba spin–orbit coupling combined

with a 2D harmonic potential as

H2D,hm = −�
2∇2

2M
+

1

2
Mω2r2 − λ(−i�∇xσy + i�∇yσx), (4.61)

where λ is the spin–orbit coupling strength with the unit of velocity.

Equation (4.61) possesses the Cv∞-symmetry and time-reversal symmetry.

We fill the system with fermions and work on its topological properties.

There are two different length scales: The trap length scale is defined as lT =√
�

Mω . If, without the trap, the single particle states ψ±(�k) are eigenstates

of the helicity operator �σ · (�k× ẑ) whose eigenvalues are ±1, their spectra are

ε±(�k) = �
2(k∓ k0)

2/(2M), respectively. The lowest energy states are ψ+(�k)

located around a ring in momentum space with radius k0 = Mλ/�. This

introduces a spin–orbit length scale as lso = 1/k0. Then the ratio between

these two length scales defines a dimensionless parameter α = lT /lso,

which describes the spin–orbit coupling strength relative to the harmonic

potential.

In the case of strong spin–orbit coupling, i.e., α � 1, a clear picture

appears in momentum space. The low energy states are reorganized from

the plane-wave states ψ+(�k) with k ≈ k0. Since α� 1, we can safely project

out the negative helicity states ψ−(�k) at high-energy, then the harmonic

potential in the low energy sector becomes a Laplacian in momentum space

subject to a Berry connection �Ak as

V =
M

2
ω2r2 =

M

2
ω2(i∇k −Ak)

2, (4.62)

which drives the particle moving around the ring. It is well known that for

the Rashba Hamiltonian, the Berry connection Ak gives rise to a π-flux at
�k = (0, 0) but zero Berry curvature at �k �= 0 [58]. The consequence is that
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the angular momentum eigenvalues become half-integers as jz = m+ 1
2 . The

angular dispersion of the spectra can be estimated as Eagl(jz) = (j2z/2α
2)�ω,

which is strongly suppressed by spin–orbit coupling. On the other hand, the

radial energy quantization remains as usual Erad(nr) =
(
nr +

1
2

)
�ω up to a

constant. Hence the total energy dispersion is

Enr ,jz ≈
(
nr +

1

2
+

j2z
2α2

)
�ω. (4.63)

Similar results have also been obtained in [53–55]. Since α� 1, the spectra

are nearly flat with respect to jz, we can treat nr as a Landau-level index.

Next we define the edge modes of such systems, and their stability

problem is quite different from that of the chiral edge modes of 2D magnetic

Landau-level systems. In the regime that α � 1, the spin–orbit length lso
is much shorter than lT , such that lT is viewed as the cutoff of the sample

size. States with |jz| < α are viewed as bulk states which localize within the

region of r < lT . For states with |jz | ∼ α, their energies touch the bottom

of the next higher Landau-level, and thus they should be considered as edge

states. Due to time-reversal symmetry, each filled Landau-level of Eq. (4.61)

gives rise to a branch of edge modes of Kramers’ doublets ψnr ,±jz . In other

words, these edge modes are helical rather than chiral. Similarly to the Z2

criterion in [6, 7], which was defined for Bloch wave states, in our case the

following mixing term, Hmx = ψ†
2D,nr ,jz

ψ2D,nr,−jz + h.c., is forbidden by

time-reversal symmetry. Consequently, the topological index for this system

is Z2.

4.5.2 Dimensional reduction from 3D Landau levels

In fact, we construct a Hamiltonian closely related to Eq. (4.61) such that its

ground state is solvable exhibiting exactly flat dispersion. It is a consequence

of the dimensional reduction based on the 3D Landau-level Hamiltonian

equation (4.29). We cut a 2D off-centered plane perpendicular to the z-axis

with the interception z = z0. In this off-centered plane, inversion symmetry

is broken, and Eq. (4.29) is reduced to

H2D,re = H2D,hm − ωLzσz. (4.64)

The first term is just Eq. (4.61) by identifying λ = ωz0 and the frequency

of the second term is the same as that of the harmonic trap. If z0 = 0,

the Rashba spin–orbit coupling vanishes, and Eq. (4.64) becomes the 2D

quantum spin-Hall Hamiltonian, which is a double copy of Eq. (4.19). At

z0 �= 0, σz is no longer conserved due to spin–orbit coupling.
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In Sec. 4.4.3, we derived the off-centered ellipsoid type wavefunction.

After setting z = z0 in Eq. (4.35), we arrive at the following 2D wavefunction,

ψ2D,jz(r, φ) = e
− r2

4l2so {eimφJm(k0r)| ↑〉+ ei(m+1)φJm+1(k0r)| ↓〉}, (4.65)
where Jm(k0r) is the mth order Bessel functions. It is straightforward to

prove that the simple reduction indeed gives rise to the solutions of the

lowest Landau level to Eq. (4.64), since the partial derivative along the z-

direction of the solution in Eq. (4.35) equals zero at z = z0. We also prove

that the energy dispersion is exactly flat as,

H2D,reψ2D,jz =

(
1− α2

2

)
�ωψ2D,jz . (4.66)

The above two Hamiltonians equations (4.64) and (4.61) are nearly the

same except the Lzσz term, whose effect relies on the distance from the

origin. Consider the lowest Landau-level solutions at α � 1. The decay

length of the Gaussian factor in Eq. (4.65) is lT . Nevertheless, the Bessel

functions peak around k0r0 ≈ m, i.e., r0 ≈ m
α lT . Hence for states with

jz < α, their wavefunctions already decay before reach lT . Then the Lzσz-

term compared to the Rashba one is a small perturbation at the order of

ωr0/λ = r0/z0 � 1. In this regime, these two Hamiltonians are equivalent.

In contrast, in the opposite limit that jz � α2, the Bessel functions are cut

off by the Gaussian factor, and only their initial power-law parts participate.

The classic orbit radii are just r0 ≈
√
mlT , then the physics of Eq. (4.64) is

controlled by the Lsσz-term as in the quantum spin-Hall systems. For the

intermediate region that α < jz < α2, the physics is a crossover between the

above two limits.

The many-body physics based on the above spin–orbit coupled Landau

levels in Eq. (4.65) would be very interesting. Fractional topological states

would be expected which are both rotationally and time-reversal invariant.

However, σz is not a good quantum number and parity is also broken,

hence, these states should be very different from a double copy of the

fractional Laughlin states with spin-up and spin-down particles. The nature

of topological excitations and properties of edge modes will be deferred to a

future study.

4.5.3 The 3D parity-broken Landau levels

We have also considered the problem of a 3D harmonic potential plus a

Weyl-type spin–orbit coupling, whose Hamiltonian is defined as [26],

H3D,hm = −�
2∇2

2M
+

1

2
Mω2r2 − λ(−i��∇ · �σ). (4.67)
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The analysis can be performed in parallel to the 2D case. In the absence

of spin–orbit coupling, the low energy states of Eq. (4.67) in momentum

space form a spin–orbit sphere. The harmonic potential further quantizes

the energy spectra as

Enr,j,jz ≈
(
nr +

1

2
+
j(j + 1)

2α2

)
�ω, (4.68)

where nr is the Landau-level index and j is the quantum number of the

total angular momentum. Again j takes half-integer values because the Berry

phase on the low-energy sphere exhibits a unit monopole structure.

Now we perform the dimensional reduction from the Hamiltonian

equation (4.43) in the 4D case to 3D. We cut a 3D off-centered hyper-plane

perpendicular to the fourth axis with the interception x4 = u0. Within this

3D hyper-plane of (x1, x2, x3, x4 = u0), Eq. (4.43) is reduced to

H3D,re = H3D,hm − ω�L · �σ, (4.69)

where the first term is just Eq. (4.67) with the spin–orbit coupling strength

set by λ = ωu0. Again, based on the center-shifted wavefunction in the

lowest Landau level equation (4.53), and by setting x4 = u0, we arrive at

the following wavefunction

ψ3D,JJz(�r) = e
− r2

4l2so {jl(k0r)Y+,J,Jz(Ωr) + ijl+1(k0r)Y−,J,Jz(Ωr)},
(4.70)

where k0 = u0/l
2
T = mλ/�; jl is the lth order spherical Bessel function.

Y±,j,l,jz ’s are the spin–orbit coupled spherical harmonics defined as

Y+,j,l,jz(Ω) =

(√
l +m+ 1

2l + 1
Ylm,

√
l −m

2l + 1
Yl,m+1

)T

with the positive eigenvalue of l� for �σ · �L, and

Y−,j,l,jz(Ω) =

(
−
√
l −m

2l + 1
Ylm,

√
l +m+ 1

2l + 1
Yl,m+1

)T

with the negative eigenvalue of−(l+1)� for �σ·�L. It is straightforward to check

that ψ3D,j,jz(�r) in Eq. (4.70) is the ground-state wavefunction satisfying

H3D,reψ3D,j,jz(�r) =

(
3

2
− α2

2

)
�ωψ3D,j,jz(�r). (4.71)



April 8, 2021 15:1 Memorial Volume for Shoucheng Zhang - 9.61in x 6.69in 2nd Reading b4077-ch04 page 88

88 C. Wu

4.6 High-dimensional Landau levels of Dirac fermions

In this section, we review the progress on the study of 3D Landau levels

of relativistic Dirac fermions [28]. This is a square-root problem of the

3D Landau-level problem based on the Schrödinger equation reviewed in

Sec. 4.4. This can also be viewed as Landau levels of complex quaternions.

4.6.1 3D Landau levels for Dirac fermions

In Eq. (4.25), two sets of phonon creation and annihilation operators

(ax, ay; a
†
x, a

†
y) are combined with the real and imaginary units to construct

the Landau-level Hamiltonian for 2D Dirac fermions. Since in 3D there exist

three sets of phonon creation and annihilation operators, complex numbers

are insufficient.

The new strategy is to employ the Pauli matrices �σ such that

HD
3D = v

{
αipi + γii�

ri
l20

}
=

�ω√
2

[
0 iσia

†
i

−iσiai 0

]
, (4.72)

where the repeated index i runs over x, y and z; v = 1
2 l0ω. The convention

of γ-matrices is

β = γ0 = τ3 ⊗ I, αi = τ1 ⊗ σi, γi = βαi = iτ2 ⊗ σi. (4.73)

Equation (4.72) contains the complex combination of momenta and coor-

dinates, thus it can be viewed as the generalized Dirac equation defined

in the phase space. Apparently, Eq. (4.72) is rotationally invariant. It is

also time-reversal invariant under the definition T = γ2γ3K where K is the

complex conjugation, and T 2 = −1. Since βHD
3Dβ = −HD

3D, H
D
3D possesses

the particle–hole symmetry and its spectra are symmetric with respect to

the zero energy.

Similar to the 2D case, (HD
3D)

2 has a supersymmetric structure. The

square of Eq. (4.72) is block-diagonal, and two blocks are just the nonrela-

tivistic 3D Landau-level Hamiltonians in Eq. (4.29),

(HD
3D)

2

1
2�ω

=

[
H+

3D,sym − 3
2�ω 0

0 H−
3D,sym + 3

2�ω

]
, (4.74)

where the mass M in H±
3D,sym is defined through the relation l0 =√

�/(Mω). Based on Eq. (4.74), the energy eigenvalues of Eq. (4.72) are

E±nr ,j,jz = ±�ω
√
nr, corresponding to positive and negative square roots of

the nonrelativistic dispersion, respectively. The Landau-level wavefunctions
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of the 3D Dirac electrons are expressed in terms of the nonrelativistic ones

of Eq. (4.29) as

Ψ±nr,j,jz(�r) =
1√
2

(
ψnr ,j+,l,jz(�r)

±iψnr−1,j−,l+1,jz(�r)

)
. (4.75)

Please note that the upper and lower two components possess different

values of orbital angular momenta. They exhibit opposite helicities of j±,
respectively. The zeroth Landau-level (nr = 0) states are special: There is

only one branch, and only the first two components of the wavefunctions are

nonzero as

Ψnr=0,j,jz(�r) =

[
ΨLLL,j+,jz(�r)

0

]
, (4.76)

where ΨLLL,j+,jz ’s are the lowest Landau level solutions to the nonrelativistic

Hamiltonian Eq. (4.29).

Again the nontrivial topology of the 3D Dirac Landau problem manifests

in the gapless surface modes. Consider a spherical boundary with a large

radius R. The Hamiltonian takes the form of Eq. (4.72) inside the sphere, and

changes to the usual massive Dirac Hamiltonian HD = αiPi + βΔ outside.

We take the limit of |Δ| → ∞. Loosely speaking, this is a square-root version

of the open boundary problem of the 3D nonrelativistic case in Sec. 4.4.6.

Since square-roots can be taken as positive and negative, each branch of the

surface modes in the nonrelativistic Schrödinger case corresponds to a pair

of relativistic surface branches. These two branches disperse upward and

downward as increasing the angular momentum j, respectively. However,

the zeroth Landau-level branch is singled out. We can only take either

the positive or negative square root for its surface excitations. Hence, the

surface spectra connected to the bulk zeroth Landau-level disperse upward

or downward depending on the sign of the vacuum mass.

4.6.2 Nonminimal Pauli coupling and anomaly

Due to the particle–hole symmetry of Eq. (4.72), the 3D zeroth Landau-

level states are half-fermion modes in the same way as those in the 2D

Dirac case. Moreover, in the 3D case, the degeneracy is over the 3D angular

momentum numbers (j+, jz), thus the degeneracy is much higher than that of

2D. According to whether the chemical potential μ approaches 0+ or 0−, each
state in the zeroth lowest Landau level contributes a positive, or, negative

half fermion number, respectively. The Lagrangian of the 3D massless Dirac
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Landau level problem is,

L = ψ̄{γ0i�∂t − ivγi�∂i}ψ − v�ψ̄iγ0γiψF
0i(r), (4.77)

where F 0i = xi/l
2
0. In all the dimensions higher than 2, iγ0γi’s are a different

set from γi’s, thus Eq. (4.77) is an example of nonminimal coupling of the

Pauli type. More precisely, it is a coupling between the electric field and the

electric dipole moment. In the 2D case, the Lagrangian has the same form

as Eq. (4.77), however, since γ0,1,2 are just the usual Pauli matrices, it is

reduced to the minimal coupling to the U(1) gauge field.

Equation (4.77) is a problem of massless Dirac fermions coupled to a

background field via a nonminimal Pauli coupling at 3D and above. The

Fermion density is pumped by the background field from vacuum. This

is similar to parity anomaly, and indeed it is reduced to parity anomaly

in 2D. However, the standard parity anomaly only exists in even spatial

dimensions [33, 35–37]. By contrast, the Landau-level problems of massless

Dirac fermions can be constructed in any high spatial dimensions. Obviously,

they are not chiral anomalies defined in odd spatial dimensions, either. It

would be interesting to further study the nature of such kind of “anomaly”.

In fact, Eq. (4.72) is just one possible representation for Landau levels of

3D massless Dirac fermions. A general 3D Dirac Landau-level Hamiltonian

with a mass term can be defined as

HD
3D(ê1, ê2, ê3) = v[(�τ · ê1)⊗ σiPi + �/l20(�τ · ê2)

⊗σiri] +mv2(�τ · ê3)⊗ I, (4.78)

where τ1,2,3 are Pauli matrices acting in the particle–hole channel, and ê1,2,3
form an orthogonal triad in the 3D space. Equation (4.72) corresponds to the

case of ê1 = x̂ and ê2 = ŷ, andm = 0. The parameter space of HD
3D(ê1, ê2, ê3)

is the triad configuration space of SO(3).

Consider that the configuration of the triad ê1,2,3 is spatially dependent.

The first term in Eq. (4.78) should be symmetrized as 1
2�τ · [(ê1(r)Pi +

Piê1(r)] ⊗ σi. The spatial distribution of the triad of ê1,2,3(�r) can be in a

topologically nontrivial configuration. If the triad is only allowed to rotate

around a fixed axis, its configuration space is U(1) which can form a vortex

line type defect. There should be a Callan–Harvey type effect of the fermion

zero modes confined around the vortex line [59]. In general, we can also

have a 3D skyrmion type defect of the triad configuration. These novel

defect problems and the associated zero energy fermionic excitations will

be deferred to later studies.
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4.6.3 Landau levels for Dirac fermions in four dimensions

and above

The Landau-level Hamiltonian for Dirac fermions can be generalized to

arbitrary N -dimensions (ND) by replacing the Pauli matrices in Eq. (4.72)

with the Clifford algebra Γ-matrices in ND. We use the representation of

the Γ-matrices as presented in Appendix A.

In odd dimensions D = 2k + 1, we use the kth rank Γ-matrices to

construct the D = 2k + 1-dimensional Dirac Landau-level Hamiltonian,

HD
2k+1 =

�ω0

2

⎛
⎝ 0 iΓ

(k)
i a†i

−iΓ(k)
i ai 0

⎞
⎠ , (4.79)

where Γ
(k)
i is 2k×2k-dimensional matrix, and 1 ≤ i ≤ 2k+1. Again, (HD

2k+1)
2

are reduced to a supersymmetric version of the 2k+ 1-dimensional Landau-

level Hamiltonian for Schödinger fermions in Eq. (4.43). All other properties

are parallel to the 3D case explained before.

For even dimensions D = 2k, we still take Eq. (4.79) by simply removing

the terms of the (2k + 1)th dimension and keeping the terms from the first

to the (2k)th dimension. Nevertheless, such a construction is reducible. In

the representation presented in Appendix A, Eq. (4.79) after eliminating the

Γ
(k)
2k+1 term can be factorized into a pair of Hamiltonians

H±,D
2k =

�ω0

2

⎛
⎝ 0 ±a†2k + i

∑k
i=1 Γ

(k−1)
i a†i

±ak − i
∑k

i=1 Γ
(k−1)
i ai 0

⎞
⎠ ,

(4.80)

where ± correspond to the pair of fundamental and anti-fundamental spinor

representations in even dimensions.

For example, in four dimensions, we have

H±,D
4D =

�ω√
2

[
0 ±a†4 + iσia

†
i

±a4 − iσiai 0

]
. (4.81)

Since three quaternionic imaginary units i, j, and k can be mapped to

Pauli matrices −iσ1,−iσ2, and −iσ3, respectively, and the annihilation

and creation operators are essentially complex. ±a4 − iσiai can be viewed

as complex quaternions. Hence, Eq. (4.81) is a complex quaternionic

generalization of the 2D Dirac Landau-level Hamiltonian equation (4.25).
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4.7 High-dimensional Landau levels in the

Landau-like gauge

We have discussed the construction of Landau levels in high dimensions for

both Schrödinger and Dirac fermions in the symmetric-like gauge. In these

problems, the rotational symmetry is explicitly maintained. Below we review

the construction of Landau levels in the Landau-like gauge by reorganizing

plane-waves to exhibit nontrivial topological properties [30]. It still preserves

the flat spectra but not the rotational symmetry.

4.7.1 Spatially separated 1D chiral modes: 2D Landau levels

We recapitulate the Landau levels in the Landau gauge. By setting Ax = By

and Ay = 0 in the Hamiltonian equation (4.18), we arrive at

H2D,L =
P 2
y

2M
+

(
Px − e

cAx

)2
2M

=
P 2
y

2M
+

1

2
Mω2(y − l2BPx)

2, (4.82)

with lB =
√

�

Mω . The Landau-level wavefunctions are a product of a plane

wave along the x-direction and a 1D harmonic oscillator wavefunction in the

y-direction,

ψn(x, y) = eikxφn(y − y0(k)), (4.83)

where φn is the nth harmonic oscillator eigenstate with the characteristic

length lB , and its equilibrium position is determined by the momentum kx,

y0(kx) = l2Bkx.

Hence, the Landau-level states with positive and negative values of kx
are shifted oppositely along the y-direction, and become spatially separated.

If imposing the open boundary condition along the y-axis, chiral edge modes

appear. The 2D quantum Hall effect is just the spatially separated 1D chiral

anomaly in which the chiral current becomes the transverse charge current.

After the projection to the lowest Landau level, we identify y = l2Bkx, hence,

the two spatial coordinates x and y become noncommutative as [60]

[x, y]LLL = il2B . (4.84)

In other words, the xy-plane is equivalent to the 2D phase space of a 1D

system (x; kx) after the lowest Landau-level projection.

4.7.2 Spatially separated 2D helical modes: 3D Landau levels

The above picture can be generalized to the 3D Landau-level states: We

keep the plane-wave modes with the good momentum numbers (kx, ky) and
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shift them along the z-axis. Spin–orbit coupling is introduced to generate

the helical structure to these plane-waves, and the shifting direction is

determined by the sign of helicity. To be concrete, the 3D Landau-level

Hamiltonian in the Landau-like gauge is constructed as follows [30],

H±
3D,L =

�P 2

2M
+

1

2
Mω2

soz
2 ∓ ωsoz(Pxσy − Pyσx)

=
P 2
z

2M
+

1

2
Mω2

so

[
z ∓ 1

�
l2so(Pxσy − Pyσx)

]2
, (4.85)

where lso =
√

�/(Mωso).

The key of Eq. (4.85) is the z-dependent Rashba spin–orbit coupling,

such that it can be decomposed into a set of 1D harmonic oscillators along

the z-axis coupled to 2D helical plane-waves. Define the helicity operator

Σ̂2d(k̂2d) = k̂xσy − k̂yσx where k̂ is the unit vector along the direction of �k.

χΣ(k̂2d) is the eigenstate of Σ̂ and Σ = ±1 is the eigenvalue. Then the 3D

Landau-level wavefunctions are expressed as

Ψ
n,�k2d,Σ

(�r) = ei
�k2d·�r2dφn[z − z0(k2d,Σ)]⊗ χΣ(k̂2d), (4.86)

where �k2d = (kx, ky), �r2d = (x, y), and k2d = (k2x + k2y)
1
2 . The energy spectra

of Eq. (4.86) is flat as En = (n + 1
2 )�ωso. The center of the oscillator

wavefunction in Eq. (4.86) is shifted to z0 = l2sok2dΣ.

The 3D Landau-level wavefunctions of Eq. (4.86) are spatially separated

2D helical plane-waves along the z-axis. As shown in Fig. 4.4(a), for states

with opposite helicity eigenvalues, their central positions are shifted in

opposite directions. If open boundaries are imposed perpendicular to the z-

axis, each Landau level contributes a branch of gapless helical Dirac modes.

For the system described by H+
3D,L, the surface Hamiltonian is

Hbd = ±vf (�p × �σ) · ẑ − μ, (4.87)

where ± apply to the upper and lower boundaries, respectively.

Unlike the 2D case in which the symmetric and Landau gauges are

equivalent, the Hamiltonian in the symmetric-like gauge equation (4.29) and

that in the Landau-like gauge equation (4.85) are not gauge equivalent. The

Landau-like gauge explicitly breaks the 3D rotational symmetry while the

symmetric-like gauge preserves it. Physical quantities calculated based on

Eq. (4.85), such as density of states, are not 3D rotationally symmetric as

those based on Eq. (4.29). Nevertheless, these two Hamiltonians belong to

the same topological class.



April 8, 2021 15:1 Memorial Volume for Shoucheng Zhang - 9.61in x 6.69in 2nd Reading b4077-ch04 page 94

94 C. Wu

ky

z

z = 0

z > 0

z < 0

(a)

Σ = -1

Σ = +1
kx

u

u = 0

u > 0

u < 0

Σ = -1

Σ = +1

(b)

ky

kx
kz kz

u0

m=0
m=1, +
m=2, +

m=1,-
m=2,-

(c)

Fig. 4.4. (a) 3D Landau-level wavefunctions as spatially separated 2D helical Dirac modes
localized along the z-axis. (b) 4D Landau-level wavefunctions as spatially separated 3D
Weyl modes localized along the u-axis. Note that 2D plane-wave modes with opposite
helicities and the 3D ones with opposite chiralities are located at opposite sides of z = 0
and u = 0 planes, respectively. (c) The central positions u0(m, kz, ν) of the 4d Landau
levels in the presence of the magnetic field �B = Bẑ. The branch of m = 0 runs across the
entire u-axis, which gives rise to the quantized charge transport along the u-axis in the
presence of �E ‖ �B as indicated in Eq. (4.43). From Ref. [30].

4.7.3 Spatially separated 3D Weyl modes: 4D Landau levels

Again we can easily generalize the above procedure to any dimensions. For

example, in four dimensions, we need to use the 3d helicity operator Σ̂3d =

P̂3d · �σ, whose eigenstates are denoted as χΣ with the eigenvalues Σ = ±1.

Then the 4D Landau-level Hamiltonian is defined as [30]

H4d,±
LL =

P 2
u + �P 2

3d

2M
+

1

2
Mω2u2 ∓ ωu�P3d · �σ

=
P 2
u

2M
+

1

2
Mω2

so

(
u∓ 1

�
l2so
�P3d · �σ

)2

, (4.88)

where u and Pu are the coordinate and momentum in the fourth dimension,

respectively, and �P3d is defined in the xyz-space. Inside each Landau level,

the spectra are flat with respect to �k3d and Σ. Similarly to the 3D case, the

4D LL spectra and wavefunctions are solved by reducing Eq. (4.88) into a

set of 1D harmonic oscillators along the u-axis as

Ψ
n,�k3d,Σ

(�r, u) = ei
�k3d·�rφn[u− u0(k3d,Σ)]⊗ χΣ(�k3d). (4.89)

The central positions u0(k3d,Σ) = Σl2sok3d. This realizes the spatial

separation of the 3D Weyl fermion modes with the opposite chiralities as

shown in Fig. 4.4(b). With an open boundary imposed along the u-direction,

the 3D chiral Weyl fermion modes appear on the boundary

Hbd = ±vf (�k3D · �σ)− μ. (4.90)
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4.7.4 Phase space picture of high-dimensional Landau levels

For the 2D case described by Eq. (4.82), the xy-plane is equivalent to the 2D

phase space of a 1D system (x; kx) after the lowest Landau-level projection.

The discrete step of kx is Δkx = 2π/Lx, and the momentum cutoff of the

bulk state is determined by Ly as kbk = Ly/(2l
2
B). Since |kx| < kbk, the

number of states N2D,LL scales with LxLy as the usual 2D systems, but

the crucial difference is that enlarging Ly does not change Δkx but instead

increases kbk.

Similarly, the 3D Landau-level states (Eq. (4.85)) can be viewed as states

in the 4D phase space (xy; kxky). The z-axis plays the double role of kx
and ky. After the lowest Landau-level projection, z is equivalent to z =

l2so(pxσy − pyσx)/�, and thus

[x, z]LLL = il2soσy, [y, z]LLL = −il2soσx, [x, y]LLL = 0. (4.91)

The momentum cutoff of the bulk state is determined as (k2x+ k2y)
1
2 < kbk =

�Lz/(2l
2
so), thus the total number of states N scales as LxLyL

2
z. As a result,

the 3D local density of states linearly diverges as ρ3D(z) ∝ |z|/l4so as |z| → ∞.

Similar divergence also occurs in the symmetric-like gauge as ρ3D(r) ∝ r/l4so.

Now this seeming pathological result can be understood as the consequence

of squeezing states of 4D phase space (xy; kxky) into the 3D real space (xyz).

In other words, the correct thermodynamic limit should be taken according

to the volume of 4D phase space. This reasoning is easily extended to the

4D LL systems (Eq. (4.88)), which can be understood as a 6D phase space

of (xyz; kxkykz).

4.7.5 Charge pumping and the 4D quantum Hall effects

The above 4D Landau-level states presented in Sec. 4.7.3 exhibit nonlinear

electromagnetic response [13, 24, 61, 62] as the 4D quantum Hall effect. We

apply the electromagnetic fields as

�E = Eẑ, �B = Bẑ, (4.92)

to the 4D Landau-level Hamiltonian equation (4.88) by minimally coupling

fermions to the U(1) vector potential,

Aem,x = 0, Aem,y = Bx, Aem,z = −cEt. (4.93)

The �B-field further quantizes the chiral plane-wave modes inside the nth

4D spin–orbit Landau-level states into a series of 2D magnetic Landau-level

states in the xy-plane as labeled by the magnetic Landau-level index m.
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For the case of m = 0, the eigen-wavefunctions are spin polarized as

Ψn,m=0(ky, kz) = eikyy+ikzzφn(u− u0(kz,m = 0))ϕm=0(x− x0(ky))⊗ | ↑〉,
(4.94)

where φn is the nth order harmonic oscillator wavefunction with the

spin–orbit length scale lso, and ϕ0 is the zeroth-order harmonic oscillator

wavefunction with the magnetic length scale lB . The central positions of the

u-directional and x-directional oscillators are

x0(ky) = l2Bky, u0(kz,m = 0) = l2sokz, (4.95)

respectively. The key point is that u0(kz ,m = 0) runs across the entire u-

axis. In contrast, wavefunctions Ψn,m with m ≥ 1 also exhibit harmonic

oscillator wavefunctions along the u-axis. However, their central positions at

m ≥ 1 are,

u0(kz) = ±l2so
√
k2z +

2m

l2B
, (4.96)

which only lie in half of the u-axis as shown in Fig. 4.4(c).

Since kz increases with time in the presence of Ez, u0(m,kz(t)) moves

along the u-axis. Only the m = 0 branch of the magnetic Landau-level

states contribute to the charge pumping since their centers go across the

entire u-axis, which results in an electric current along the u-direction. Since

kz(t) = kz(0) − eE
�
t, during the time interval Δt, the number of electrons

passing the cross-section at a fixed u is

ΔN =
LxLy

2πl2B

eEzΔt

2π�/Lz
=

e2

4π2�2c
�E · �BVΔt, (4.97)

where V is the 3D cross-volume. Then the current density is calculated as

ju = nocc
eΔN

VΔt
= noccα

e

4π2�
�E · �B, (4.98)

where α is the fine-structure constant, and nocc is the occupation number of

the 4D spin–orbit Landau levels.

Equation (4.98) is in agreement with results from the effective field theory

[13] as the 4D generalization of the quantum Hall effect. If we impose the

open boundary condition perpendicular to the u-direction, the above charge

pump process corresponds to the chiral anomalies of Weyl fermions with

opposite chiralities on two opposite 3D boundaries, respectively. Since they
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are spatially separated, the chiral current corresponds to the electric current

along the u-direction.

4.8 Conclusions and outlooks

I have reviewed a general framework for constructing Landau levels in

high dimensions based on harmonic oscillator wavefunctions. By imposing

spin–orbit coupling, their spectra are reorganized to exhibit flat dispersions

and nontrivial topological properties. In particular, the lowest Landau-level

wavefunctions in 3D and 4D in the quaternion representation satisfy the

Cauchy–Riemann–Fueter condition, which is the generalization of complex

analyticity to high dimensions. The boundary excitations are the 2D

helical Dirac surface modes, or, the 3D chiral Weyl modes. There is a

beautiful bulk–boundary correspondence that the Cauchy–Riemann–Fueter

condition and the helical Dirac (chiral Weyl) equation are the Euclidean and

Minkowski representations of the same analyticity condition, respectively. By

dimensional reductions, we constructed a class of Landau levels in 2D and

3D which are time-reversal invariant but parity breaking. The Landau-level

problem for Dirac fermions is a square-root problem of the nonrelativistic

one, corresponding to complex quaternions. The zeroth-Landau-level states

are a flat band of half-fermion Jackiw–Rebbi zero modes. It is at the interface

between condensed matter and high-energy physics, related to a new type

of anomaly. Unlike parity anomaly and chiral anomaly studied in field

theory in which Dirac fermions are coupled to gauge fields through the

minimal coupling, here Dirac fermions are coupled to background fields in a

nonminimal way.

I speculate that high-dimensional Landau levels could provide a platform

for exploring interacting topological states in high dimensions — due to the

band flatness, and also the quaternionic analyticity of lowest Landau-level

wavefunctions. It would stimulate the developments of various theoretical

and numerical methods. This would be an important direction in both

condensed matter physics and mathematical physics for studying high-

dimensional topological states with both nonrelativistic and relativistic

fermions. This research also provides interesting applications of quaternion

analysis to theoretical physics.

Appendix A: Brief review on Clifford algebra

In this appendix, we review how to construct anti-commutative Γ-matrices.

The familiar group is just the 2× 2 Pauli matrices, i.e., rank-1. The rank-k
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Γ-matrices can be defined recursively based on the rank-(k−1) ones. At each

level, there are 2k + 1 anti-commutative matrices, and their dimensions are

2k × 2k. In this chapter, we use the following representation:

Γ
(k)
i =

[
0 Γ

(k−1)
a

Γ
(k−1)
a 0

]
, Γ

(k)
2k =

[
0 −iI
iI 0

]
, Γ

(k)
2k+1 =

[
I 0

0 −I

]
,

(A1)

where i = 1, . . . , 2k − 1.

In D = 2k + 1-dimensional space, the SO(2k + 1) fundamental spinor is

2k-dimensional. The generators are constructed Sij =
1
2Γ

(k)
ij where

Γ
(k)
ij = − i

2
[Γ

(k)
i ,Γ

(k)
j ]. (A2)

In the D = 2k-dimensional space, there are two irreducible fundamental

spinor representations for the SO(2k) group, both of which are with 2k−1-

dimensional. Their generators are denoted as Sij and S
′
ij, respectively, which

can be constructed based on both rank-(k − 1) Γ
(k−1)
i and Γ

(k−1)
ij -matrices.

For the first 2k − 1 dimensions, the generators share the same form as that

of the SO(2k − 1) group,

Sij = S′
ij =

1

2
Γ
(k−1)
ij , (1 ≤ i < j ≤ 2k − 1). (A3)

Other generators Si,2k and S′
i,2k differ by a sign — they are represented by

the Γ
(k−1)
i matrices,

Si,2k = S′
i,2k = ±1

2
Γ
(k−1)
i , (1 ≤ i ≤ 2k − 1). (A4)
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