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The interaction effects in ultracold Fermi gases with SUðNÞ symmetry are studied nonperturbatively in
half filled one-dimensional lattices by employing quantum Monte Carlo simulations. We find that, as N
increases, weak and strong interacting systems are driven to a crossover region, but from opposite
directions as a convergence of itinerancy and Mottness. In the weak interaction region, particles are nearly
itinerant, and interparticle collisions are enhanced by N, resulting in the amplification of interaction effects.
In contrast, in the strong coupling region, increasing N softens the Mott-insulating background through the
enhanced virtual hopping processes. The crossover region exhibits nearly N-independent physical
quantities, including the relative bandwidth, Fermi distribution, and the spin structure factor. The
difference between even-N and odd-N systems is most prominent at small N’s with strong interactions,
since the odd case allows local real hopping with an energy scale much larger than the virtual one. The
above effects can be experimentally tested in ultracold atom experiments with alkaline-earth(-like)
fermions such as 87Sr (173Yb).
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High symmetry groups [e.g., SUðNÞ, SpðNÞ, and
SOðNÞ] are typically investigated in the context of high-
energy physics. They were introduced to condensed matter
physics as a tool to apply the 1=N-expansion to handle
strong correlation effects in realistic SU(2) electronic
systems [1–4]. High symmetries enhance quantum spin
fluctuations and suppress antiferromagnetic Néel ordering
[1,2,5,6], which has stimulated intensive efforts to study
exotic quantum paramagnetic states, such as valence-bond
solid states and spin liquid states with high symmetries
[7–13]. However, high symmetries are rare in solids in spite
of many multicomponent spin systems. For example, in
transition metal oxides, Hund’s coupling aligns electron
spins, forming large-spin moments. However, the sym-
metry remains SU(2), and quantum spin fluctuations are
suppressed by the large spin.
Ultracold atom systems open up newpossibilities to study

high symmetries since many alkali and alkaline-earth
fermions carry hyperfine spins larger than 1=2. It was first
pointed out that spin-3=2 fermionic systems exhibit a
generic Sp(4) symmetry without fine-tuning [14–16], which
is further enlarged to SU(4) for spin-independent inter-
actions, a feature of alkaline-earth fermions. Magnetic and
superfluid properties of large-spin fermion systems,many of
which possess high symmetries, have been systematically
studied [17–24]. The past few years have witnessed a
significant experimental progress along this direction.
High symmetries, such as SU(6) and SU(10), are realized
with 173Yb [25] and 87Sr atoms [26,27], respectively. The
interplay between the nuclear-spin and electronic-orbital

degrees of freedom leads to complex physics [8,28,29].
Moreover, various SUðNÞ symmetric quantum degenerate
gases and Mott insulators in optical lattices have been
realized [25–28,30–37].
A natural question on SUðNÞ symmetric fermion sys-

tems is how fermion correlations vary with N. When the
total fermion density is fixed, the Bethe-ansatz solution for
one-dimensional (1D) systems shows that the low-energy
properties approach those of spinless bosons as N → ∞
[20,38]. As N becomes large, more and more fermions can
antisymmetrize their spin wave functions such that their
orbital wave functions are more symmetrized in mimicking
bosons. In a more interesting scenario, the density is fixed,
but N varies, as realized in a recent experiment [37]: by
using a subset of the spin-projection components of 173Yb
atoms, 1D SUðNÞ systems were constructed with up to
N ¼ 6. Increasing N intensifies interparticle collisions, and
thus the Fermi distribution is broadened as N increases.
This experiment was performed in the metallic region
where the interaction effect is weak.
It would be interesting to explore further the conse-

quences of a high symmetry in the lattice, in particular,
when the system is in Mott-insulating states, e.g., at half
filling. In this Letter, we systematically investigate the half
filled 1D SUðNÞ lattice systems, i.e., N=2 particles per site
on average, by using quantum Monte Carlo (QMC)
simulations. These systems are insulating in the ground
states of both weak and strong interaction regions, but the
interaction effects scale differently as N increases when
expressed in terms of the relative bandwidth WR (the ratio
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of the kinetic energies in the interacting and free systems),
Fermi distribution, and spin structure factor. In the weak
interaction region, the interaction effects are strengthened
as N increases. In contrast, in the strong interaction region,
increasing N softens the Mott-insulating background and
weakens correlations. There exists a crossover region
characterized by nearly N-independent relative bandwidths
and spin structure factors. To our knowledge, such a
crossover phenomenon as the symmetry grows has not
been investigated before. Previous large-N studies in the
condensed matter literature typically focus on Heisenberg
models by freezing the charge fluctuations, which are
already in the infinite-U limit. Our work is different from
previous studies by directly working on Hubbard models
that include both charge and spin physics. Because of the
local charge fluctuations of odd-N systems, they exhibit an
opposite N dependence of the relative bandwidths and
stronger dimerization compared to the even-N case at small
values of N. As N increases, such difference is diminished
by strong charge fluctuations.
We consider the 1D SUðNÞ Hubbard model,

H ¼ −t
X
hiji;α

c†i;αcj;α þ
U
2

X
i

niðni − 1Þ − μ
X
i

ni; ð1Þ

where hi represents the nearest-neighboring bond; the spin
index α runs from 1 to N; ni ¼

P
αc

†
i;αci;α is the total

particle number at site i. This model possesses a particle-
hole symmetry at half filling, which fixes μ ¼ ðN − 1Þ=2U.
We will investigate quantitatively the correlation effects

that arise as N varies from two to larger values, by
employing QMC calculations, a method well known to
be free of the sign problem in the path-integral framework
in 1D at any filling. The stochastic-series-expansion QMC
method will be applied with the directed-loop algorithm
[39], which allows us to perform large-scale simulations
efficiently. We will focus on insulating states at half filling
and a system size set to L ¼ 100 for all simulations below.
The finite size effects were verified to be negligible for all
the quantities reported here.
The ground states of the half filled SUðNÞ Hubbard

chains described by Eq. (1) are insulating at U > 0 with
charge gaps opening for all values of N ≥ 2 [18,40–42].
Except for the SU(2) case in which the spin sector remains
gapless, exhibiting algebraic antiferromagnetic (AFM)
ordering, spin gaps open for N ≥ 3 accompanied by the
appearance of dimerization. In the weak interaction region,
there is no qualitative difference between the even- and
odd-N cases. Increasing N enhances fermion collisions
among different components, which strengthens both
charge and spin gaps. However, in the strong interaction
region U ≫ t, the physics is qualitatively different between
even and odd N’s. For illustration, consider a two-site
problem filled withN fermions, which is discussed in detail
in the Supplemental Material, Sec. I [43]. When N is even,

each site holds N=2 fermions on average. Weak charge
fluctuations arise from virtual hoppings, generating the
AFM superexchange J ≈ 4t2=U. In contrast, when N is
odd, the on site charge fluctuations remain significant even
at the limit U → ∞ due to the real hopping of one particle
in the background of ðN − 1Þ=2 particles on each site. In
both cases, the ground state is an SUðNÞ singlet, and the
first excited states belong to the SUðNÞ adjoint represen-
tation. The spin gap for even values of N is Δs ≈ ðN=2ÞJ,
while that for odd values of N is Δs ≈ t. The single-particle
gap for adding one particle (hole) is estimated as Δspg ≈ U
when N is even and Δspg ≈ ½ðN þ 1Þ=2�t when N is odd.
Since dimerization develops in the 1D lattice for N ≥ 3, the
picture based on two sites already captures the essential
physics in the thermodynamic limit. As N increases to U=t,
the system crosses over into the weak interaction region,
and the distinction between even- and odd-N cases smears.
To support the above physical intuitions, we perform

QMC simulations at a very low temperature to approach the
ground states (β ¼ t=T ¼ 30 is used for Figs. 1–3.) The
bandwidth narrowing is a characteristic feature of Mott
insulators, which often shows in spectroscopy measure-
ments in solids. We define the relative bandwidth
WR ¼ EK=E0

K , where EK is the kinetic energy at the
interaction U, and E0

K is the corresponding noninteracting
value. WR ¼ 1 in the noninteracting case, and it is
completely suppressed to zero at U ¼ ∞. At finite values
of U, the N dependence of WR from the weak to strong
interaction regions is plotted in Fig. 1(a) for even N and in
Fig. 1(b) for odd N. These curves do not cross since WR
monotonically decreases as U increases. For small values
of U=t, the single-particle gap Δspg is exponentially small,
and thus fermions remain nearly itinerant over a long
correlation length ξ ∝ t=Δspg, with the lattice constant set
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FIG. 1. The relative bandwidthWR for even (a) and odd (b)N at
β ¼ 30. In both cases, the dashed lines shown as a guide from top
to bottom correspond to U=t ¼ 0.5; 1.0; 2.0; 3.0; 5.0; 7.0; 9.0;
11.0; 13.0; 15.0; 17.0; 19.0, respectively. The crossover lines with
U=t ≈ 2 (marked red) separating the weak and strong interaction
regions are nearly N independent. (a) For even N, WR decreases
with N in the weak interaction region, while it increases in the
strong interaction region. (b) For odd N, the behavior for weak
interactions is similar to (a). However, in the strong interaction
regime,WR is nonmonotonic, first decreasing and then increasing
with N.
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as one. IncreasingN strengthens the interparticle collisions,
and WR decreases monotonically for both even and odd N.
Conversely, in the strong coupling region, a distinct

even-odd effect appears. For N even, WR is significantly
below one due to the suppression of charge fluctuations.
The virtual hopping processes dominate, whose number per
bond scales as ðN=2Þ2; thus WR increases roughly linearly
with N. For odd values of N, the overall scale of WR is
larger than that of even N’s, since both the real and virtual
hopping processes contribute to WR. When N is small, the
real hopping dominates, since its kinetic energy scale is on
the order of t, which is much larger than J of the virtual
hopping. Similar to the weak interaction case, WR goes
down initially as N increases, which enhances interparticle
collisions. As N grows, the virtual hopping takes over,
since the number per bond scales as ½ðN − 1Þ=2�2, while
that of the real hopping scales as ðN þ 1Þ=2. Consequently,
after passing a minima, WR increases with N. The value of
N at the turning point can be determined by equaling the
energy scale of the real hopping ½ðN þ 1Þ=2�t to the virtual
one ½ðN − 1Þ=2�2J with J ¼ 4t2=U, yielding N ≈U=2t.
After that, the system crosses over from the strong to the
intermediate interaction region. ThenWR behaves similarly
for both even and odd N.
Between the weak and strong interaction regions, there

exists a crossover area. Say, along the line ofU=t ≈ 2,WR≈
0.9 is nearlyN independent, as shown in both Figs. 1(a) and
1(b). For N even, as N increases, WR approaches the
crossover from opposite directions in the weak and strong
interaction regions. For N odd, WR behaves similarly as N
becomes large. This observation implies that the limits of
U → 0 and N → ∞ are nonexchangeable. For the non-
interacting limit, limN→∞ limU→0ð1 −WRÞ ¼ 0. Moreover,
we conjecture the existence of an interacting large-N limit

lim
U→0

lim
N→∞

ð1 −WRÞ ≈ 0.1: ð2Þ

The smearing of the Fermi distribution, which is defined
as nðkÞ ¼ ð1=NÞPαhc†α;kcα;ki, is an indication of correla-
tion. It can be measured via time-of-flight spectra in cold-
atom systems [37]. Below we present the QMC results of
the N dependence of nðkÞ in the strong interaction region at
a very low temperature for even and odd N’s in Fig. 2(a)
and 2(b), respectively. At U ¼ þ∞, nðkÞ is completely
flattened. Nevertheless, at finite values of U, short-range
charge fluctuations render nðkiÞ > nðkfÞ > nðkoÞ, where
ki < kf < ko and the Fermi wave vector kf ¼ π=2.
Compared to the ideal Fermi distribution, nðkÞ is signifi-
cantly smeared and becomes continuous at kf. Because of
the particle-hole symmetry, nðkÞ ¼ 1 − nðπ − kÞ holds for
all N’s at half filling; thus all curves cross at nðkfÞ ¼ 1=2.
WhenN is even, nðkÞ is less smeared as N increases, which
enhances charge fluctuations on the Mott-insulating back-
ground. In contrast, the experiment done in 1D optical

tubes observed a broadening of nðkÞ, which is a feature of
the weak interaction metallic region [37]. In our simula-
tions, a similar behavior appears in the weak interaction
region where the fermion itinerancy remains significant.
When N is odd, nðkÞ’s dependence on N is much weaker.
It also exhibits nonmonotonic behavior as N increases,
which is consistent with WR’s.
Quantum magnetic correlation is a fundamental property

in the Mott-insulating states reflected by the spin structure
factor SðQÞ, which can be measured through the noise
correlations of the time-of-flight spectra [45]. SðQÞ is the
Fourier component at momentum Q of the two-point spin
correlation function Csði; jÞ defined as

Csði; jÞ ¼
1

2CðNÞ
X
αβ

hSαβðriÞSβαðrjÞi; ð3Þ

where SαβðriÞ ¼ c†i;αci;β − ðni=NÞδαβ; CðNÞ is defined to
normalizeCs ¼ 1 for i ¼ j in the limit of largeU, as shown
in the Supplemental Material, Sec. II [43]. The antiferro-
magnetic correlation is reflected by SðQ ¼ πÞ, which is
studied for varyingN andU below. In Fig. 3(a), SðQÞ in the
strong interaction region (U=t ¼ 15) is presented. Again
consider a two-site problem in the large-U limit for
intuition: the number of resonating spin configurations is
ð2mÞ!=ðm!Þ2 for both N ¼ 2m − 1 and 2m. Consequently,
SðQÞ for N ¼ 2m − 1 and 2m are close to each other.
Nevertheless, the odd-N case has a prominent dimerization
tendency facilitated by stronger charge fluctuations; thus
SðQÞ at N ¼ 2m is larger. Overall, SðQÞ decreases rapidly
with increasing N, which enhances spin fluctuations. In
Fig. 3(b), the N dependence of SðQÞ is presented for even
N by varying U. Similar to WR, there exists a crossover
region, say, SðQÞ is nearly independent on N around
U=t ≈ 2, which is approached in opposite directions from
weak and strong interaction regions. The N dependence at
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FIG. 2. Momentum distribution nðkÞ in the strong interaction
region for even (a) and odd (b) values of N. Parameter values are
U=t ¼ 15 and β ¼ 30. All curves cross at nðkf ¼ π=2Þ ¼ 1=2.
(a) For even N’s, nðkÞ is driven towards the weak interaction
distribution limit as N increases. (b) For odd N’s, nðkÞ exhibits
nonmonotonic behavior as N increases, which is consistent with
that of the WR shown in Fig. 1(b).
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odd N’s is similar, as presented in Supplemental Material,
Sec. II [43].
Finite entropy.—Now we consider the finite temperature

(entropy) properties. In cold-atom lattice experiments, the
entropy per particle S, or specific entropy, is a more
convenient parameter than temperature T. The SðTÞ
relation can be obtained via

SðTÞ ¼ ln 4þ EðTÞ
T

−
Z

∞

T
dT

EðTÞ
T2

; ð4Þ

where ln4 is the entropy at the infinite-T limit and EðTÞ is
the internal energy per particle. We present the isoentropy
curves in the T −U plane as adiabatically turning U to the
strong interaction region for different N’s in Fig. 4(a),
considering S below, but close to the experimental avail-
ability, say, S ¼ 0.3 [35]. An overall trend is that T
decreases as U increases for all N’s as a reminiscence of
the Pomeranchuk effect: increasing U drives the system
more local momentlike, and thus T decreases to maintain S
invariant [46–49]. The temperatures asU becomes large for
even N’s are lower than those of odd N’s because fermions
in the even-N case are more local momentlike and possess
higher entropy capacity than the odd-N case. When N is
even, as shown in previous studies [47,48], increasing N
softens the Mott gap and drives the system less local
momentlike, which reduces the entropy capacity, and thus
T increases as N increases. In contrast, there are still
significant local charge fluctuations in the odd-N case even
in the large-U region. Increasing N further enhances the
collision among fermions and reduces the fermion itinerary,
which increases the entropy capacity and reduces the
temperature. This is in sharp contrast to the case of 1=N
filling investigated before, in which T monotonically
decreases simply because of the lnN scaling of the specific
entropy [46,50,51].

The above even-odd effects can be observed experimen-
tally by measuring the dimerization order. When N is odd,
the dimerization ordering is based on the combined effect
of real and virtual hoppings: the real hopping dominates if
N is small, and the virtual one becomes important asN goes
large. Hence, the corresponding dimerization ordering is
stronger than that of the even N case, which is only based
on the virtual hopping. Therefore, we propose that systems
with odd N are better candidates to observe the dimeriza-
tion order compared to those with even N. In particular,
systems with odd values of N, 3 ≤ N ≤ 9, are experimen-
tally accessible by using 173Yb and 87Sr atoms [25–27]. We
define its two-bond correlation function as

Cdði − jÞ ¼ 1

N
ðhKiKji − hKiihKjiÞ; ð5Þ

where Ki ¼
P

αc
†
α;icα;iþ1 þ H:c: is the bonding strength

between site i and iþ 1. The dimer correlation length ξd is
simulated by fitting Cdði − jÞ ∝ e−ji−jj=ξd . Its dependence
on S and N is plotted in Fig. 4(b) in the strong interaction
region. As S decreases, ξd grows much faster in the odd-N
case. For comparison, Cdði − jÞ’s are plotted in real space
for N ¼ 7 and 8 in the inset.
The lowest specific entropy S reachable in the optical

lattice is about at ∼0.6kB, and in the center of the harmonic
trap, it can be lowered to ∼0.3kB [35,52]. We expect that,
with further improvements in cooling and spectroscopic
techniques [32,33,53,54], the dimer ordering could be
observed in future SUðNÞ cold-atom experiments. In
particular, the following detection protocol would yield
the two-bond correlation function above, but for alternating
pairs of sites, and reveal its decay. After the realization of
the 1D SUðNÞ Hubbard model with 87Sr for any N in a blue

2 4 6 8 10 12 14
N

2.1

2.2

2.3

2.4

2.5

2.6
S

(
)

even
odd

(a)

4 6 8 10 12 14
even N

1.6

1.8

2

2.2

2.4

S
(

)

(b)

U=5t

U=3t

U=2t

U=t

U=0.5t

FIG. 3. The N dependence of SðQ ¼ πÞ at β ¼ 30. (a) At
U=t ¼ 15 (strong interaction), SðπÞ for N ¼ 2m − 1 and 2m are
close, and the latter is slightly larger. As N increases, SðπÞ drops
rapidly showing the suppression of AFM correlations. (b) Similar
to WR, SðπÞ exhibits opposite N dependence in the weak and
strong interaction regions. The crossover occurs around U=t ≈ 2,
consistent with WR shown in Fig. 1(a).
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FIG. 4. (a) The T − U relations during the adiabatic process
with a fixed specific entropy S=kB ¼ 0.3. As U increases to the
strong interaction region, the isoentropy curves with even and
odd N’s behave differently, and they merge together from
opposite directions in the large-N limit. (b) The dimer correlation
length ξd vs the specific entropy S. The correlation length
increases with N in general. The odd-N systems (red) overall
exhibit stronger dimerization instability than the even-N ones
(blue). (Inset) The real space correlation function Cdði; jÞ is
shown for N ¼ 7 and N ¼ 8 for comparison at S=kB ¼ 0.2.
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magic-wavelength lattice at 389.9 nm [55], chosen for
example and technical convenience, we follow the detec-
tion scheme in Refs. [55,56], but with a bichromatic lattice
including one at 2 × 389.9 nm. However, before band
mapping, when nearest-neighbor singlets-triplets lead to
two-band occupation, we selectively [32] and sequentially
transfer each band occupation and spin component to a
state with a cycling fluorescing transition [57], 3P2, which
is each then imaged with a quantum gas microscope
[58,59], ultimately revealing the dimer correlation length.
In conclusion, we have nonperturbatively studied one-

dimensional SUðNÞ fermion lattice systems at half filling.
In the strong interaction region, the odd-N systems exhibit
stronger charge fluctuations and dimerization than the even
N. As N reaches the level of U=t, the virtual hopping
processes dominate in both even- and odd-N systems, and
the interaction effects are weakened for increasing N.
Whereas from the weak interaction limit, increasing N
enhances particle collisions and strengthens the interaction
effect. These two distinct behaviors approach a crossover
region around U ∼ 2t from opposite directions, as demon-
strated in experimentally measurable quantities, including
the kinetic energy scale, the momentum distribution func-
tions, and spin structure factors. The above pictures of
convergence of physics of itineracy and Mottness are not
limited to one dimension. It applies to Mott states in two
and three dimensions as well. In previous simulations of
2D SU(2N) Hubbard models [49,60], the softening of
the single-particle gap for increasing N has been found at
relatively large values of U. A detailed study will be
deferred to future work.

S. X. and C.W. are supported by AFOSR FA9550-14-1-
0168. Y.W. gratefully acknowledges financial support from
the National Natural Science Foundation of China under
Grants No. 11729402, No. 11574238, and No. 11874292.
Y.W. is also grateful for the award of a scholarship
funded by the China Scholarship Council (File
No. 201706275082). C.W. and J. B. acknowledge support
from the President’s Research Catalyst Awards of the
University of California.

[1] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[2] D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).
[3] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
[4] S. Sachdev and N. Read, Int. J. Mod. Phys. B 05, 219

(1991).
[5] J. B. Marston and I. Affleck, Phys. Rev. B 39, 11538 (1989).
[6] N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990).
[7] A. Paramekanti and J. B. Marston, J. Phys. Condens. Matter

19, 125215 (2007).
[8] M. Hermele, V. Gurarie, and A. M. Rey, Phys. Rev. Lett.

103, 135301 (2009).
[9] C. Honerkamp and W. Hofstetter, Phys. Rev. Lett. 92,

170403 (2004).

[10] K. Harada, N. Kawashima, and M. Troyer, Phys. Rev. Lett.
90, 117203 (2003).

[11] P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, and F. Mila,
Phys. Rev. Lett. 107, 215301 (2011).

[12] P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, and F. Mila,
Phys. Rev. X 2, 041013 (2012).

[13] T. C. Lang, Z. Y. Meng, A. Muramatsu, S. Wessel, and F. F.
Assaad, Phys. Rev. Lett. 111, 066401 (2013).

[14] C. Wu, J.-P. Hu, and S.-C. Zhang, Phys. Rev. Lett. 91,
186402 (2003).

[15] C. Wu, Mod. Phys. Lett. B 20, 1707 (2006).
[16] C. Wu, Phys. Rev. Lett. 95, 266404 (2005).
[17] M. D. Hoffman, A. C. Loheac, W. J. Porter, and J. E. Drut,

Phys. Rev. A 95, 033602 (2017).
[18] S. Capponi, P. Lecheminant, and K. Totsuka, Ann. Phys.

(Amsterdam) 367, 50 (2016).
[19] P. He, Y. Jiang, X. Guan, and J. He, J. Phys. A 48, 015002

(2015).
[20] X.-W. Guan, Z.-Q. Ma, and B. Wilson, Phys. Rev. A 85,

033633 (2012).
[21] D. Wang, Y. Li, Z. Cai, Z. Zhou, Y. Wang, and C. Wu, Phys.

Rev. Lett. 112, 156403 (2014).
[22] Z. Zhou, D. Wang, Z. Y. Meng, Y. Wang, and C. Wu, Phys.

Rev. B 93, 245157 (2016).
[23] T.-L. Ho and B. Huang, Phys. Rev. A 91, 043601

(2015).
[24] T.-L. Ho and S. Yip, Phys. Rev. Lett. 82, 247 (1999).
[25] H. Hara, Y. Takasu, Y. Yamaoka, J. M. Doyle, and Y.

Takahashi, Phys. Rev. Lett. 106, 205304 (2011).
[26] B. J. De Salvo, M. Yan, P. G. Mickelson, Y. N. M. de

Escobar, and T. C. Killian, Phys. Rev. Lett. 105, 030402
(2010).

[27] S. Stellmer, R. Grimm, and F. Schreck, Phys. Rev. A 87,
013611 (2013).

[28] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S.
Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and
A.M. Rey, Nat. Phys. 6, 289 (2010).

[29] G. Chen, K. R. A. Hazzard, A. M. Rey, and M. Hermele,
Phys. Rev. A 93, 061601 (2016).

[30] S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto,
R. Murakami, and Y. Takahashi, Phys. Rev. Lett. 105,
190401 (2010).

[31] F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch,
and S. Fölling, Nat. Phys. 10, 779 (2014).

[32] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S.
Safronova, P. Zoller, A. M. Rey, and J. Ye, Science 345,
1467 (2014).

[33] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, Nat.
Phys. 8, 825 (2012).

[34] P. M. Duarte, R. A. Hart, T.-L. Yang, X. Liu, T. Paiva, E.
Khatami, R. T. Scalettar, N. Trivedi, and R. G. Hulet, Phys.
Rev. Lett. 114, 070403 (2015).

[35] A. Omran, M. Boll, T. A. Hilker, K. Kleinlein, G. Salomon,
I. Bloch, and C. Gross, Phys. Rev. Lett. 115, 263001 (2015).

[36] C. Hofrichter, L. Riegger, F. Scazza, M. Höfer, D. R.
Fernandes, I. Bloch, and S. Fölling, Phys. Rev. X 6,
021030 (2016).

[37] G. Pagano et al., Nat. Phys. 10, 198 (2014).
[38] C. N. Yang and Y.-Z. You, Chin. Phys. Lett. 28, 020503

(2011).

PHYSICAL REVIEW LETTERS 121, 167205 (2018)

167205-5

https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/PhysRevB.38.316
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1142/S0217979291000158
https://doi.org/10.1142/S0217979291000158
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1103/PhysRevB.42.4568
https://doi.org/10.1088/0953-8984/19/12/125215
https://doi.org/10.1088/0953-8984/19/12/125215
https://doi.org/10.1103/PhysRevLett.103.135301
https://doi.org/10.1103/PhysRevLett.103.135301
https://doi.org/10.1103/PhysRevLett.92.170403
https://doi.org/10.1103/PhysRevLett.92.170403
https://doi.org/10.1103/PhysRevLett.90.117203
https://doi.org/10.1103/PhysRevLett.90.117203
https://doi.org/10.1103/PhysRevLett.107.215301
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevLett.111.066401
https://doi.org/10.1103/PhysRevLett.91.186402
https://doi.org/10.1103/PhysRevLett.91.186402
https://doi.org/10.1142/S0217984906012213
https://doi.org/10.1103/PhysRevLett.95.266404
https://doi.org/10.1103/PhysRevA.95.033602
https://doi.org/10.1016/j.aop.2016.01.011
https://doi.org/10.1016/j.aop.2016.01.011
https://doi.org/10.1088/1751-8113/48/1/015002
https://doi.org/10.1088/1751-8113/48/1/015002
https://doi.org/10.1103/PhysRevA.85.033633
https://doi.org/10.1103/PhysRevA.85.033633
https://doi.org/10.1103/PhysRevLett.112.156403
https://doi.org/10.1103/PhysRevLett.112.156403
https://doi.org/10.1103/PhysRevB.93.245157
https://doi.org/10.1103/PhysRevB.93.245157
https://doi.org/10.1103/PhysRevA.91.043601
https://doi.org/10.1103/PhysRevA.91.043601
https://doi.org/10.1103/PhysRevLett.82.247
https://doi.org/10.1103/PhysRevLett.106.205304
https://doi.org/10.1103/PhysRevLett.105.030402
https://doi.org/10.1103/PhysRevLett.105.030402
https://doi.org/10.1103/PhysRevA.87.013611
https://doi.org/10.1103/PhysRevA.87.013611
https://doi.org/10.1038/nphys1535
https://doi.org/10.1103/PhysRevA.93.061601
https://doi.org/10.1103/PhysRevLett.105.190401
https://doi.org/10.1103/PhysRevLett.105.190401
https://doi.org/10.1038/nphys3061
https://doi.org/10.1126/science.1254978
https://doi.org/10.1126/science.1254978
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1103/PhysRevLett.114.070403
https://doi.org/10.1103/PhysRevLett.114.070403
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1038/nphys2878
https://doi.org/10.1088/0256-307X/28/2/020503
https://doi.org/10.1088/0256-307X/28/2/020503


[39] O. F. Syljuåsen and A.W. Sandvik, Phys. Rev. E 66, 046701
(2002).

[40] R. Assaraf, P. Azaria, E. Boulat, M. Caffarel, and P.
Lecheminant, Phys. Rev. Lett. 93, 016407 (2004).

[41] P. Azaria, arXiv:1011.2944.
[42] H. Nonne, P. Lecheminant, S. Capponi, G. Roux, and E.

Boulat, Phys. Rev. B 84, 125123 (2011).
[43] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.167205 for further
explanations and additional technical details, which in-
cludes Ref. [44].

[44] S. R. Manmana, K. R. A. Hazzard, G. Chen, A. E. Feiguin,
and A. M. Rey, Phys. Rev. A 84, 043601 (2011).

[45] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70,
013603 (2004).

[46] K. R. A. Hazzard, V. Gurarie, M. Hermele, and A. M. Rey,
Phys. Rev. A 85, 041604 (2012).

[47] Z. Cai, H.-h. Hung, L. Wang, D. Zheng, and C. Wu, Phys.
Rev. Lett. 110, 220401 (2013).

[48] Z. Zhou, Z. Cai, C. Wu, and Y. Wang, Phys. Rev. B 90,
235139 (2014).

[49] Z. Zhou, D. Wang, C. Wu, and Y. Wang, Phys. Rev. B 95,
085128 (2017).

[50] L. Bonnes, K. R. A. Hazzard, S. R. Manmana, A. M. Rey,
and S. Wessel, Phys. Rev. Lett. 109, 205305 (2012).

[51] L. Messio and F. Mila, Phys. Rev. Lett. 109, 205306
(2012).

[52] T. Paiva, Y. L. Loh, M. Randeria, R. T. Scalettar, and N.
Trivedi, Phys. Rev. Lett. 107, 086401 (2011).

[53] C. J. M. Mathy, D. A. Huse, and R. G. Hulet, Phys. Rev. A
86, 023606 (2012).

[54] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E.
Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G.
Hulet, Nature (London) 519, 211 (2015).

[55] M. S. Safronova, Z. Zuhrianda, U. I. Safronova, and C.W.
Clark, Phys. Rev. A 92, 040501 (2015).

[56] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T.
Esslinger, Science 340, 1307 (2013).

[57] A. J. Daley, M.M. Boyd, J. Ye, and P. Zoller, Phys. Rev.
Lett. 101, 170504 (2008).

[58] M. Miranda, R. Inoue, Y. Okuyama, A. Nakamoto, and M.
Kozuma, Phys. Rev. A 91, 063414 (2015).

[59] R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y.
Takahashi, New J. Phys. 18, 023016 (2016).

[60] Z. Cai, H.-H. Hung, L. Wang, and C. Wu, Phys. Rev. B 88,
125108 (2013).

PHYSICAL REVIEW LETTERS 121, 167205 (2018)

167205-6

https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevLett.93.016407
http://arXiv.org/abs/1011.2944
https://doi.org/10.1103/PhysRevB.84.125123
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.167205
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.167205
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.167205
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.167205
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.167205
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.167205
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.167205
https://doi.org/10.1103/PhysRevA.84.043601
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevA.85.041604
https://doi.org/10.1103/PhysRevLett.110.220401
https://doi.org/10.1103/PhysRevLett.110.220401
https://doi.org/10.1103/PhysRevB.90.235139
https://doi.org/10.1103/PhysRevB.90.235139
https://doi.org/10.1103/PhysRevB.95.085128
https://doi.org/10.1103/PhysRevB.95.085128
https://doi.org/10.1103/PhysRevLett.109.205305
https://doi.org/10.1103/PhysRevLett.109.205306
https://doi.org/10.1103/PhysRevLett.109.205306
https://doi.org/10.1103/PhysRevLett.107.086401
https://doi.org/10.1103/PhysRevA.86.023606
https://doi.org/10.1103/PhysRevA.86.023606
https://doi.org/10.1038/nature14223
https://doi.org/10.1103/PhysRevA.92.040501
https://doi.org/10.1126/science.1236362
https://doi.org/10.1103/PhysRevLett.101.170504
https://doi.org/10.1103/PhysRevLett.101.170504
https://doi.org/10.1103/PhysRevA.91.063414
https://doi.org/10.1088/1367-2630/18/2/023016
https://doi.org/10.1103/PhysRevB.88.125108
https://doi.org/10.1103/PhysRevB.88.125108

