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Abstract. We study the quantum dynamics of superfluids of bosons hybridized
with Cooper pairs near Feshbach resonances and the influence of fermion–boson
conversion on Mott states. We derive a set of equations of motion which describe
novel low energy dynamics in superfluids and obtain a new distinct branch
of gapped collective modes in superfluids which involve anti-symmetric phase
oscillations in fermionic and bosonic channels. We also find that Mott states in
general are unstable with respect to fermion–boson conversion; particles become
delocalized and the off-diagonal long-range order of superfluids can be developed
when a finite conversion is present. We further point out a possible hidden order
in Mott states. It is shown that the quantum dynamics of Fermi–Bose states
can be characterized by either an effective coupled U(1) ⊗ U(1) quantum rotor
Hamiltonian in a large-N limit or a coupled XXZ ⊗ XXZ spin Hamiltonian in a
single-orbit limit.
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1. Introduction

The phenomenon of Feshbach resonances in ultra cold atomic gases has attracted much attention.
The Zeeman-field-driven two-body resonances between fermion pairs in open channels and
bound molecules provide a fascinating way to tune the scattering length between atoms in open
channels. Remarkably, this sort of simple two-body physics results in extremely rich quantum
many-body states in atomic vapours which have not been explicitly observed in conventional
solid state systems. Indeed, by varying the two-body scattering length near Feshbach resonances,
several groups have successfully achieved fermionic superfluids in a strongly interacting regime
[1]–[4]. And most recently, lattice Feshbach resonances have been observed [5, 6].

The superfluids near Feshbach resonances are related to the BCS-BEC crossover studied
a while ago [7]–[10]; this was pointed out by a few groups [11]–[16]. Various efforts have
been made to incorporate the two-body resonance between Cooper pairs (open channel) and
molecules (close channel) explicitly in the many-body Hamiltonian and many interesting results
were obtained. Relations between the multiple-channel model and the previous single-channel
model have also been studied and clarified.

After all these interesting efforts, a very reasonable understanding has been achieved. Three
general features of Feshbach resonances deserve emphasizing here. The first one is that near a
Feshbach resonance the usual Cooper pairing amplitude and molecule condensate wavefunction
are proportional to each other. Particularly, phases of two components (fermionic and bosonic)
in the many-body wave functions are completely locked. In most cases, it has been shown
that molecules mediate an effective interaction between fermions. It also has been emphasized
in various occasions that molecules can be integrated out and at low energies one only needs
to deal with an effective theory of fermions with attractive interactions. Indeed, in the mean
field approximation (MFA) the Feshbach resonance introduces an effective interaction between
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fermions, the interaction constant of which is γ2
FB/(2µ − v). Here γFB is the coupling strength

(see equation (2)), v is the detuning energy of molecules and µ is the chemical potential of
fermions.

The second feature is the behaviour of many-body states at Feshbach resonances. It turns
out that the properties of states at resonances very much depend on the underlying two-body
parameters. If the resonance width is very large compared with the Fermi energy, then at
resonances the energy per particle in unit of the Fermi energy of free particles is universal,
independent of particle densities, or background scattering length, or other microscopic properties
of two-body resonances. It is also in this limit one can establish an explicit connection between the
two-channel model currently employed to study the physics near Feshbach resonances and
the one-channel model studied long time ago. However, if the resonance width is very narrow,
then the properties of many-body states further depend on microscopic parameters of two-body
physics.

The distinction between these two limits is even more severe if one zooms in and looks into
the molecule fraction or the chemical potential at resonances. This is the third general feature we
would like to turn to. At wide resonances, the chemical potential of fermions is still of the order
of the free particle Fermi energy, while the molecule fraction is actually inversely proportional
to the width and is very small. At narrow resonances, the chemical potential is depleted to almost
zero and the molecule fraction is substantial.

However, in these previous approaches, three important aspects of this phenomenon have
been overlooked, and sometimes, miscomprehended. One is the issue of quantum phase dynamics
of bosons and fermions. If we treat molecules and atoms as independent bosons and fermions
respectively, there are no particular reasons why there has to be only one condensate phase for
two-component superfluids. In fact, it is natural to assume that the bosonic or fermionic superfluid
has its own quantum dynamics.

In fact, a critical examination of the problem suggests there should be two phases. Though in
the MFA employed in most of previous works on this subject, the two phases are usually locked,
dynamically these two phases do have their distinct features and are never truly identical. The
extra phase degree of freedom indicates an extra branch of collective modes which can have
rather low energies in the limit of narrow resonances [17]. These new excitations are an analogue
of small fluctuations of a relative phase between two condensates discussed in [18]. It remains
to be studied in detail and to be observed experimentally.

The second issue is related to the possibility of having a boson–fermion mixture but with
decoupled low energy dynamics. Though this possibility hardly exists in high dimensions, in
1D there can be a phase transition between the usual phase locked superfluid and more exotic
phase unlocked states. The critical point is determined by a sine-Gordon type theory. This was
discussed in a recent preprint [19] and has received further critical examination in a unpublished
work3 [20].

The third aspect is the new quantum dynamics due to the conversion between fermions
and bosons. The conversion actually violates the particle number conservation of fermions and
bosons respectively and only conserves their total number. Although this violation plays little
role in BEC-BCS crossover superfluids because of the large local density fluctuations, it can
have a vital impact on other many-body states close to Feshbach resonances. One example is the

3 In this work, the authors study lattice Feshbach resonances for both integer fillings and noninteger fillings in
1D systems.
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instability of certain Mott states when the number conservation is violated. The other example is
the development of certain hidden order in Mott states. The purpose of this paper is to investigate
these issues and explore the consequences of these observations. A brief discussion on some of
these issues was previously presented [17].

In section 2, we introduce a model to study the stability/instability of Mott states of fermion–
boson systems.We discuss the validity of the model and the relevance to the physics near Feshbach
resonances. In section 3, we exam the stability of certain Mott states of bosons when fermion–
boson conversion is present. We show that the conversion leads to delocalization of particles
in a Mott regime and destabilizes the insulating phase. A Mott state appears to develop a finite
density of states at energies well below the Mott gap.

In section 4, we further derive an effective Hamiltonian of fermion–boson systems in
a large-N limit. We also obtain the equations of motion and investigate the novel quantum
dynamics of fermions and bosons in this limit. General structures of collective modes are studied
in a semiclassical approximation. In section 5, we demonstrate that the delocalization leads
to superfluidity by explicitly showing the development of the off-diagonal long ranger order
(ODLO). These calculations also indicate that strong repulsive interactions between bosons or
Cooper pairs do not renormalize the superfluid density to zero in some limit. In section 6, we
examine the hidden order in certain Mott states and point out various topological excitations in
Mott states. These remain to be explored experimentally.

2. Hamiltonian for lattice Feshbach resonances

The model we employ to study this subject is an M-orbit Fermi–Bose–Hubbard Model (FBHM).
Consider the following general form of FBHM

H = Hf + Hb + Hfb;
Hf = − tf

∑
〈kl〉,η,η′,σ

(f
†
kησflη′σ + h.c.) +

∑
k,η,σ

(εη − µ)f
†
kησfkησ

− λ
∑
k,η,ξ

f
†
kη↑f

†
kη↓fkξ↓fkξ↑ +

Vf

4

∑
k

n̂fk(n̂fk − 1), (1)

Hb = − tb
∑
〈kl〉

(b
†
kbl + h.c.) +

∑
k

(v − 2µ)b
†
kbk + Vb

∑
k

n̂bk(n̂bk − 1),

Hbf = − γFB

∑
k,η

(b
†
kfkη↑fkη↓ + h.c.) + Vbf

∑
k

n̂bkn̂fk.

Here k, η and σ label lattice sites, on-site orbits and spins; η = 1, 2, . . . , M, σ =↑, ↓. f †
kησ (fkησ)

is the creation (annihilation) operator of a fermion at site k, with on-site orbital energy εη and spin
σ. b†

k(bk) is the creation (annihilation) operator of a boson at site k. For simplicity, we assume that
there is only one bosonic orbital degree of freedom at each site. The fermion and boson number
operators are, respectively, n̂bk = b

†
kbk, n̂fk = ∑

η,σ f
†
kησfkησ . tf and tb are hopping integrals of

fermions and bosons respectively, and hopping occurs over neighbouring sites labelled as 〈kl〉;
and for fermions we have assumed the tunnelling matrix elements are independent of η, η′. µ is
the chemical potential of fermions and v is the binding energy of bosons which are bound states
of fermions. � is the attractive coupling constant in the Cooper channel which we assume to
be much larger than the rest of couplings. Finally, Vf , Vb and Vbf are the strength of repulsive
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interactions between fermions and bosons in the density-density channel4 (one further assumes
VbVf > V 2

fb to ensure that homogeneous states are stable). We only include conversion between
a molecule and two fermions in time-reversal doublets, and in equation (2), we choose to work
with doublets of (η ↑, η ↓). FBHMs similar to equation (2) were previously applied to study
Bose–Fermi mixtures in optical lattices,5 and most recently the BCS-BEC crossover in lattices
[23]. In the absence of the conversion term, FBHM consists of decoupled (attractive) Fermi–
Hubbard model and Bose–Hubbard (BH) model; the main properties of the latter are known6

[24]–[26] (also see discussions on BH physics in optical lattices).
In the FBHM, the conversion is between a molecule and two fermions in the same

orbit η. This approximation correctly describes the physics near Feshbach resonances at least in
the following three limits.

1. The high density limit where fermions mostly occupy high energy on-site orbits. Generally
speaking, other conversion terms are allowed and the Hamiltonian should be

H ′
bf = −

∑
k,ηη′

γFB(η, η′)b†
kfkη↑fkη′↓ + h.c., γFB(η, η′) ∼

∫
dx φ∗

0(x)ψη(x)ψη′(x), (2)

if we assume the conversion is local. Here 
0 is the wavefunction for bosonic molecules,
and ψη,η′ are wavefunctions of η, η′ orbits at a given lattice site. If 
0 is approximated
as a constant, thus the selection rule yields η′ = η and molecules are only converted into
two fermions in same orbits. In a harmonic trap where 
0 is a Gaussian wavepacket, one
then needs to take into account fermions in different orbits as implied and demonstrated
previously7 [5].

However, if orbit η and η′ correspond to highly excited states, the conversion between
molecules and time-reversal doublets is considerably larger than other terms. This yields
dominating contributions in the large-N limit. In this case, the form of the on-site conversion
term approaches the form in the bulk limit; up to a finite size effect, the conversion is between
a bosonic molecule and two fermionic atoms in the same orbit because of the wavefunction
orthogonality. The Hamiltonian with the conversion between a molecule and two fermions
in same orbits thus describes the physics in this limit if M takes a large value and the number
of fermions per site is big.

2. The low density limit near narrow resonances when non-interacting fermions mostly occupy
the lowest orbit. In this case, one can argue that as far as the resonance width is small
compared to the spacing between the lowest orbit and higher orbits, the hybridization of
molecules and atoms occurs in the lowest energy state; so fermions remain in the lowest
orbit. One only needs to take into account resonances between molecular states and fermions
in the lowest orbit. And in this case, the fermionic sector of the Hamiltonian is equivalent
to a negative-U Hubbard model if one sets M to be one (see more discussions in section 6).

3. The low density limit with magnetic fields not too close to wide Feshbach resonances.
The validity in this limit is justified by the following observations. Not too close to wide

4 The atom–molecule and molecule–molecule scattering length have been calculated previously. For instance, see
[21] and references therein.
5 In optical lattices, Bose–Fermi mixtures without fermion–boson conversion were studied in [22].
6 Bosonic Mott states were observed recently. See [26].
7 Discussions on the relevance of higher bands when scattering length is increased can be found in [27]. See also
discussions on this issue in the context of Feshbach resonances.
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resonances, again the lowest eigenstate of two interacting fermions in a lattice site mostly
involves two fermions in the lowest orbit and a molecular bound state. This implies that the
fermion–boson conversion should again be described by terms such as b

†
kfkη↓fkη↑, η = 1.

However, right at wide resonances, the molecule state is effectively hybridized not only
with two fermions in the lowest orbit but also with two fermions in different orbits; this
has been correctly pointed out and appreciated [5, 27]. Even in the low density limit where
free fermions occupy the lowest on-site orbit, the above FBHM Hamiltonian when applied to
Feshbach resonances is indeed no longer valid from this microscopic point of view. It remains
to be understood how many-body physics will be affected by this complication.

Without losing generality, in this paper we study the effective low energy theory in a limit
where the fermion–boson conversion strength is weak (i.e., narrow resonance) and discuss the
issue of Mott states’ instability. The coupling constant γFB is assumed to be smaller compared
with interaction constants Vb,f . However, we would like to argue that physics discussed in this
paper would not be affected by the presence of additional conversion terms when the conversion
strength is strong (i.e., wide resonance). The main reason is that the form of the long wave length
effective Hamiltonian described below is subject to severe constraints from the symmetries and
hydrodynamics in our problem and has little dependence on microscopics. As far as these extra
terms only renormalize coefficients in equations of motion but do not alter the general form of
hydrodynamics discussed in the paper, most of the conclusions arrived at here remain valid even
in this delicate limit. This is evident from a general renormalization point of view but has been
unfortunately overlooked in the last two references of [27]. We believe that the significance of
extra conversion terms on long wavelength physics has been overstated previously.

3. Delocalization of particles under the influence of Feshbach resonances

In this section, we are going to study a Mott state under the influence of Feshbach resonances,
especially the effect of fermion–boson conversion. A Mott state of bosons or Cooper pairs
appears whenever bosons or Cooper pairs in lattices are strongly repulsively interacting and if
the corresponding filling factors are integers. One of important properties of a Mott state is its
incompressibility, or a finite energy gap in its excitation spectra, thus a Mott state is believed to
be robust. When hopping is renormalized to zero due to repulsive interactions, the number of
particles at each site can be strictly quantized and discrete; particles are locally conserved.

Below we are going to show that in general Mott states are unstable with respect to Feshbach
resonances. The primary reason is that particle numbers of fermions or bosons involved in
resonating conversion are not conserved separately. So the conversion not only mediates an
attractive interaction between fermions as realized before, but also, more importantly violates
the local conservation law. This introduces new low energy degrees of freedom and results in a
novel mechanism to transport particles. It leads to delocalization of particles in the limit of large
repulsive interactions.

To address the issue of localization of particles, we first introduce the following time-ordered
Green’s functions [29]

Gb(t, 0; k, 0) = −i〈T b
†
k(t)b0(0)〉 Gf(t, 0; k, 0) = −i〈T f

†
kησ(t)f

†
kησ̄(t)f0η′σ′(0)f0η′σ̄′(0)〉. (3)
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(a)

(b)

(c)

(d)

Figure 1. Diagrams leading to the delocalization of bosons in Mott states. Solid
lines with circles are for boson propagators while lines with arrows are for
fermion propagators. (a) (From left to right) bosonic propagators with no hopping;
time ordered fermionic anomalous propagators −i〈T f †f †〉 and −i〈T ff 〉; the
fermionic normal propagators −i〈T f †f 〉. (b) (From left to right) vertices for
hopping of bosons, and for fermion–boson conversion. (c) The contribution to
the bosonic propagator at a large distance due to hopping. (d) The contribution
to the propagator at a large distance due to fermion–boson conversion.

Now we assume tb/Vb � 1 and the number of bosons per lattice site nb is an integer so that
the ground state of bosons is a Mott state. Without losing generality, we also assume that the
chemical potential µ is precisely in the middle of the Mott gap so that the system is particle–
hole symmetric and Vbf = 0. Meanwhile, the number of fermion pairs per lattice site is either a
non-integer or an integer but tf/Vf 	 1 so that the ground state of fermions is a superfluid. We
are interested in the effect of fermion–boson conversion on the Mott state.

When there is no fermion–boson conversion, one can evaluate the boson Green’s function
by an expansion in terms of the parameter tb/Vb. For instance, the zeroth order Green’s
function is

Gb0(ε; k, 0) =
(

nb

ε − Vb + iδ
− nb + 1

ε + Vb − iδ

)
δk,0, (4)

reflecting the zero bandwidth in this limit. All low energy excitations are localized and gapped
with a single energy Vb. Here nb is the number of bosons per lattice site. The small finite hopping
amplitude leads to corrections to this form of the Green’s function; following the diagram in
figure 1(c), one finds that

δGb(ε; k, 0) ∼
(

2tbnbVb

ε2 − V 2
b + iδ

)Rk

, (5)

where Rk is the distance between two lattice sites k and 0. To obtain this result, we have assumed
that nb is much larger than one. It is obvious that at low energy ε � Vb, the two-point Green’s
function decays exponentially as a function of distance Rk. Equation (5) also implies that the
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localization length at small finite tb should scale as

ξL ∼ ln−1 Vb

nbtb
(6)

in the unit of the lattice constant.
The localization of particles in a conventional Mott state is largely due to the absence of

available low energy states below the energy scale set by Vb. So to remove a particle at the point 0
and for the particle to travel to the point k, one has to confront a sequence of energy barriers of
height Vb. This blockade results in the localization.

When a fermionic superfluid is present and the fermion–boson conversion occurs, there is
an additional channel for a particle to travel from site 0 to k. The mechanism is schematically
shown in figure 2. Instead of removing a bosonic particle from site 0 and adding to site k, one can
remove a Cooper pair at site 0 and transport it to site k. For this, a Cooper pair experiences no
energy barrier imposed by repulsive interactions because there are sufficient low energy degrees
of freedom available for particle–hole excitations in a superfluid. At a latter stage, one then turns
on Feshbach resonances to remove the boson at site 0 by converting it into a Cooper pair to fill
up the hole left behind by the transported Cooper pair; similarly, the Cooper pair transported can
be converted to a boson as an additional particle at site k. The net effect is that a bosonic hole is
created at site 0 and bosonic particle excitation is now at site k. Since the fermionic channel has
a long range order, this process therefore yields a long range particle–hole excitation.

At a formal level, one can study this contribution by introducing a vertex for the fermion–
boson conversion. Furthermore, in the weakly coupling limit, the long range component of
the fermion Green’s function reflects the usual off-diagonal-long range order. In the MFA, one
obtains

Gf(ε; k, 0) ∼ δ(ε)F(Rk) + · · · . (7)

Here · · · represents other contributions which decay over large distance. Let us emphasize that
F(Rk) is a constant and is independent of the distance Rk between k and 0.

Following the diagrams in figure 1(d), one obtains the contribution of the boson Green’s
function

δGb(ε; k, 0) ≈
(

γFB

Vb

)2

Gf(ε; k, 0). (8)

Equation (8) illustrates two important properties of the state under consideration, which are
intimately connected. Firstly, the non-exponentially decay component of the boson Green’s
function is proportional to the off-diagonal-long-range order in the fermionic channel. The long
range component in equation (8) shows that at least a fraction of all bosons actually become
delocalized. The fermion–boson conversion effectively leads to the delocalization of bosons as
argued above (also see figure 2 for more explicit discussions); it is the delocalization of bosons
which in fact induces superfluidity in the bosonic channel.

Secondly, the zero energy peak (at ε = 0) in the Green’s function in the MFA suggests that
some bosons should now condense at the zero energy; the condensation fraction is (γFB/Vb)

2.
Notice that now the resultant bosonic state is compressible. It is thus implied that there should
be additional low energy states well below the original Mott gap. These extra states are one of
the consequences of the unusual hydrodynamics in the problem. We also anticipate that the low
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(b)

(c)

(d)

(a)

(f )

(e)

0 1 k

Figure 2. Schematic of creation of particle–hole excitations with (a)–(d) and
without (e)–(f) fermion–boson conversion. Thick circles in light blue are for
bosons. Thin circles for holes left by fermion pairs and filled circles in black for
fermion pairs. Lines below the periodical structures are schematics of Fermi seas.
(a) The ground state of bosons (in a Mott state) and fermions (in a superfluid state).
(b) Creation of a Cooper pair and a hole pair in fermionic superfluid channel at
site 0; (c) propagation of the Cooper pair to site k; (d) after the conversion of
a boson into a particle Cooper pair at site 0 and a particle pair into a boson at
site k takes place, a final state with one extra boson at site k and a bosonic hole
at site 0. The Fermi superfluid is in its ground state. In (e)–(f), a boson at site k

and a bosonic hole at site 0 are created without the fermion–boson conversion.
Note in (e), a particle effectively experiences an energy barrier with height Vb;
the amplitude of finding a particle–hole pair separated with a large distance is
therefore exponentially small.
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energy structure of δGb such as the peak height is to be modified when various fluctuations are
taken into account.

In the next two sections, we are going to analyse the long range order in details. To understand
the induced superfluidity, it is most convenient to first obtain an effective theory where the typical
issues of broken symmetries can be easily addressed. So in section 3, we derive an effective
coupled U(1) ⊗ U(1) quantum rotor model for the FBHM. In section 4, we employ the effective
model to examine the long range order.

4. An effective Hamiltonian and the equation of motion

4.1. A U(1) ⊗ U(1) coupled quantum rotor model

We first study the large-N limit where nb and nf(<M), the average numbers of fermions and
bosons are both much bigger than unity. For simplicity, we also assume that effectively, λ is
much larger than other coupling constants and the ground state of fermions for the on-site part of
the Hamiltonian Hf naturally should be a BCS state.8 The Fermi energy as well as the BCS gap
are larger than the Fermi–Bose coupling strength γFB so that we can neglect the Fermi degrees
of freedom at low energies and obtain the effective Hamiltonian written in terms of various
collective coordinates(see below).

This suggests that it should be convenient to work with the following coherent state
representation,

|{φfk}; {φbk}〉=
∏

k

∑
nbk

g0(nbk)
[ exp(−iφbk)b

†
k]nbk

√
nbk!

⊗
∏

η

(uη + vη exp(−iφfk)f
†
kη↑f

†
kη↓)|0〉.

(9)

Here uη, vη are the coherence factors in the BCS wavefunction which minimize the total on-site
energy; g0(nbk) is a unity for nmax + nb > nbk > nb − nmax, nmax is much larger than one. These
states form a low energy Hilbert subspace and are orthogonal in the limit which interests us, or
〈|{φ′

fk}; {φ′
bk}|{φfk}; {φbk}|〉 is equal to zero if φfk �= φ′

fk or φbk �= φ′
bk.

At last, in the coherent-state representation one shows that n̂fk/2 = i∂/∂φfk, and n̂bk =
i∂/∂φbk; or

[1
2 n̂fk, exp(−iφfk′)] = δk,k′ exp(−iφfk), [n̂bk, exp(−iφbk′)] = δk,k′ exp(−iφbk). (10)

So in the subspace of coherent states, we find the effective Hamiltonian is

Heff = −Jf

∑
〈kl〉

cos(φfk − φfl) +
V ′

f

4

∑
k

(n̂fk − nf)
2 − Jb

∑
〈kl〉

cos(φbk − φbl) + Vb

∑
k

(n̂bk − nb)
2

−
∑

k


FB cos(φfk − φbk) + Vbf(n̂bk − nb)(n̂fk − nf). (11)

8 This assumption on λ simplifies the discussion in this paper but is not necessary. For discussions on more realistic
limits, see [28].
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The exchange couplings Jf , Jb and 
FB can be estimated as

Jf = t2
f

∑
η,η′

uηvηu
′
ηv

′
η

Eη + E′
η

, Jb = nbtb, 
FB = γFB
√

nb

∑
η

uηvη; (12)

Eη =
√

(εη − µ)2 + �2
0 is the quasi-particle energy and �0 is the BCS energy gap. Furthermore,

V ′
f = Vf +

∂2Ek(nfk)

∂n2
fk

. (13)

Ek is the on-site energy of nfk particles and its second derivative is inversely proportional to
the compressibility of a BCS state. In a recent work of one of the authors [17], it was assumed
that Vf is much bigger than the second term in the above equation and V ′

f ≈ Vf . However, when
Fermions do not have repulsive interactions in the density-density channel (Vf = 0), V ′

f is equal
to ∂µBCS/∂nfk, µBCS is the chemical potential of nf fermions in a BCS state, which is typically
of order of the one-particle level spacing at each lattice site. From now on, we will assume Vf is
much larger than the level spacing and omit prime in V ′

f
nf and nb are functions of µ, v and Vf,b,fb:

nf = 2Vb(µ0 + Vf/4) − Vbf(2µ − v + Vb)

VfVb − V 2
bf

, nb = Vf(2µ − v + Vb) − Vbf(2µ0 + Vf/2)

2(VfVb − V 2
bf)

.

(14)

Here µ0 = µ − µBCS. Obviously, the detuning energy v has to be sufficiently small in order for
nb to be positive.

Equations (10) and (11) define the low energy quantum dynamics of fermions and bosons
under the influence of fermion–boson conversion in Feshbach resonances. In the absence of
Feshbach resonances (
FB = 0) and Vbf , the effective Hamiltonian describes two decoupled sets
of quantum U(1) rotors in a lattice, the behaviours of which are well known. If nf/2 or nb is
a positive integer, the effective model can be used to study superfluid-Mott state transitions. A
Mott phase corresponds to U(1) symmetry restored states and U(1)-symmetry breaking solutions
represent a superfluid phase. For the bosonic (Cooper pair) sector, the phase transition takes place
when rf = zJf/Vf (rb = zJb/Vb) is equal to a critical value rfc(rbc) (z(>1) is the coordination
number). The critical values which are of order of unity are usually calculated numerically.

In the presence of 
FB, the Hamiltonian equation (11) describes a coupled U(1) ⊗ U(1)

quantum rotor model in a lattice. U(1) ⊗ U(1) symmetry breaking solutions when both rf,b are
much larger than unity correspond to a superfluid phase.

In general, the wavefunctions for the many-body ground state and excitations
�n({φbk}; {φfk})(n = 0, 1, 2, . . .) are the eigenstates of the Hamiltonian in equation (11). The
boundary conditions are periodical along the directions of φfk,bk with a period 2π, so the
wavefunctions are effectively defined on an S1 ⊗ S1 torus with radius of each S1 equal to one.
If the average number nf/2 and nb are integers, one introduces a gauge transformation

� → �
∏

k

exp(−infφfk/2 − inbφbk); (15)

the shifted number operators become

δn̂fk/2 = 1
2(n̂fk − nf) = i∂/∂φfk, δn̂bk = n̂bk − nb = i∂/∂φbk. (16)
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The effective Hamiltonian and eigenstates in the shifted basis are given by the following equation[
−

∑
k

Vf
∂2

∂φ2
fk

+ Vb
∂2

∂φ2
bk

+ 2Vbf
∂

∂φfk

∂

∂φbk

− Jf

∑
〈kl〉

cos(φfk − φfl) − Jb

∑
〈kl〉

cos(φbk − φbl)

−
FB

∑
k

cos(φfk − φbk)
]
�n = En�n. (17)

It is evident, following the above equations that when both fermions and bosons are in
superfluid phases, quantum phases of two superfluids are locked to minimize the potential energy
−
FB cos(φbk − φfk). That is

φfk = φbk = φ0. (18)

So in this new basis a spontaneous symmetry breaking solution with the wavefunction

� ∼
∏

k

δ(φfk − φ0)δ(φbk − φ0) (19)

represents a typical superfluid. A symmetry-unbroken solution with the wavefunction

� ∼
∏

k

(2π)−1 exp(imfkφfk) ⊗ exp(imbkφmk) (20)

(mfk,bk = 0 for all k) on the other hand corresponds to a Mott state with δn̂fk(bk)� = 0 or
n̂fk(bk)� = nf(b)� at each lattice site.

4.2. The equations of motion and general features of collective modes

In a superfluid phase, the Hamiltonian in equation (11) further leads to the following semiclassical
equation of motion in the long wave length limit

∂φfk

∂t
= Vfδn̂fk + 2Vbfδn̂bk,

∂φbk

∂t
= 2Vbδn̂bk + Vbfδn̂fk,

(21)
1

2

∂δn̂fk

∂t
= Jf�φfk + 
FB(φbk − φfk),

∂δn̂bk

∂t
= Jb�φbk + 
FB(φfk − φbk).

Here δn̂fk,bk = n̂fk,bk − nf,b. We have taken a continuum limit and k labels the coordinate of
phases of bosons and fermion pairs (φfk,bk) in this equation; � is a Laplacian operator. The
lattice constant has been set to be one. The above set of equations were previously derived [17].

In the absence of fermion–boson conversion, the third and fourth formula in equation (22)
are the conservation laws for fermions and bosons respectively.

1

2

∂δn̂fk

∂t
+ ∇ · Jfk = 0,

∂δn̂bk

∂t
+ ∇ · Jbk = 0, (22)

where supercurrents are defined as Jfk,bk = −Jf,b∇φfk,bk (the definition of phases differs from
the conventional one by a minus sign). Obviously, the fermion–boson conversion violates the
conservation law and introduces a source term which is proportional to 
FB. It is this new
quantum dynamics which yields the delocalization in the previous section. Below we show that
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in addition to the usual gapless Goldstone mode, the quantum dynamics in this case also leads
to a new branch of collective modes which are fully gapped.

Let us introduce the plane wave representation for φfk,bt(t) and study the eigenmodes. The
above semiclassical equation suggests spectra of collective excitations. The equation for eigen
modes φf,b(ω, Q) reads as
[
ω2

(
Mff Mfb

Mbf Mbb

)
− Q2

(
Jf 0
0 Jb

)
− 
FB

(
1 −1

−1 1

) ] (
φf(ω, Q)

φb(ω, Q)

)
= 0. (23)

Here the matrix elements Mα,β(α,β = b, f) are defined as

Mff = 1

2

Vb

VfVb − V 2
bf

, Mbb = 1

2

Vf

VfVb − V 2
fb

, Mbf = Mfb = −1

2

Vbf

VfVb − V 2
fb

. (24)

The eigenfrequencies of modes are the solutions of the following equation

ω4

4
− ω2

2
[Q2(JfVf + JbVb) + 
FB(Vf + Vb − 2Vbf)] + [JfJbQ

4 + 
FB(Jb + Jf)Q
2](VbVf − V 2

fb).

(25)

By solving the equation for eigenfrequencies, one obtains the collective mode spectrum.
The above equation shows that there should be two branches of collective modes the dispersion
relations of which are given below:

(a) ω2 = α|Q|2, φf(ω, Q → 0) = φb(ω, Q → 0),

(b) ω2 = �2
0 + β|Q|2, φf(ω, Q → 0) = −Vf − Vbf

Vb − Vbf
φb(ω, Q → 0).

(26)

φf,b(ω, Q) are the Fourier components of phase fields φfk,bk(t). It is worth emphasizing that in
the long wavelength limit, mode (a) is fully symmetric in phase oscillations of fermions and
bosons, independent of various parameters; mode (b) represents out-of-phase oscillations in
fermionic and bosonic channels and becomes fully antisymmetry when Vb = Vf . In the absence
of conversion (
FB = 0), these two modes correspond to two gapless Goldstone modes associated
with breaking two decoupled U(1) symmetries. However, in the presence of Feshbach resonances
only the symmetric mode (a) remains gapless corresponding to the usual Goldstone mode of
superfluid while the antisymmetric mode (b) is fully gapped because of the phase-locking effect
of Feshbach resonances.

In general, �0, α and β depend on various parameters in the Hamiltonian; �0 is always
proportional to 
FB, and α on the other hand is independent of 
FB. When Vbf = 0, Vf = Vb = V0

and Jf = Jb = J0, equation (25) becomes

ω4

4
− ω2

2
[2J0V0Q

2 + 2
FBV0] + J2
0 Q4 + 2
FBJ0V

2
0 Q2 = 0. (27)

Consequently, the dispersion relations are given by equation (26) with �2
0 = 4
FBV0, α = β =

2J0V0.
A more interesting and realistic limit is when Vbf is small and set to be zero but Vb,f are not

equal. In this case, equation (25) becomes

ω4

4
− ω2

2
[Q2(JfVf + JbVb) + 
FB(Vf + Vb)] + [JfJbQ

4 + 
FB(Jb + Jf)Q
2]VbVf = 0. (28)
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One then obtains the dispersion with coefficients given below

α = 2(Jf + Jb)
VbVf

Vf + Vb
, β = 2

JfV
2
f + JbV

2
b

Vf + Vb
, �2

0 = 2
FB(Vb + Vf). (29)

Note that in the noninteracting limit, Vf is equal to ∂µ/∂nf and is finite. The above equations show
that the velocity of mode (a) (the symmetric Goldstone mode),

√
α, decreases when interactions

between bosons Vb become smaller. This is because as bosons become weakly interacting, the
density fluctuations in the symmetric mode are dominated by those of bosons and the fermion
density fluctuations become insignificant. So although the sound velocity of fermion superfluids
is finite, the fermionic contribution to the symmetric mode is negligible and the Goldstone mode
becomes softer and softer as Vb goes to zero.

On the other hand, the gap in the antisymmetric mode (b) remains finite in the limit when
Vb = 0; that is �2

0 = 2
FBVf . As discussed in the previous subsection, if repulsive interactions
between fermions are zero, Vf approaches the value of ∂µ/∂nbk. One also notice that when Vbf

is zero, the total density fluctuations in mode (b) at Q = 0 are zero, that is

δnbk = −δnfk (30)

following the last equation in equation (26).
The above semiclassical approach to collective modes is valid when Vf,b,fb are small so that

various renormalization effects can be neglected. Collective modes in a large-V limit can be
more conveniently studied using a saddle point expansion. This alternative approach to study the
collective modes is explored in a unpublished work [30].

5. Development of ODLO in a large-V limit

5.1. Molecule MFA

We first introduce the following order-parameters to classify various states,

�̃b = 〈b†
k〉, �̃f = 〈f †

kησf
†
kη−σ〉. (31)

When �̃b is nonzero (zero), the ground state is a bosonic superfluid (bosonic Mott state), or SFb
(MIb). When �̃f is nonzero (zero), the corresponding state is a fermionic superfluid (fermionic
Mott state), or SFf (MIf).

Below we demonstrate that superfluidity appears in a parameter region where only Mott
states are expected to be ground states if there were no Feshbach resonances. To understand the
influence of Feshbach resonances on Mott states, we first consider a situation where again both
nb and nf/2 are integers and rb is much less than rbc, so that bosons are in a Mott state in the
absence of Feshbach resonances. On the other hand rf is much bigger than the critical value rfc so
that Cooper pairs are condensed. For simplicity, we have also assumed that Vbf is much smaller
than Vb so that it can be treated as a perturbation. We are interested in the responses of bosonic
Mott states to fermion–boson conversion and carry out the rest of discussions in a MFA.

In this MFA, φfk = φf , φbk = φb for any lattice site k. The ground state �0(φb, φf) (again
defined on an S1 ⊗ S1 torus with radius 2π) is the lowest energy state of the following MFA
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r

r

b

f

(SFfSFb)

(MIfSFb)MI (MIfMIb)

rbc

rfc

(SFfMIb)

Figure 3. Phase diagrams with (solid lines) and without (dashed lines) Feshbach
fermion–boson conversion. rfc and rbc are the critical values for the superfluid-
Mott insulator transitions for the decoupled fermionic Cooper pairs and bosonic
molecules respectively. Phases in brackets are the ones without Feshbach
fermion–boson conversion and are separated by dashed lines. Note in the presence
of fermion–boson conversion, due to the invasion of superfluidity to MI phases,
the original SFfSFb, SFfMIb, MIfSFb phases, and a small portion of the MIfMIb
phase merge into one single superfluid phase specified as the shaded area.

Hamiltonian

HMFA = −Vf
∂2

∂φ2
f

− Vb
∂2

∂φ2
b

− 2Vbf
∂

∂φf

∂

∂φb
− z(Jf�f cos φf + Jb�b cos φb) − 
FB cos(φf − φb).

(32)

Here again z is the coordination number; we have also introduced two self-consistent order
parameters

�b,f = 〈cos φb,f〉 =
∫ 2π

0
dφf

∫ 2π

0
dφb cos φb,f�0�

∗
0. (33)

Here 〈 〉 stands for an average taken in the ground state, and �0 is the ground state wavefunction.
Notice that the order parameters defined above are nonzero only when the U(1) symmetries are
broken; particularly, �f is proportional to the usual BCS pairing amplitude. Following equation
(9) and discussions above one indeed shows that

�̃f = 〈f †
kη↑f

†
kη↓〉 =

( ∑
η

uηvη

)
�f, �̃b = 〈b†

k〉 = √
nb�b. (34)

So �f,b vanish in Mott states and are nonzero in superfluids.
As zJf is much larger than Vf , φf has very slow dynamics; and the corresponding ground

state for φf can be approximated as a symmetry breaking solution. In the linear order of Jb and 
,
one obtains the following solution

�0(φf, φb) = �0b(φb) ⊗ δ(φf), �0b(φb) = 1√
2π

[
1 +

(
zJb

Vb
�b +


FB

Vb
�f

)
cos φb

]
. (35)
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bc
V

∆ b

bV

Figure 4. Schematic of the renormalized condensate amplitude �b as a function
of Vb (tb is given and set to be unity). The solid line and dashed line are for the
case with and without fermion–boson conversion respectively.

Here �f should be approximately equal to one in this limit; and in the zeroth order of V−1
b ,

�0b does not break the U(1) symmetry and stands for a Mott-state solution. Finally taking into
account equations (33) and (35), one finds that the self-consistent solution to �b is

�b = 1

2


FB

Vb

[
1 − 1

2

zJb

Vb

]−1

. (36)

In the absence of 
FB, �b vanishes as expected for a Mott state. However, the Mott state solution
is unstable in the presence of any Feshbach conversion and the molecular condensation order
parameter �b is always nonzero in this limit.

We want to emphasize that the average number of bosons per site is not affected by the
fermion–boson conversion and remains to be an integer (I); rather, closely connected with the
instability is the breakdown of particle number quantization. Indeed, one obtains in the MFA
the following results for n̂bk,

〈n̂bk〉 = nb = I, 〈δ2n̂bk〉 = 1/2(
FB/Vb)
2 ≈ 2�2

b. (37)

This illustrates that the resonance between states with different numbers of bosons at a lattice
site eventually leads to a nonzero molecular condensation order parameter �b.

Alternatively, one can consider the renormalization of the condensate amplitude due to
enhanced quantum fluctuations when repulsive interactions are introduced. When repulsive
interactions are weak, one can carried out usual perturbative calculations.

The results above on the other hand provide information about what happens when
interactions are dominating and the conventional perturbation expansion fails. One of the most
important consequences of fermion–boson conversion is that the suppression of condensate
amplitude is never complete if one increases Vb only while maintaining small value of Vf . The
renormalization of the condensate amplitude as a function of Vb is plotted schematically in
figure 4.

At last, let us briefly consider the case that both bosons and fermion pairs are in Mott
states, i.e., rb < rbc and rf < rfc respectively. Then the mass gaps in two channels behave
like mb ∝ rbc − rb and mc ∝ rfc − rf in the absence of the boson–fermion conversion term 
FB.
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The conversion term leads to a hybridization between two components, and we can diagonalize
their mass matrices to find the new mass gaps. When 
2 > mfmb ∝ (rbc − rb)(rfc − rc), one
eigenvalue becomes negative which suggests that the Mott state should be unstable, i.e., a
superfluid state should be formed.

5.2. Saddle point approximation

In this subsection, we are going to provide an alternative approach to ODLO based on a saddle
point approximation. We will show again that any finite fermion–boson conversion leads to
a finite condensation of bosons disregarding the strength of repulsive interactions between
bosons.

For this purpose we first introduce the following partition function

Z =
∫

Df †DfDb†Db exp{−(Sf + Sb + Sbf)} (38)

Sf =
∫ β

0
dτ

∫
d�rf †

σ (�r)
{

∂

∂τ
+ ε(∇) − µ)

}
fσ(�r) − gf

†
↑(�r)f †

↓(�r)f↓(�r)f↑(�r) (39)

Sb =
∫ β

0
dτ

∑
k

b
†
k

∂

∂τ
bk − t

∑
〈kl〉

{b†
kbl + h.c.} − 2µ

∑
k

b
†
kbk +

U

2

∑
k

b
†
kbk(b

†
kbk − 1) (40)

Sbf =
∫ β

0
dτ

∑
k


{b†
kf↓(k)f↑(k) + bkf

†
↑(k)f

†
↓(k)}, (41)

where fσ(�r), f †
σ (�r) are fermion field variables defined in the continuum, bk are the field variables

for bosonic molecules in the closed channel defined at lattice site k, fσ(k) is a coarse average of
fσ(�r) within the kth unit cell as

fσ(k) = 1

�

∫
�k

d�r fσ(�r), (42)

where � is the volume of one unit cell.
For the reasons outlined in appendixA, it is more convenient to introduce a φ-field variable to

describe the dynamics of bosons; the φ-field can be interpreted as the condensate wavefunction.
Following discussions there, in the long wavelength limit we obtain the following φ4-theory
description of bosons

Sφ =
∫ β

0
dτ

∫
d�r φ†(�r)

{
r′ ∂

∂τ
+ r

∂2

∂τ2
− κ∇2 + α

}
φ(�r) +

λ

2
(φ†φ)2 (43)

S′
bf =

∫ β

0
dτ

∫
d�r 
{φ†(�r)f↓(�r)f↑(�r) + φ(�r)f †

↑(�r)f↓(�r)}. (44)
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According to appendix A, when the system has a particle–hole symmetry, one can set r′ to be
zero. This also corresponds to a system where nb is an integer, a situation we have discussed in
the previous session. Moreover, when α > 0(<0), the system is in a Mott phase with an energy
gap (in the superfluid phase).

Using the standard Hubbard–Stratonovich (HS) transformation, we decouple the 4-fermion
interaction term by introducing the pairing field �. After integrating out the fermions in S′

bf ,
Sf (see appendices A, B and especially equations (B.1) and (B.2)), we arrive at the following
effective action

Seff. = Sφ + S�φ, S�φ = det

{
∂

∂τ
+ G1τ1 + G2τ2 + G3τ3

}
,

G1 = −(Re�(�r, τ) + 
Reφ(�r, τ)), G2 = −(Im�(�r, τ) + 
Imφ(�r, τ)),
G3 = ε(∇) − µ,

(45)

where τ1,2,3 are the Pauli’s matrices in the Nambu’s representation, and τ+,− = (τ1 ± iτ2)/2.
Consider the standard mean field ansatz

�(�r, τ) = �̄ + δ� φ(�r, τ) = φ̄ + δφ. (46)

Taking into account the contribution from molecules in equation (43), we then obtain the standard
self-consistent equation for �̄ and φ̄

�̄

g
− 1

V

∑
�k

�̄ + 
φ̄

2Ek

= 0, αφ̄ + λ|φ̄|2φ̄ − 


V

∑
�k

�̄ + 
φ̄

2Ek

= 0. (47)

The dispersion relation for quasi-particles is

E2
k = (εk − µ)2 + |�̄ + 
φ̄|2. (48)

Equation (47) is of the same form as the equation for �, φ̄ derived in a zero-V limit where
bosons and cooper pairs are non-interacting. However, in our case, the equation is valid even
when various repulsive interactions are strong and bosons are in a Mott state. We derive the
relation between φ̄ and �̄ from equation (47) as

αφ̄ + λ|φ̄|2φ̄ = 

�̄

g
. (49)

It is clear the saddle point values of φ̄ and �̄ are locked with the same phase. For convenience,
we assume both of them to be real in the following.

First consider a situation when molecules are deeply in the Mott state, i.e. α 	 
, � > 0.
Equation (49) can be approximated up to 
’s second order as

φ̄

�̄/g
= 


α
. (50)

This equations shows that condensation amplitude of bosons is finite for any finite coupling 
,
disregarding the value of α. When 
 is nonzero, it indicates that the minimum for the total energy
should be located at a finite φ̄ instead of zero.

On the other hand, if molecules are deep in the superfluid state, i.e., −α 	 
 > 0, the
solution to equation (49) can be approximated as

φ̄ = φ0 + φ′, (51)
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where φ0 is the saddle point value without the boson–fermion conversion, and φ′ is the correction,

φ0 =
√

|α|
λ

, φ′ = −1

2




α

�̄

g
. (52)

It is worth remarking again that in this limit the phase of φ̄ is precisely locked with the phase
of �̄, following equation (49). This is consistent with the Hamiltonian-based discussion in
subsection 4.1.

6. ODLO in the single band limit

The main conclusions arrived so far do not depend on the large-N approximation introduced
above. One can consider the opposite limit by assuming M = 1 and there is only one orbital
degree of freedom at each lattice site. In the single-orbit limit, the two interaction terms (with
two interaction constants λ and Vf ) in Hf (see equation (1)) can be rewritten in one term:
V ′

f

∑
k n̂fk(n̂fk − 1) if one identifies V ′

f = Vf − 2λ. In the limit where λ is much larger than Vf ,
fermions are paired at each lattice site. Furthermore, I assume bosons have hard core interactions
(Vb = ∞) such that there can be only zero or one boson at each site.

So the low energy Hilbert subspace Sk at each lattice site k consists of four states: (1)
no Cooper pair, no boson; (2) no Cooper pair, one boson; (3) one Cooper pair, no boson; (4)
one Cooper pair, one boson. They also correspond to a product of two pseudo spin S = 1/2
subspaces:

Sk = Sfk ⊗ Sbk, |σz
fk = ±1〉 ∈ Sfk, |σz

bk = ±1〉 ∈ Sbk; (53)

Sk is the on-site Hilbert space, and Sfk,bk are the on-site pseudo spin spaces for fermions and
bosons respectively. More explicitly, these four states are

|σz
fk = 1〉 = f

†
k↑f

†
k↓|vac〉f, |σz

bk = −1〉 = |vac〉f;
|σz

bk = 1〉 = b
†
k|vac〉b, |σz

bk = −1〉 = |vac〉b.
(54)

|vac〉f,b are the vacuum of fermion and bosons respectively. Finally, in this truncated subspace,
the following identities hold

σ+
fk = f

†
k↑f

†
k↓, σ−

fk = fk↓fk↑,

σz
fk = f

†
k↑fk↑ + f

†
k↓fk↓ − 1; σ+

bk = b
†
k, σ

−
bk = bk, σ

z
bk = 2b

†
kbk − 1.

(55)

So to have superfluidity, either σbk or σfk, or both of them need to have a finite expectation value
in the XY plane. For instance to have fermionic superfluids, the expectation values of σ±

fk need to
be nonzero.

The effective Hamiltonian can then be written as

H1
eff = −J1

b

∑
〈kl〉

{σx
bkσ

x
bl + σ

y

bkσ
y

bl} − hz
b

∑
k

σz
fb − J1

f

∑
〈kl〉

{σx
fkσ

x
fl + σ

y

fkσ
y

fl − σz
fkσ

z
fl}

−hz
f

∑
k

σz
fk − 
1

FB

∑
k

{σx
fkσ

x
bk + σ

y

fkσ
y

bk} (56)
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(see also [17]). Here

J1
f = t2

f /V ′
f , J

1
b = tb, 
1

FB = γFB, hz
f = µ + V ′

f /2, hz
b = µ − v/2. (57)

The Hamiltonian is invariant under a rotation around the z-axis or has an X − Y symmetry. The
z-direction fully polarized phase of pseudo spins σbk (σfk) represents the Mott phase of bosons
(fermions), and the XY symmetry breaking states of pseudo spins σbk (σfk) stand for the superfluid
phase of bosons (fermions). The fermionic sector of this Hamiltonian was previously obtained
and studied [31]; it was also used to study BEC-BCS crossover in lattices [23].

When 
1
FB = 0, the Mott phase for bosons with filling factor equal to one occurs when hz

b
is much larger than Jb. Assume that in this case hz

f is much less than Jf so that �σfk are ordered in
the x − y plane; then fermions form Cooper pairs. Taking into account a finite amplitude of 
1

FB,
one considers a solution where the pseudo spin symmetry of �σfk is spontaneously broken along
a direction in the XY plane specified by 〈�σfk〉 (the expectation value is taken in the ground state).

In the molecular MFA, the effective external field acting on pseudo spins �σbk is

�hb,eff = zJb〈�σbk〉 + 
1
FB〈�σfk〉 + hz

b�ez. (58)

〈�σbk〉 is calculated self-consistently in the ground state when �hb,eff is applied; the effective
MFA Hamiltonian is

HMFA = −�σbk · �hb,eff . (59)

One then arrives at the following self-consistent solution

〈�σbk〉 · 〈�σfk〉 ≈ 
1
FB

hz
b

(
1 − zJb

hz
b

)−1

, (60)

where 〈�σbk〉 has been projected along the direction of 〈�σfk〉 which lies in the X − Y plane.
As mentioned before, development of such a component signifies superfluidity, or molecular
condensation.

To summarize, we have shown that certain Mott states are unstable with respect to the
resonating fermion–boson conversion; in general superfluidity invades Mott phases because of
the fermion–boson conversion.

7. Hidden order and vortices in Mott states

In addition to introducing superfluidity to Mott states in some limit, the fermion–boson conversion
also results in a hidden order in Mott states. In the presence of fermion–boson conversion, one
finds it is more convenient to introduce trilinear order parameters to characterize a Mott state

�+
bf = 〈b†

kf
†
kησf

†
kη−σ〉, �−

bf = 〈b†
kfkησfkη−σ〉. (61)

A superfluid phase would have a nonzero order parameter of �+
bf type, but �−

bf can be either zero
or nonzero. For a usual superfluid near Feshbach resonances, �−

bf is nonzero. However, there
might be more exotic superfluids where �−

bf is zero; when this occurs, the superfluid will have
two decoupled components with unlocked phases. On the other hand, a Mott state has vanishing
�+

bf but always has non-vanishing �−
bf as hidden order as far as the fermion–boson conversion is

present (see below). Here the appearance of �−
bf order is due to the fermion–boson conversion.
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Effectively, it can be viewed as an order parameter of a boson and a Cooper-pair hole pairing,
which bears resemblance of the electron–hole exciton formation in semiconductors [29] and in
quantum Hall bilayer systems [32].

To understand this issue, we first consider an extreme situation when Vf = Vb = Vbf = V0

and all of them are much larger than tb,f and γFB. Minimizing the potential energy leads to the
following constraint on nfk,bk in the ground state

Nfb = nfk

2
+ nbk = Int

[
3µ − v

V0
+

5

4

]
. (62)

Here I is an integer, Int[I + ε] is equal to I if 0 � ε < 1/2, and to I + 1 if 1/2 < ε � 1; at
ε = 1/2, Int takes either I or I + 1. Let us assume that the chemical potentials and interactions
are such that Nfb is equal to an integer I. All states satisfy the constraint are degenerate when
γFR is zero, and thus the degeneracy is proportional to Nfb.

In this limit, we can truncate the Hilbert space and consider the effect of fermion–
boson conversion in the degenerate subspace only. We study the following ground state trial
wavefunctions constructed out of these degenerate states,

|g〉 =
∏

k

exp{−iφkfbnkfb}
∑

nkfb<Nfb

{
(b

†
k)

Nfb−nkfb

√
(Nfb − nkfb)!

∑
{nkη}

∏
η

w(nkη)(f
†
kη↑f

†
kη̄↓)

nkη

}
|0〉, (63)

where nkη = 0 or 1 satisfying
∑

η nkη = nkfb, w(nkη) = uη at nkη = 0 and vη at nkη = 1,
respectively (uη, vη are coherence factors). One can easily verify that states with different {φkfb}
are approximately orthogonal when Nfb is much larger than unity.

But any finite conversion leads to a lift of degeneracy. The energy associated with the
conversion is

E ∼ −
FB

∑
k

cos(φkfb). (64)

Minimization takes place when φkfb = 0 for any lattice site k. The symmetry here is broken not
spontaneously as in superfluids but actually broken explicitly by the fermion–boson conversion.
The ground state is non-degenerate and does not have the usual U(1) vacuum manifold.

This state is characterized by the following expectation values

〈b†
k〉 = 〈f †

kησf
†
kη−σ〉 = 〈b†

kf
†
kησf

†
kη−σ〉 = 0 〈b†

kfkησfkη−σ〉 ∼ Nfb. (65)

The existence of the trilinear order in Mott states is very unique and defines a hidden order. There
are a few consequences. One is the collective excitations. In addition to excitations which have an
energy gap V0, there are another branch of excitations involved the creation of a bosonic particle
and annihilation of a cooper pair,

∑
q1,q2

b
†
q1+Qfq2η↑f−q2+q1η↓; these excitations are gapped by the

energy of order 
FB instead of the Mott gap.
Furthermore, a hidden order also implies new classes of topological excitations. The

wavefunction of a topological excitation centred at the origin is given by equation (63) where
φkfb is defined by the following equation

φkfb = 
(Rk); (66)


(Rk) is the azimuthal angle of Rk. The vortex is orientated along the z-direction. The energy
per unit length of this excitation unfortunately scales as the area of the system in the xy

New Journal of Physics 8 (2006) 166 (http://www.njp.org/)

http://www.njp.org/


22 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

plane; i.e.

Ev

Lz

∼ 
FR

∑
k

[1 − cos(φkfb)] = LxLyγFB. (67)

The situation discussed here is not generic and requires fine tuning. Let us now turn to a
more general situation where Vb �= Vf . If rb,f are much smaller than rbc,fc, then both Cooper pairs
and bosons are in Mott states. Up to the first order approximation of 
FB, the corresponding
wavefunction is

|g〉 ≈
∏

k

{
(b

†
k)

nb

√
nb!

∑
{nkη}

∏
η

w(nkη)(f
†
kη↑f

†
kη̄↓)

nkη + e±iφkfb

FB

Vb + Vf

(b
†
k)

nb±1

√
(nfb ± 1)!

×
∑
{n′

kη}

∏
η

w(n′
kη)(f

†
kη↑f

†
kη̄↓)

n′
kη

}
|0〉, (68)

where the distribution n′
kη satisfies

∑
η n′

kη = nf/2 ± 1, and nkη satisfies
∑

η nkη = nf/2. φkfb has
to be uniform and zero for the ground state.

Similar calculations lead to self-consistent solutions �f = �b = 0 and more importantly,
the following correlations for �±

bf ,

�−
bf ≈ 
2

FB

2γFB(Vf + Vb)
, �+

bf = 0. (69)

The second equality above simply shows the absence of superfluidity. But the first one indicates
a subtle hidden order in the Mott states under consideration. Notice that �±

bf represent tri-linear
order and are proportional to 〈cos(φkb ± φkf)〉.

One can easily show that the vortex wavefunction is given by the same solution with
φkfb = 
(Rk); the energy per unit length in this case is much smaller

EV

Lz

∼ LxLy


2
FB

Vf + Vb
. (70)

8. Conclusions

In this paper, we examine the stability of bosonic Mott states under the influence of fermion–boson
conversion and study various aspects of Mott states and superfluids when repulsive interactions
among bosons are very strong. We have found that when bosonic Mott states are coupled to
fermionic superfluids via the fermion–boson conversion, there appears to be a finite condensation
fraction of bosons in the ground state. There are extra low energy states below the Mott gap
representing gapless extended excitations in the Mott-superfluid mixture, due to delocalization
of bosons. We also show the existence of off-diagonal long-range order in the bosonic channel
due to fermion–boson conversion.

The second issue we look into here is the novel collective excitations in superfluids. This
branch of excitations involves oscillations of the difference between the boson and fermion
density. Unlike the usual Goldstone modes in superfluids, it is fully gapped. The gap energy is
proportional to 
FB when bosons are weakly interacting, or in a superfluid state.
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Finally, we study the Mott states of boson–fermion mixture and find hidden trilinear order
in Mott states. We analyse the order in a few limits and briefly study the novel topological
excitations in Mott states.
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Appendix A. The effective action

In this appendix, we present the effective action for the boson–fermion conversion in the optical
lattices near Feshbach resonances. We start with the microscopic actions of equations (38), (39),
(40), (41) in subsection 5.2. Equation (39) describes the attraction in the open channel for the
formation of BCS Cooper pairs; equation (40) describes the BH model of the boson molecules
with t the hopping integral and U the on-site repulsion; equation (41) describes the conversion
between the Cooper pairs and molecules.

The BH model of equation (40) exhibits a superfluid (SF)–Mott insulating (MI) phase
transition [24]. The MI phase only exists in the strong coupling regime with commensurate
fillings, i.e., small values of t/U and integer values of nb. The SF–MI transition can be
obtained by two different ways. First, the boson filling is kept commensurate while t/U is
tuned larger than the corresponding critical value. This transition belongs to the XY universal
class, and the resulting SF is particle–hole symmetric. Second, we can also add or remove
particles to the commensurate MI background, i.e., dope the MI with extra particles or holes.
Because the particle–hole symmetry is broken, this transition is not XY-like. The resulting
SF are either particle-like or hole-like. Consequently, although only one connected SF phase
exists in the phase diagram, it actually exhibits rich structures, including the particle-like,
hole-like, or even relativistic (particle–hole symmetric) SF, which are connected by smooth
cross-overs.

The bare boson operators bk, b
†
k in equation (40) are for non-relativistic particles. However,

near the SF–MI transition, it is not convenient to use them to describe above rich structures in
the SF phase. For example, bk means both an annihilation of a particle and a creation of a hole
in the MI background. On the other hand, the SF–MI transition is in the strong coupling regime
by using the bare operators of bk, b

†
k, and it is hard to do perturbation theory for the Hubbard U

term. Thus we follow Fisher et al [24] to introduce another complex bose field φ(�r) to describe
the molecular superfluidity. This can be formally done by keeping the on-site Hubbard term in
equation (40) as the leading term, and decoupling the inter-site hopping term as perturbations.
Basically, this transformation turns the original strongly interacting non-relativistic systems
into weakly interacting quasi-relativistic systems. It is shown in the equation of motion that φ

plays the role of the expectation value of b in the ground state, i.e., φ is the superfluid order
parameter.
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Phenomenologically, the symmetry allows an effective action for the φ-field upto the quartic
level as

Sφ =
∫ β

0
dτ

∫
d�r φ†(�r)

{
r′ ∂

∂τ
+ r

∂2

∂τ2
− κ∇2 + α

}
φ(�r) +

λ

2
(φ†φ)2, (A.1)

which includes the r, κ, α, λ terms as in the standard relativistic complex φ4 theory, and also an
additional first order time derivative term of r′. Whether the mass α > 0 or α < 0 determines
the system either in the MI phase with a charge gap or in the SF phase, respectively. All these
coefficients in equation (A.1) can be determined by the values of t, U, µ in the original BH model
perturbatively [24]. However, for simplicity we treat them as phenomenological parameters. It
is proved through gauge invariance that r′ is related with α through [24]

r′ = − ∂α

∂µ
. (A.2)

Near the SF–MI transition, as the filling nb changes from one integer to another integer, the
superfluidity is enhanced and suppressed alternatively. As a result, α oscillates, and then r′ can
be negative, positive, or even zero. Roughly speaking, when n is larger (smaller) than an integer
number, r′ > 0 (r′ < 0), and then the system is particle-like (hole-like). As long as r′ �= 0, the
first order time derivative term dominates over the second order one below a certain energy
scale in the sense of the renormalization group (RG), and the system is non-relativistic. When
nb is commensurate, the superfluidity is in a local minimum, and thus r′ = 0, i.e., the system
is particle–hole symmetric. In other words, the r term becomes the leading order term, and the
system becomes relativistic.

Many possible terms coupling the superfluid field φ and fermions f
†
k , fk together are allowed

by symmetry. Among them, the linear coupling term is the most relevant one in the sense
of RG as

S′
bf =

∫ β

0
dτ

∫
d�r 
{φ†(�r)f↓(�r)f↑(�r) + c.c.}. (A.3)

Here we use the same symbol 
 for the coupling constant as in equation (41) for convenience.
However, we need to bear in mind that the 
 here receives significant renormalization from its
bare value in equation (41).

The action for the fermion BCS interaction in equation (39) is already defined in the
continuum. Combined with equations (A.1) and (A.3), these three terms give the effective action
for the boson–fermion conversion.

Appendix B. Self-consistent equation

In this appendix, we derive the self-consistent equations for the coupled superfluids of bosonic
molecules and the fermionic Cooper pairs. Using the standard HS transformation, we decouple
the 4-fermion interaction term in equation (39) in terms of Cooper pair filed � as∫

DfDf † exp

{ ∫ β

0
dτ

∫
d�r{gf †

↑(�r)f †
↓(�r)f↓(�r)f↑(�r)} =

∫
D�†D�DfDf †

× exp

{
−

∫ β

0
dτ

∫
d�r

{
1

g
�†(�r)�(�r) − �†(�r)f↓(�r)f↑(�r) − �(�r)f †

↑(�r)f †
↓(�r)

}
.

(B.1)
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Now all the fermion terms in equations (39) and (A.3) become quadratic, we can integrate out
them using Nambu’s representation∫

Df †Df exp

{
−

∫ β

0
dτ

∫
d�r(f †

↑ , f↓)
{

∂

∂τ
+ (ε(∇) − µ)τ3 − (�†(�r, τ)

+ 
φ†(�r, τ))τ−(δ(�r, τ) + 
φ(�r, τ))τ+

}} (
f↑
f

†
↓

)

= exp

{
tr log

{
∂

∂τ
+ (ε(∇) − µ)τ3 − (Re �(�r, τ) + 
Re φ(�r, τ))τ1

−(Im �(�r, τ) + 
Im φ(�r, τ))τ2

}}
, (B.2)

where τ1,2,3 are Pauli’s matrices in Nambu’s representation, and τ+,− = (τ1 ± iτ2)/2. This leads
to the result in equation (45).

We set the mean field ansatz as

�(�r, τ) = �̄ + δ�φ(�r, τ) = φ̄ + δφ, (B.3)

where �̄ and φ̄ are the saddle point value, while δ� and δφ are the small fluctuations. Then the
single particle Green’s function reads

G(�p, τ − τ ′) = −
(

T 〈cp(τ)c
†
p(τ

′)〉 T 〈cp(τ)c−p(τ
′)〉

T 〈c†
−p(τ)c

†
p(τ

′)〉 T 〈c†
−p(τ)c−p(τ

′)〉
)

, (B.4)

where T is the time-order operator. Its Fourier transforms become

G(�p, ipn) =
(

G(p, ipn) F(p, ipn)

F†(p, ipn) −G(−p, −ipn)

)
, (B.5)

where the G(p, ipn) and F(p, ipn) are the normal and anomalous Green’s functions respectively.
More explicitly, they can be written as

G(p, ipn) = u2
p

ipn − Ep

+
v2

p

ipn + Ep

F(p, ipn) = F†(p, ipn) = −(upvp)

{
1

ipn − Ep

− 1

ipn + Ep

}
, (B.6)

with

u2
p = 1

2

{
1 +

εp − µ

Ep

}
, v2

p = 1

2

{
1 − εp − µ

Ep

}
, (B.7)

with the dispersion relation

E2
p = (εp − µ)2 + (�̄ + 
φ̄)2. (B.8)

The saddle point equations are determined by the varnishing of the first order variations of
the effective action equation (B.2) over δ� and δφ. They are

�̄

g
= 1

VLβ

∑
ipn,p

tr{G(�̄, φ̄; p, ipn)τ−}, αφ̄ + λ|φ̄|2φ̄



= 1

VLβ

∑
ipn,p

tr{G(�̄, φ̄; p, ipn)τ−}.

(B.9)

After performing the summation over frequency, we arrive at equation (47).
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