
Mixed triplet and singlet pairing in ultracold multicomponent fermion systems
with dipolar interactions

Congjun Wu and J. E. Hirsch
Department of Physics, University of California, San Diego, California 92093, USA

�Received 27 October 2009; revised manuscript received 4 January 2010; published 26 January 2010�

The symmetry properties of the Cooper pairing problem for multicomponent ultracold dipolar molecular
systems are investigated. The dipolar anisotropy provides a natural and robust mechanism for both triplet and
singlet Cooper pairing to first order in the interaction strength. With a purely dipolar interaction, the triplet
pz-like polar pairing is the most dominant. A short-range attractive interaction can enhance the singlet pairing
to be nearly degenerate with the triplet pairing. We point out that these two pairing channels can mix by
developing a relative phase of �

�

2 , thus spontaneously breaking time-reversal symmetry. We also suggest the
possibility of such mixing of triplet and singlet pairing in other systems.

DOI: 10.1103/PhysRevB.81.020508 PACS number�s�: 74.20.Rp, 67.30.H�, 03.75.Ss, 05.30.Fk

The study of ultracold dipolar molecules has recently be-
come a research focus of cold atom physics.1–4 The promi-
nent feature of the dipolar interaction is its dr2−3z2-type an-
isotropy when the dipolar moments are aligned by an
external electric field. Considerable progress has been made
in studying anisotropic condensation of dipolar bosons.5–8

Furthermore, dipolar fermionic systems provide an exciting
opportunity to study exotic anisotropic many-body physics
of fermions. Experimentally, a near quantum-degenerate gas
of the dipolar fermion 40K-87Rb has been achieved.1 A num-
ber of theoretical works have been done for the anisotropic
Fermi-liquid properties of dipolar Fermi gases,9–13 including
both singlet particle and collective excitations.

The dipolar interaction also has important effects in the
Cooper pairing symmetry as studied in Refs. 14–18. In the
single component case, the only possible pairing channels
are of odd parity. Assuming dipole moments along the z axis,
the pairing symmetry is mainly of pz with slight hybridiza-
tion with other odd partial wave components. Dipolar mol-
ecules can have an internal degree of freedom arising from
the hyperfine configurations of the constituent atoms. The
electric dipolar interaction is independent of these internal
components which will be denoted as spin below. The inter-
component interaction opens up the possibility of both spin
singlet and triplet pairings for the simplest two-component
case. It would be interesting to study even richer Cooper
pairing patterns and the competition among them.

In this Rapid Communication, we show that the dipolar
interaction favors Cooper pairing in the triplet channel over
the singlet channel. This is an effect directly arising from the
anisotropy of the dipolar interaction, and it occurs to first
order in the interaction strength. In contrast, it does not ap-
pear in the usual condensed-matter triplet pairing systems
such as superfluid 3He �Refs. 19–21�: the spin-fluctuation
mechanism based on the strong ferromagnetic tendency in
3He arises from the repulsive part of the 3He-3He interaction
at second order. For a two-component dipolar fermion sys-
tem, we find the dominate pairing in the spin triplet pz-like
channel with the purely dipolar interaction. It can mix with
the singlet s+dr2−3z2 pairing whose pairing strength is tunable
through the short-range nondipolar s-wave scattering. The
mixing occurs with a relative phase of �

�
2 which breaks

time-reversal �TR� symmetry spontaneously. Pairing in dipo-
lar Fermi gases with more than two components is also
discussed.

Samokhin et al. studied nonuniform mixed parity super-
fluid states in the presence of dipolar interactions.22 They
considered coupling between singlet and triplet channels
with zero relative phase only. Kabanov23 also considered re-
cently mixture of singlet and triplet pairing with zero relative
phase. While this work was being completed, a study of the
competition between triplet and singlet pairing in dipolar fer-
mionic systems appeared that analyzed some of the cases
considered here.24

We begin with the two-component dipolar fermionic sys-
tem with the electric dipole moments aligned along the z
axis. The dipolar interaction reads V3D�r�1−r�2�=−2d2 / �r�1
−r�2�3P2�cos �r�1−r�2

�, where �r�1−r�2
is the angle between

�r�1−r�2� and the electric field E� ; d is the electric dipole mo-
ment. The anisotropy is manifested in the angular depen-
dence of the V3D with the form of the second Legendre poly-
nomial. The Fourier transform of the three-dimensional �3D�
dipolar interaction, V�k��= 8�d2

3 P2�cos �k�, only depends on
the polar angle of k�. The Hamiltonian is written as

H = �
k,�

���k�� − ��c�
†�k��c��k�� +

1

2V
�

k,k�,q

V�k� − k���

� P	�
† �k� ;q��P�	�k��;q�� , �1�

where ��k��=
k2 / �2m�; � is the chemical potential;
P�	�k� ;q��=c��−k� +q��c	�k� +q�� is the pairing operator; � ,	 re-
fer to ↑ and ↓. Please note that V�k� −k��� depends on the polar
angle of the vector k� −k��, not the relative angle between k�

and k��. We define a dimensionless parameter to describe the
interaction strength as the ratio between the characteristic
interaction energy and the Fermi energy: ��Eint /EF

= 2
3

d2mkf

�2
2 .
We only consider uniform pairing states at the mean-field

level, thus set q� =0 in the pairing interaction in Eq. �1�. We
define P�	�k��= P�	�k� ;q� =0� which satisfies P�	�k��=−P	�

�−k��. The pairing operators can be decomposed into the spin
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singlet Psi and triplet channels Ptri
x,y,z: Psi�k��= 1

�2
�P↑↓�k��

− P↓↑�k���, Ptri
z �k��= 1

�2
�P↑↓�k��+ P↓↑�k���, Ptri

x �k��=− 1
�2

�P↑↑�k��
− P↓↓�k���, and Ptri

y �k��=− i
�2

�P↑↑�k��+ P↓↓�k���. Psi�k�� and Ptri
� �k��

are even and odd functions of k�, respectively; Ptri
� describes

the triplet pairing operators whose total spin is the eigenstate
of ê� ·S�pair with zero eigenvalue. Using these operators, the
pairing interaction of Eq. �1� with q� =0 can be rewritten as

Hpair =
1

2V
�
k,k�,

	Vtri�k� ;k���
 �
�=x,y,z

Ptri
†,��k��Ptri

� �k����
+ Vsi�k� ;k���Psi

† �k��Psi�k���� , �2�

where Vtri,si�k� ;k���= 1
2 	V�k� −k����V�k� +k����. Vsi�k� ;k��� is an

even function of both arguments k� and k��, while Vtri�k� ;k��� is
an odd function of both.

The decoupled mean-field Hamiltonian reads

Hmf = �
k�

�
†�k�� ��k��I ��	�k��

�	�
� �k�� − ��k��I

��k�� , �3�

where �k� means summation over half of momentum space;
��k��=��k��−�; �k��= �c↑�k�� ,c↓�k�� ,c↑

†�−k�� ,c↓
†�−k���T. The

mean-field gap function is defined as ��	�k��= 1
V�k��V

�k� −k�����P�	�k�����. ��	 can be decomposed into singlet and
triplet channels as ��	�k��=�si�k��i��	

y +�tri,��k���i���y��	.
The Bogoliubov quasiparticle spectra become E1,2�k��

=��k
2+�1,2

2 �k��, where �1,2
2 �k�� are the eigenvalues of the

positive-definite Hermitian matrix �†�k����k��. Its trace satis-
fies �1

2�k��+�2
2�k��= ��si�k���2+����tri,��k���2. The free energy

becomes

F = −
2

	
�

k,i=1,2
ln
2 cosh

	Ek�,i

2
� −

1

2V
�

k�,k��,a=si,�tri,��

� ��a
��k��Va

−1�k� ;k����a�k��� , �4�

where Vsi,tri
−1 �k� ;k��� is the inverse of the interaction matrix

defined as 1
V�k�Vsi,tri�k� ,k���Vsi,tri

−1 �k�� ,k���=�k�,k��.
The gap equations are expressed as

�tri,��k�� = −� d3k�

�2��3Vtri�k� ;k���K�k����tri,��k��� ,

�si�k�� = −� d3k�

�2��3Vsi�k� ;k���K�k����si�k��� , �5�

where K�k���=tanh� 	
2 Ei�k���� / �2Ei�k����. Equation �5� formally

diverges. It can be regularized following the standard proce-
dure explained in Ref. 14 and 25 by replacing the bare inter-
action Vtri,si with the renormalized zero energy vertex func-
tions �tri,si. At the level of the Born approximation, this
regularization is equivalent to just introducing an energy cut-
off of ��̄ for �k�

� in Eq. �5�, where �̄ is at the scale of the
Fermi energy.

To analyze the dominant pairing instability around Tc, Eq.
�5� is linearized. Considering that the strongest pairing oc-
curs at the Fermi surface and following the standard proce-

dure in Ref. 14, we define the eigengap functions �tri,si
j �k��

satisfying

N0� d�k�

4�
Vtri,si�k� ;k����tri,si

j �k��� = wtri,si
j �tri,si

j �k�� , �6�

where N0=mkf /�2
2 is the density of state at the Fermi sur-
face; wtri,si

j are dimensionless eigenvalues; k� ,k�� are at the
Fermi surface. We neglect the effect of Fermi surface distor-
tion on pairing which is a higher order effect in the interac-
tion strength �. Then Eq. �5� is linearized into a set of de-
coupled equations

�tri,si
j 	1 + wtri,si ln��2e��̄�/��kBT��� = 0. �7�

The spherical harmonics decomposition of Vtri,si�k� ;k��� reads

N0

4�
Vtri,si�k� ;k��� = �

l,l�;m

Vll�;mYlm
� ��k�Yl�m��k��� , �8�

where Vll�;m remains diagonal for m but couples partial wave
channels with l�= l , l�2. Vtri,si only have matrix elements in
odd and even partial wave channels, respectively. Vll;m has
the same expressions of the Landau parameters of the dipolar
Fermi gases given by Fregoso et al.13 except for an overall
minus sign due to pairing and a trivial overall numerical
factor difference. For l= l�=m=0, V00;0=0 because the aver-
age value of the dipolar interaction is zero.

We diagonalize the matrix Vll�;m to find the dominant
negative eigenvalues which determine the dominant pairing
channels. Two eigenvectors are found with eigenvalues much
more negative than other channels. One lies in the triplet
odd-parity sector with dominant pz-wave character with
slight hybridization with other odd-parity channels as same
as in the single component case:14 �z��k� with the most
negative eigenvalue wtri

z =−3.820�, whose eigenvector is
�z��k��0.993Y10−0.120Y30. The other one lies in the even-
parity spin singlet channel. For the purely dipolar interaction,
its eigenvalue is wsi

s+d=−1.935� and the eigenvector lies in
the mixed channel of s+dk2−3kz

2 as �s+d��k�
�0.6Y00–0.8Y20 with nodes. However, this channel is sensi-
tive to the strength of the short-range s-wave scattering,
which contributes only to the matrix element of V00;0 as de-
picted in Fig. 1. Experimentally, this scattering can be tuned
to the scale of the Fermi energy through Feshbach resonance,
i.e., V00;0 can become of order 1. As for �, as estimated in
Ref. 13, it could reach 0.1�0.2. Thus the competition be-
tween �s+d and �s can be studied experimentally in the fu-
ture. When they become degenerate at V00;0 /��−3.15, �s+d

becomes mostly of s-wave character as �s+d��k�
�0.901Y00−0.434Y20.

We first consider the case of the dominant triplet pairing,
whose critical temperature is determined from Eq. �7� as
Tpz

��2e��̄ /��exp�−1 / �wtri
z ��. Its order-parameter configura-

tion is �tri,��k��=�tri,�z��k�d̂�. d̂ is a spin space unit vector.

Without losing generality, it is taken along the z axis as d̂
= êz. �tri,�z��k�=�trie

i��z��k�, where � is the pairing phase.
This phase has line nodes on the equator. It breaks the Uc�1�
gauge, and the spin SUs�2� symmetries but maintains TR,
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parity, and a Z2 symmetry of the combined operation of d̂�

→−d̂� and �→�+�.26,27 Its Goldstone manifold is G
= �Uc�1� � SUs�2�� / �Us�1� � Z2�= �Uc�1� � Ss

2� /Z2. The corre-
sponding low-energy excitations include the phonon and the
spin-wave modes. It supports two different classes of vorti-
ces: the usual integer vortex of superfluidity and the half-
integer quantum vortex of superfluidity combined with a �
disclination of the d vector.

Next we consider the coexistence of the singlet �s+d pair-
ing and the triplet �z pairing when they become nearly de-
generate. The order parameter can be chosen as �si��k�
=�0�s+d��k� and �tri,���k�=�z�

z��k���,z. An important ob-
servation is that a relative �

�
2 -phase difference between �si

and �tri is favored, thus spontaneously breaking TR symme-
try. This can be proved as follows: the quasiparticle spectra
reads Ei=��2+�i

2, with �1,2
2 = ��0�s+d��k��2

+ ��z�
z��k��2�2 Re��z

��0��s+d��k��z��k�. The last term
vanishes for relative phase �

�
2 between �0 and �z. In other

words, �z+ i�s+d is unitary pairing, i.e., �†�k����k�� is an iden-
tity matrix up to a factor, and �1

2=�2
2= ��0�s+d��k��2

+ ��z�
z��k� �2�. All other phase differences give �1��2, thus

are nonunitary pairing. To show that unitary pairing is opti-
mal, we follow the method presented in Ref. 28 to define the
function f�x�=− 2

	 ln�2 cosh	
2
��k

2+x�, which satisfies

d2 /dx2f�x��0, thus f��1
2�+ f��2

2��2f�
�1

2+�2
2

2 �. Then the first
term in Eq. �4� is minimized by the unitary pairing, and the
second term is degenerate for unitary and nonunitary pair-
ings. Therefore, �z+ i�s+d is favored. This is an exotic fully
gapped TR breaking pairing state because the nodes of �s+d

and �s do not coincide. It also breaks parity but is invariant
under the combined parity and TR operation. Its Goldstone
manifold for the continuous symmetry breaking is the same
as in the purely triplet-�z pairing phase.

The above analysis can be recaptured in the Ginzburg-
Landau �GL� framework. The bulk pairing order parameters
are defined as ��

z =�k�
z�k���tri,��k�� and ��

s+d

=�k�
s+d�k���si�k��. The GL free energy is constructed as

F = �z�T��
�

���
z �2 + �s+d�T���s+d�2 + 	z���

z �4 + 	s+d��s+d�4

+ �1�
�

���
z �2��s+d�2 + �2�

�

	��
z���

z��s+d�s+d + c.c.� ,

�9�

where �z=N0 ln�T /Tpz
�, �s+d=N0 ln�T /Ts+d�, and Ts+d is de-

fined as Ts+d��2e��̄ /��exp�−1 / �wsi
s+d��; 	z and 	s+d terms

are the standard quartic terms for the triplet �z and singlet
�s+d channels, respectively; �1,2 describe the coupling be-
tween the �z and �s+d channels. Following the analysis on a
similar problem in Ref. 29, we consider the situation where
the two channels are nearly degenerate and Tpz

is slightly
larger than Ts+d, then the triplet pairing develops first at Tc
=Tpz

. Defining r= ��1−2��2�� / �2	z�, the condition for the
second instability to occur is that there exists a lower tem-
perature T� below which ��s+d�T����r��pz

�T���. This can be
satisfied for r�1, which results in T� /Tc= �Ts+d /Tc�1/�1−r�.
The �

�
2 -phase difference between the triplet and singlet

channel pairing requires that �2�0. In Refs. 22 and 23, cou-
pling between the singlet and triplet pairings through a linear
spatial derivative is considered, which leads to spatially non-
uniform states. Due to spin conservation, such a term is not
allowed here.

It is natural to further consider competing pairings for
even larger number of components represented by the inter-
nal hyperfine spin degrees of freedom, which is an even
number. The dipolar interaction is independent of them, thus
the system has an SU�2N� symmetry. The 2N�2N pairing
matrix ��	�k�� can be classified as N�2N+1�-component
symmetric �odd-parity� pairing and N�2N−1�-component an-
tisymmetric �even-parity� pairing, which are generalizations
of the triplet and singlet channel pairings, respectively. They
can be explicitly constructed as follows. We define the
charge conjugation matrix R as Rij = �−�i�i,2N−i+1 and the
time-reversal operators T=RC, where C is complex conjuga-
tion. For 2N=2, R reduces to the familiar −i�y. R satisfies
RT=−R and R2=−1. On the other hand, any 2N�2N Her-
mitian matrix can be expanded in the basis of the identity
matrix and 4N2−1 generators of the SU�2N� group. They can
be classified as even and odd under TR transformation.
N�2N+1� of them are TR odd which can be constructed as
spin-tensor matrices P� with odd rank numbers �e.g., spin,
spin octupoles, etc.�, and N�2N−1� of them are TR even
which can be constructed as spin-tensor matrices Q� with
even rank numbers �e.g., the identity matrix, spin quadru-
pole, etc.�. Using TP�T−1=−P�, TQ�T−1=Q�, and RT=−R, it
can be shown that the matrices of P�R are symmetric and
Q�R are antisymmetric, respectively. Thus we can decom-
pose ��	��k�=�asy,���k��Q�R��	+�sym,���k��P�R��	,
where �asy,���k���=1�N�2N−1�� and �sym,���k���=1
�N�2N+1�� are even and odd functions of �k, respectively.

The eigenvalue analysis for competing pairing channels is
the same as in Eq. �8� by replacing the triplet �singlet� pair-
ing with the spin-symmetric �antisymmetric� pairing, respec-
tively. We next consider the unitary pairing in both spin-
symmetric and spin asymmetric channels, respectively. A
convenient choice for the matrix kernels is that Pz=�z � IN

-3 -2 -1 0 1 2 3
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-1
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ig
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00;0

wtri
z

wsi
s+d

/V λ

λ /

FIG. 1. �Color online� The eigenvalues wtri
z for the spin triplet �z

channel and wsi
s+d for the singlet �s+d channel. The latter depends on

the short-range s-wave interaction V00;0.
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for the spin-symmetric channel, and Q= I2N where IN and I2N
are the identity matrices with N and 2N dimensions. The first
one corresponds to the pairing of �i=1�2Nci

†�k��c2N−i
† �−k��,

while the second corresponds to �i=1�2N�−�i−1ci
†�k��c2N−i

† �−k��.
In the �z-channel pairing states, the spin-SU�2N� symmetry
is broken down into SU�N��SU�N��U�1�, thus it has 2N2

branches of spin-wave Goldstone modes. The vortex con-
figuration is similar to the N=1 case including the usual
integer vortex and the half-quantum vortex combined with a
� disclination of spin texture. Again for the mixing between
pairing in the �s+d �spin antisymmetric� and �z �spin sym-
metric� channels, a relative phase �

�
2 is needed to maintain

the unitary pairing.
In summary, we have investigated the competing pairing

symmetries in ultracold multicomponent dipolar molecular
systems, which provides a wonderful opportunity to investi-
gated exotic pairings. We predict that the anisotropy of the
dipolar interaction provides a well-defined pairing mecha-
nism to the spin triplet or, more generally, the spin-
symmetric channel Cooper pairing. The spin singlet even-
parity channel pairing in the �s+d channel is tunable by the
short-range s-wave scattering. It mixes with the spin triplet
odd-parity channel pairing by developing a relative phase

�
�
2 to maintain the unitary pairing. This is another type of

unconventional Cooper pairing breaking TR symmetry.
We point out that our mechanism of TR breaking mixing

between triplet and singlet pairings is very general. For ex-
ample, in superfluid 3He it was originally proposed that pair-
ing would occur in the singlet d-wave channel,30 induced by
the attractive part of the van der Waals interaction. Later,
attention focused exclusively on pairing in the triplet p-wave
channel induced by the short-range repulsive interaction.30,31

It is natural to expect that both channels could contribute to
pairing at sufficiently low temperatures, leading to coupled
Balian-Werthamer �BW� triplet pairing and singlet channel
pairing with a relative phase �

�
2 . In metallic superconduct-

ors, coupling of an isotropic s-wave state with a BW triplet
state will lead to a single isotropic gap only for the particular
case where the relative phase is �

�
2 . These possibilities will

be discussed separately.
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